Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
Tài liệu tham khảo
Liu, 2016, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew Sustain Energy Rev, 62, 305, 10.1016/j.rser.2016.04.057
Safari, 2017, A review on supercooling of Phase Change Materials in thermal energy storage systems, Renew Sustain Energy Rev, 70, 905, 10.1016/j.rser.2016.11.272
Khan, 2016, A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility, Energy Convers Manag, 115, 132, 10.1016/j.enconman.2016.02.045
Meng, 2017, Experimental and numerical investigation of a tube–in–tank latent thermal energy storage unit using composite PCM, Appl Energy, 190, 524, 10.1016/j.apenergy.2016.12.163
Ma, 2017, Binary eutectic mixtures of stearic acid-n-butyramide/n-octanamide as phase change materials for low temperature solar heat storage, Appl Therm Eng, 111, 1052, 10.1016/j.applthermaleng.2016.10.004
Miró, 2016, Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review, Appl Energy, 179, 284, 10.1016/j.apenergy.2016.06.147
Liu, 2017, Preparation and thermal properties of Na2CO3·10H2O–Na2HPO4.12H2O eutectic hydrate salt as a novel phase change material for energy storage, Appl Therm Eng, 112, 606, 10.1016/j.applthermaleng.2016.10.146
Sharif, 2015, Review of the application of phase change material for heating and domestic hot water systems, Renew Sustain Energy Rev, 42, 557, 10.1016/j.rser.2014.09.034
Huang, 2017, Morphological characterization and applications of phase change materials in thermal energy storage: a review, Renew Sustain Energy Rev, 72, 128, 10.1016/j.rser.2017.01.048
Mohamed, 2017, A review on current status and challenges of inorganic phase change materials for thermal energy storage systems, Renew Sustain Energy Rev, 70, 1072, 10.1016/j.rser.2016.12.012
Milián, 2017, A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties, Renew Sustain Energy Rev, 73, 983, 10.1016/j.rser.2017.01.159
Mohamed, 2017, Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage, Renew Sustain Energy Rev, 70, 1052, 10.1016/j.rser.2016.12.009
Gunasekara, 2017, Phase equilibrium in the design of phase change materials for thermal energy storage: state-of-the-art, Renew Sustain Energy Rev, 73, 558, 10.1016/j.rser.2017.01.108
Chandel, 2017, Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renew Sustain Energy Rev, 67, 581, 10.1016/j.rser.2016.09.070
Socaciu, 2016, PCM selection using AHP method to maintain thermal comfort of the vehicle occupants, Energy Procedia, 85, 489, 10.1016/j.egypro.2015.12.232
Zhou, 2015, Phase change materials for solar thermal energy storage in residential buildings in cold climate, Renew Sustain Energy Rev, 48, 692, 10.1016/j.rser.2015.04.048
Alva, 2017, Thermal energy storage materials and systems for solar energy applications, Renew Sustain Energy Rev, 68, 693, 10.1016/j.rser.2016.10.021
Giro–Paloma, 2016, Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review, Renew Sustain Energy Rev, 53, 1059, 10.1016/j.rser.2015.09.040
Jamekhorshid, 2014, A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium, Renew Sustain Energy Rev, 31, 531, 10.1016/j.rser.2013.12.033
Ibrahim, 2017, Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review, Renew Sustain Energy Rev, 74, 26, 10.1016/j.rser.2017.01.169
Khan, 2017, A review for phase change materials (PCMs) in solar absorption refrigeration systems, Renew Sustain Energy Rev, 76, 105, 10.1016/j.rser.2017.03.070
Kenisarin, 2016, Passive thermal control in residential buildings using phase change materials, Renew Sustain Energy Rev, 55, 371, 10.1016/j.rser.2015.10.128
Karaipekli, 2017, Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes, Energy Convers Manag, 134, 373, 10.1016/j.enconman.2016.12.053
Wang, 2012, Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials, Sol Energy Mater Sol Cells, 105, 21, 10.1016/j.solmat.2012.05.031
Ling, 2015, Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model, Energy Convers Manag, 102, 202, 10.1016/j.enconman.2014.11.040
Xu, 2016, Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material, Sol Energy Mater Sol Cells, 155, 141, 10.1016/j.solmat.2016.06.003
Tang, 2015, Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity, Sol Energy Mater Sol Cells, 141, 218, 10.1016/j.solmat.2015.05.045
Huang, 2017, Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials, Appl Energy, 200, 19, 10.1016/j.apenergy.2017.05.074
Nomura, 2015, High thermal conductivity phase change composite with percolating carbon fiber network, Appl Energy, 154, 678, 10.1016/j.apenergy.2015.05.042
Zhang, 2017, Preparation and thermal properties of short carbon fibers/erythritol phase change materials, Energy Convers Manag, 136, 220, 10.1016/j.enconman.2017.01.023
Tian, 2016, Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials, Sol Energy, 127, 48, 10.1016/j.solener.2016.01.011
