A novel phase change material containing mesoporous silica nanoparticles for thermal storage: A study on thermal conductivity and viscosity

Sadegh Motahar1,2, Nader Nikkam3, Ali A. Alemrajabi1, Rahmatollah Khodabandeh2, Muhammet S. Toprak3, Mamoun Muhammed3
1Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156, Iran
2Department of Energy Technology, KTH Royal Institute of Technology, Stockholm 10044, Sweden
3Department of Materials and Nano Physics, KTH Royal Institute of Technology, Stockholm 16440, Sweden

Tài liệu tham khảo

Mehling, 2008 Fan, 2011, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew. Sust. Energ. Rev., 15, 24, 10.1016/j.rser.2010.08.007 Jegadheeswaran, 2009, Performance enhancement in latent heat thermal storage system: a review, Renew. Sust. Energ. Rev., 13, 2225, 10.1016/j.rser.2009.06.024 Das, 2008 Khodadadi, 2013, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review, Renew. Sust. Energ. Rev., 24, 418, 10.1016/j.rser.2013.03.031 Zeng, 2008, Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM, J. Therm. Anal. Calorim., 91, 443, 10.1007/s10973-007-8545-2 Wang, 2008, Thermal properties of heat storage composites containing multiwalled carbon nanotubes, J. Appl. Phys., 104, 113537, 10.1063/1.3041495 Wang, 2009, Thermal properties of paraffin based composites containing multi-walled carbon nanotubes, Thermochim. Acta, 488, 39, 10.1016/j.tca.2009.01.022 Zeng, 2009, Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM, J. Therm. Anal. Calorim., 95, 507, 10.1007/s10973-008-9275-9 Wang, 2010, Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes, Carbon, 48, 3979, 10.1016/j.carbon.2010.06.044 Wang, 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energy, 84, 339, 10.1016/j.solener.2009.12.004 Cui, 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Sol. Energy Mater. Sol. Cells, 95, 1208, 10.1016/j.solmat.2011.01.021 Kumaresan, 2012, The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification, Heat Mass Transf., 48, 1345, 10.1007/s00231-012-0980-3 Yu, 2013, Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes, Carbon, 53, 277, 10.1016/j.carbon.2012.10.059 Elgafy, 2005, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon, 43, 3067, 10.1016/j.carbon.2005.06.042 Weinstein, 2008, The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics, J. Heat Transf., 130, 042405, 10.1115/1.2818764 Sanusi, 2011, Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers, Int. J. Heat Mass Transf., 54, 4429, 10.1016/j.ijheatmasstransfer.2011.04.046 Kim, 2009, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol. Energy Mater. Sol. Cells, 93, 136, 10.1016/j.solmat.2008.09.010 Xiang, 2011, Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material, Sol. Energy Mater. Sol. Cells, 95, 1811, 10.1016/j.solmat.2011.01.048 Yavari, 2011, Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives, J. Phys. Chem. C, 115, 8753, 10.1021/jp200838s Wu, 2009, Thermal energy storage behavior of Al2O3–H2O nanofluids, Thermochim. Acta, 483, 73, 10.1016/j.tca.2008.11.006 Ho, 2009, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, Int. Commun. Heat Mass Transf., 36, 467, 10.1016/j.icheatmasstransfer.2009.01.015 Wang, 2010, PW based phase change nanocomposites containing γ-Al2O3, J. Therm. Anal. Calorim., 102, 709, 10.1007/s10973-010-0850-5 Şahan, 2012, Nano magnetite paraffin composite as PCM Liu, 2009, Experimental study of thermal conductivity and phase change performance of nanofluids PCMs, Microfluid. Nanofluid., 7, 579, 10.1007/s10404-009-0423-8 He, 2012, Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage, Energy Convers. Maag., 64, 199, 10.1016/j.enconman.2012.04.010 Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transf., 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017 Cai, 2011, Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials, Appl. Energy, 88, 2106, 10.1016/j.apenergy.2010.12.071 Ai, 2010, Study of ZrO2 nanopowders based stearic acid phase change materials, Particuology, 8, 394, 10.1016/j.partic.2010.05.004 Fan, 2011 Fan, 2012, An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM), Int. J. Therm. Sci., 62, 120, 10.1016/j.ijthermalsci.2011.11.005 Harikrishnan, 2012, Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material, Thermochim. Acta, 533, 46, 10.1016/j.tca.2012.01.018 Zeng, 2007, Study of a PCM based energy storage system containing Ag nanoparticles, J. Therm. Anal. Calorim., 87, 369, 10.1007/s10973-006-7783-z Long, 2011, Study on thermal conductivity of organic phase-change nano-fluids, Adv. Mater. Res., 152, 1579 Wu, 2010, Preparation and melting/freezing characteristics of cu/paraffin nanofluid as phase-change material (PCM), Energy Fuels, 24, 1894, 10.1021/ef9013967 Zeng, 2010, Thermal conductivity enhancement of Ag nanowires on an organic phase change material, J. Therm. Anal. Calorim., 101, 385, 10.1007/s10973-009-0472-y Giraldo, 2008, Mesoporous silica applications, Macromol. Symp., 258, 129, 10.1002/masy.200751215 Nikkam, 2011, Novel nanofluids based on mesoporous silica for enhanced heat transfer, J. Nanoparticle Res., 13, 6201, 10.1007/s11051-011-0404-1 2005 2010 Powell, 1961, Measurement of thermal conductivity of n-octadecane, Ind. Eng. Chem., 53, 581, 10.1021/ie50619a033 Humphries, 1977, A design handbook for phase change thermal control and energy storage devices, 1074 Graves, 1990, The thermophysical properties of gypsum board containing wax, 343 Wei, 2009, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochim. Acta, 491, 92, 10.1016/j.tca.2009.03.007 Larson, 1999