Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage

Solar Energy Materials and Solar Cells - Tập 170 - Trang 68-76 - 2017
Xiang Huang1, Yaxue Lin1, Guruprasad Alva1, Guiyin Fang1
1School of Physics, Nanjing University, Nanjing 210093, China

Tài liệu tham khảo

Xiao, 2013, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl. Energy, 112, 1357, 10.1016/j.apenergy.2013.04.050 Tay, 2012, Experimental investigation of tubes in a phase change thermal energy storage system, Appl. Energy, 90, 288, 10.1016/j.apenergy.2011.05.026 Medrano, 2009, Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems, Appl. Energy, 86, 2047, 10.1016/j.apenergy.2009.01.014 Oliver, 2012, Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat, Energy Build., 48, 1, 10.1016/j.enbuild.2012.01.026 Joulin, 2011, Experimental and numerical investigation of a phase change material: thermal-energy storage and release, Appl. Energy, 88, 2454, 10.1016/j.apenergy.2011.01.036 Rao, 2011, A review of power battery thermal energy management, Renew. Sustain. Energy Rev., 15, 4554, 10.1016/j.rser.2011.07.096 Jeong, 2013, Preparation and evaluation of thermal enhanced silica fume by incorporating organic PCM, for application to concrete, Energy Build., 62, 190, 10.1016/j.enbuild.2013.02.053 Xiang, 2011, Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material, Sol. Energy Mater. Sol. Cells, 95, 1811, 10.1016/j.solmat.2011.01.048 Karaipekli, 2007, Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications, Renew. Energy, 32, 2201, 10.1016/j.renene.2006.11.011 Wang, 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energy, 84, 339, 10.1016/j.solener.2009.12.004 Chen, 2014, Miscibility studies of paraffin/polyethylene blends as form–stable phase change materials, Eur. Polym. J., 52, 44, 10.1016/j.eurpolymj.2013.09.027 Qi, 2015, Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage, Carbon, 88, 196, 10.1016/j.carbon.2015.03.009 Jin, 2015, PCMs heat transfer performance enhancement with expanded graphite and its thermal stability, Procedia Eng., 102, 1877, 10.1016/j.proeng.2015.01.326 Tian, 2015, Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites, Appl. Energy, 148, 87, 10.1016/j.apenergy.2015.03.020 Johansen, 2015, Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling, Energy Procedia, 70, 249, 10.1016/j.egypro.2015.02.121 Fukai, 2000, Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Convers. Manag., 41, 1543, 10.1016/S0196-8904(99)00166-1 Nomura, 2015, High thermal conductivity phase change composite with percolating carbon fiber network, Appl. Energy, 154, 678, 10.1016/j.apenergy.2015.05.042 Xing, 2015, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, Int. J. Heat Mass Transf., 88, 609, 10.1016/j.ijheatmasstransfer.2015.05.005 Li, 2014, Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material, Energy Convers. Manag., 83, 325, 10.1016/j.enconman.2014.04.002 Dao, 2015, Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance, Sol. Energy Mater. Sol. Cells, 137, 227, 10.1016/j.solmat.2015.02.009 Fu, 2014, Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives, Int. J. Therm. Sci., 86, 276, 10.1016/j.ijthermalsci.2014.07.011 Oya, 2013, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles, Appl. Therm. Eng., 61, 825, 10.1016/j.applthermaleng.2012.05.033 Fan, 2012, An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane–based nanoparticle suspensions utilized as nano–enhanced phase change materials (NePCM), Int. J. Therm. Sci., 62, 120, 10.1016/j.ijthermalsci.2011.11.005 Wang, 2009, Enhanced thermal conductivity and thermal performance of form–stable composite phase change materials by using b–aluminum nitride, Appl. Energy, 86, 1196, 10.1016/j.apenergy.2008.10.020 Sharma, 2011, Enhancement of thermal conductivity of ethylene glycol based silver nanofluids, Powder Technol., 208, 7, 10.1016/j.powtec.2010.11.016 Wang, 2016, Heat transfer enhancement of phase change composite material: copper foam/paraffin, Renew. Energy, 96, 960, 10.1016/j.renene.2016.04.039 Siahpush, 2008, Phase change heat transfer enhancement using copper porous foam, J. Heat Transf., 130, 082301, 10.1115/1.2928010 Gao, 2010, Study on the melting process of phase change materials in metal foams using lattice Boltzmann method, Sci. China. Sci., 53, 3079, 10.1007/s11431-010-4074-5 Chen, 2010, Heat transfer performance analysis of a solar flat–plate collector with an integrated metal foam porous structure filled with paraffin, Appl. Therm. Eng., 30, 1967, 10.1016/j.applthermaleng.2010.04.031 Hong, 2006, Open–cell aluminum foams filled with phase change materials as compact heat sinks, Scr. Mater., 55, 887, 10.1016/j.scriptamat.2006.07.050 Li, 2011, Preparation and properties of PVA–g–C16OH copolymer based grafting copolymerization, New Chem. Mater., 39, 100 Tang, 2016, Synthesis and thermal properties of the MA/HDPE composites with nano–additives as form–stable PCM with improved thermal conductivity, Appl. Energy, 180, 116, 10.1016/j.apenergy.2016.07.106 Genovese, 2006, Crystallisation, melting, recrystallisation and polymorphism of n–eicosane for application as a phase change material, Thermochim. Acta, 443, 235, 10.1016/j.tca.2006.02.008 Li, 2011, Preparation and properties of PVA–g–C16OH copolymer based grafting copolymerization, New Chem. Mater., 39, 100 Alkan, 2009, Preparation, thermal properties and thermal reliability of form–stable paraffin/polypropylene composite for thermal energy storage, J. Polym. Environ., 17, 254, 10.1007/s10924-009-0146-7 El-Oyoun, 2011, DSC studies on the transformation kinetics of two separated crystallization peaks of Si12.5Te87.5 chalcogenide glass: an application of the theoretical method developed and isoconversional method, Mater. Chem. Phys., 131, 495, 10.1016/j.matchemphys.2011.10.009 Yuan, 2006, Synthesis and characterization of storage energy materials prepared from nano–crystalline cellulose/polyethylene glycol, Chin. Chem. Lett., 17, 1129 Xia, 2010, Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon, 48, 2538, 10.1016/j.carbon.2010.03.030 Karaipekli, 2010, Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form–stable composites for energy storage, J. Ind. Eng. Chem., 16, 767, 10.1016/j.jiec.2010.07.003 Sari, 2009, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form–stable PCM for thermal energy storage, Sol. Energy Mater. Sol. Cells, 93, 571, 10.1016/j.solmat.2008.11.057