Fu, 2014, Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives, Int J Therm Sci, 86, 276, 10.1016/j.ijthermalsci.2014.07.011
Harish, 2015, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl Therm Eng, 80, 205, 10.1016/j.applthermaleng.2015.01.056
Mehrali, 2013, Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape–stabilized phase change material, Appl Therm Eng, 61, 633, 10.1016/j.applthermaleng.2013.08.035
Amin, 2017, Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Appl Therm Eng, 112, 273, 10.1016/j.applthermaleng.2016.10.085
Liu, 2017, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim Acta, 647, 15, 10.1016/j.tca.2016.11.010
Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol Energy Mater Sol Cells, 128, 48, 10.1016/j.solmat.2014.05.018
Yang, 2016, Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage, Carbon, 100, 693, 10.1016/j.carbon.2016.01.063
Mehrali, 2014, Preparation of nitrogen–doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage, Appl Energy, 135, 339, 10.1016/j.apenergy.2014.08.100
Warzoha, 2015, Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials, Appl Energy, 154, 271, 10.1016/j.apenergy.2015.04.121
Wang, 2010, Experimental study on palmitic acid composites containing carbon nanotubes by acid treatment, J Eng Thermophys, 31, 1389
Xing, 2015, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, Int J Heat Mass Transf, 88, 609, 10.1016/j.ijheatmasstransfer.2015.05.005
Tao, 2015, Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material, Energy Convers Manag, 97, 103, 10.1016/j.enconman.2015.03.051
Ye, 2014, Multi–walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage, Particuology, 15, 56, 10.1016/j.partic.2013.05.001
Xu, 2014, Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites, Energy, 72, 371, 10.1016/j.energy.2014.05.049
Li, 2014, Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material, Energy Convers Manag, 83, 325, 10.1016/j.enconman.2014.04.002
Li, 2014, Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube, Appl Energy, 127, 166, 10.1016/j.apenergy.2014.04.029
Xiao, 2015, Study on the phase change thermal storage performance of palmitic acid/carbon nanotubes composites, Compos Part A: Appl Sci Manuf, 77, 50, 10.1016/j.compositesa.2015.06.020
Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl Energy, 106, 25, 10.1016/j.apenergy.2013.01.031
Seki, 2015, Graphite nanoplates loading into eutectic mixture of Adipic acid and Sebacic acid as phase change material, Sol Energy Mater Sol Cells, 140, 457, 10.1016/j.solmat.2015.05.003
Wang, 2017, Highly stable graphite nanoparticle–dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage, Appl Energy, 188, 97, 10.1016/j.apenergy.2016.11.122
Chen, 2014, Research progress of phase change materials (PCMs) embedded with metal foam (a review), Procedia Mater Sci, 4, 389, 10.1016/j.mspro.2014.07.579
Xiao, 2013, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl Energy, 112, 1357, 10.1016/j.apenergy.2013.04.050
Xiao, 2014, Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage, Int J Therm Sci, 81, 94, 10.1016/j.ijthermalsci.2014.03.006
Thapa, 2014, Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement, Energy Convers Manag, 79, 161, 10.1016/j.enconman.2013.12.019
Chen, 2014, Experimental and numerical study on melting of phase change materials in metal foams at pore scale, Int J Heat Mass Transf, 72, 646, 10.1016/j.ijheatmasstransfer.2014.01.003
Wang, 2015, Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery, Appl Therm Eng, 78, 428, 10.1016/j.applthermaleng.2015.01.009
Ghossein, 2017, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int J Heat Mass Transf, 107, 697, 10.1016/j.ijheatmasstransfer.2016.11.059
Oya, 2013, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles, Appl Therm Eng, 61, 825, 10.1016/j.applthermaleng.2012.05.033
Cui, 2016, Experimental studies on the supercooling and melting/freezing characteristics of nano–copper/sodium acetate trihydrate composite phase change materials, Renew Energy, 99, 1029, 10.1016/j.renene.2016.08.001
Sahan, 2015, Improving thermal conductivity phase change materials-a study of paraffin nanomagnetite composites, Sol Energy Mater Sol Cells, 137, 61, 10.1016/j.solmat.2015.01.027
Babapoor, 2015, Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: comparison and optimization, Appl Therm Eng, 90, 945, 10.1016/j.applthermaleng.2015.07.083
Nourani, 2016, Thermal behavior of paraffin–nano–Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity, Renew Energy, 88, 474, 10.1016/j.renene.2015.11.043
Wei, 2017, Preparation and characterization of a lauric–myristic–stearic acid/Al2O3–loaded expanded vermiculite composite phase change material with enhanced thermal conductivity, Sol Energy Mater Sol Cells, 166, 1, 10.1016/j.solmat.2017.03.003
Tang, 2014, PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity, Mater Chem Phys, 144, 162, 10.1016/j.matchemphys.2013.12.036
