Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model

Energy Conversion and Management - Tập 102 - Trang 202-208 - 2015
Ziye Ling1, Jiajie Chen1, Tao Xu1, Xiaoming Fang1, Xuenong Gao1, Zhengguo Zhang1
1Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China

Tài liệu tham khảo

Fan, 2011, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew Sustain Energy Rev, 15, 24, 10.1016/j.rser.2010.08.007 Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng, 23, 251, 10.1016/S1359-4311(02)00192-8 Ling, 2014, Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules, Renew Sustain Energy Rev, 31, 427, 10.1016/j.rser.2013.12.017 Rao, 2011, A review of power battery thermal energy management, Renew Sustain Energy Rev, 15, 4554, 10.1016/j.rser.2011.07.096 Zhang, 2012, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies, Renew Sustain Energy Rev, 16, 599, 10.1016/j.rser.2011.08.026 Khodadadi, 2007, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, Int Commun Heat Mass Transfer, 34, 534, 10.1016/j.icheatmasstransfer.2007.02.005 Javani, 2014, New latent heat storage system with nanoparticles for thermal management of electric vehicles, J Power Sources, 268, 718, 10.1016/j.jpowsour.2014.06.107 Li, 2014, Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials, J Power Sources, 255, 9, 10.1016/j.jpowsour.2014.01.006 Mahmoud, 2013, Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks, Appl Energy, 112, 1349, 10.1016/j.apenergy.2013.04.059 Zhang, 2006, Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energy Convers Manage, 47, 303, 10.1016/j.enconman.2005.03.004 Mills, 2006, Thermal conductivity enhancement of phase change materials using a graphite matrix, Appl Therm Eng, 26, 1652, 10.1016/j.applthermaleng.2005.11.022 Zhang, 2006, Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energy Convers Manage, 47, 303, 10.1016/j.enconman.2005.03.004 Sarı, 2007, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl Therm Eng, 27, 1271, 10.1016/j.applthermaleng.2006.11.004 Karaipekli, 2007, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renew Energy, 32, 2201, 10.1016/j.renene.2006.11.011 Sarı, 2009, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage, Sol Energy Mater Sol Cells, 93, 571, 10.1016/j.solmat.2008.11.057 Wang, 2013, Two types of natural graphite host matrix for composite activated carbon adsorbents, Appl Therm Eng, 50, 1652, 10.1016/j.applthermaleng.2011.07.011 Wang, 2010, Anisotropic thermal conductivity and permeability of compacted expanded natural graphite, Appl Therm Eng, 30, 1805, 10.1016/j.applthermaleng.2010.04.014 Ling, 2014, Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system, Appl Energy, 121, 104, 10.1016/j.apenergy.2014.01.075 Lyeo, 2006, Thermal conductivity of phase-change material Ge2Sb2Te5, Appl Phys Lett, 89, 10.1063/1.2359354 Couto Aktay, 2008, Thermal conductivity of high-temperature multicomponent materials with phase change, Int J Thermophys, 29, 678, 10.1007/s10765-007-0315-7 Wang, 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol Energy, 84, 339, 10.1016/j.solener.2009.12.004 Fan, 2012, An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM), Int J Therm Sci, 62, 120, 10.1016/j.ijthermalsci.2011.11.005 Nabil, 2013, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials, Int J Heat Mass Transfer, 67, 301, 10.1016/j.ijheatmasstransfer.2013.08.010 Carson, 2005, Thermal conductivity bounds for isotropic, porous materials, Int J Heat Mass Transfer, 48, 2150, 10.1016/j.ijheatmasstransfer.2004.12.032 Kothari, 2013, Experimental and numerical study of the effective thermal conductivity of nano composites with thermal boundary resistance, Int J Heat Mass Transfer, 66, 823, 10.1016/j.ijheatmasstransfer.2013.07.061 Boomsma, 2001, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, Int J Heat Mass Transfer, 44, 827, 10.1016/S0017-9310(00)00123-X Li, 2014, Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite, Sol Energy Mater Sol Cells, 128, 447, 10.1016/j.solmat.2014.06.023 Maxwell, 1954 Bruggeman, 1935, Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances, Ann Phys, 24, 636, 10.1002/andp.19354160705 Progelhof, 1976, Methods for predicting the thermal conductivity of composite systems: a review, Polym Eng Sci, 16, 615, 10.1002/pen.760160905 Cheng, 1970, A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials, Int J Heat Mass Transfer, 13, 537, 10.1016/0017-9310(70)90149-3 Affdl, 1976, The Halpin-Tsai equations: a review, Polym Eng Sci, 16, 344, 10.1002/pen.760160512 Nielsen, 1974, The thermal and electrical conductivity of two-phase systems, Ind Eng Chem Fundam, 13, 17, 10.1021/i160049a004 Hauser, 2008, Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites, J Appl Polym Sci, 110, 2914, 10.1002/app.28869 Wang, 2014, A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications, Sol Energy, 99, 283, 10.1016/j.solener.2013.11.018