Tang, 2016, Synthesis and thermal properties of the MA/HDPE composites with nano–additives as form-stable PCM with improved thermal conductivity, Appl Energy, 180, 116, 10.1016/j.apenergy.2016.07.106
Deng, 2016, Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem Eng J, 295, 427, 10.1016/j.cej.2016.03.068
Reyes, 2017, Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material, Renew Energy, 101, 225, 10.1016/j.renene.2016.08.057
Li, 2015, Experimental study on melting/solidification and thermal conductivity enhancement of phase change material inside a sphere, Int Commun Heat Mass Transf, 68, 276, 10.1016/j.icheatmasstransfer.2015.09.004
Su, 2016, Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage, Energy Build, 131, 35, 10.1016/j.enbuild.2016.09.022
Fang, 2014, Thermal energy storage performance of paraffin–based composite phase change materials filled with hexagonal boron nitride nanosheets, Energy Convers Manag, 80, 103, 10.1016/j.enconman.2014.01.016
Motahar, 2014, A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity, Int Commun Heat Mass Transf, 56, 114, 10.1016/j.icheatmasstransfer.2014.06.005
Yataganbaba, 2017, Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015), Appl Energy, 185, 720, 10.1016/j.apenergy.2016.10.107
Yu, 2014, Microencapsulation of n–octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation, Appl Energy, 114, 632, 10.1016/j.apenergy.2013.10.029
Wang, 2016, Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage, Appl Energy, 171, 113, 10.1016/j.apenergy.2016.03.037
Zhang, 2010, Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase–change material with enhanced thermal conductivity and performance, J Colloid Interface Sci, 343, 246, 10.1016/j.jcis.2009.11.036
Zhang, 2016, Microencapsulation of n–dodecane into zirconia shell doped with rare earth: design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage, Energy, 97, 113, 10.1016/j.energy.2015.12.114
Peng, 2017, Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage, Appl Clay Sci, 138, 100, 10.1016/j.clay.2017.01.003
Wang, 2017, Experimental study on effective thermal conductivity of microcapsules based phase change composites, Int J Heat Mass Transf, 109, 930, 10.1016/j.ijheatmasstransfer.2017.02.068
Yuan, 2015, Novel slurry containing graphene oxide–grafted microencapsulated phase change material with enhanced thermo–physical properties and photo–thermal performance, Sol Energy Mater Sol Cells, 143, 29, 10.1016/j.solmat.2015.06.034
Al–Shannaq, 2016, Innovative method of metal coating of microcapsules containing phase change materials, Sol Energy, 129, 54, 10.1016/j.solener.2016.01.043
Jiang, 2015, Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3, Appl Energy, 137, 731, 10.1016/j.apenergy.2014.09.028
Fu, 2017, Thermophysical properties of n-tetradecane@polystyrene–silica composite nanoencapsulated phase change material slurry for cold energy storage, Energy Build, 136, 26, 10.1016/j.enbuild.2016.12.001
Yang, 2016, Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy, Sol Energy Mater Sol Cells, 151, 89, 10.1016/j.solmat.2016.02.020
Sharma, 2015, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers Manag, 95, 193, 10.1016/j.enconman.2015.01.084
Wang, 2015, Applications of solar water heating system with phase change material, Renew Sustain Energy Rev, 52, 645, 10.1016/j.rser.2015.07.184
Narayanan, 2017, Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating, Resour Technol
Su, 2017, Development of microencapsulated phase change material for solar thermal energy storage, Appl Therm Eng, 112, 1205, 10.1016/j.applthermaleng.2016.11.009
Khalifa, 2013, A storage domestic solar hot water system with a back layer of phase change material, Exp Therm Fluid Sci, 44, 174, 10.1016/j.expthermflusci.2012.05.017
Py, 2013, Concentrated solar power: current technologies, major innovative issues and applicability to West African countries, Renew Sustain Energy Rev, 18, 306, 10.1016/j.rser.2012.10.030
Xu, 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl Energy, 160, 286, 10.1016/j.apenergy.2015.09.016
Mahfuz, 2014, Metselaar IHSC. Exergetic analysis of a solar thermal power system with PCM storage, Energy Convers Manag, 78, 486, 10.1016/j.enconman.2013.11.016
Robak, 2011, Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications, Sol Energy, 85, 2461, 10.1016/j.solener.2011.07.006
Bhagat, 2016, Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant, Renew Energy, 95, 323, 10.1016/j.renene.2016.04.018
Konuklu, 2015, Review on using microencapsulated phase change materials (PCM) in building applications, Energy Build, 106, 134, 10.1016/j.enbuild.2015.07.019
Sharifi, 2017, Application of phase change materials in gypsum boards to meet building energy conservation goals, Energy Build, 138, 455, 10.1016/j.enbuild.2016.12.046
Ye, 2017, Experimental and numerical investigations on the thermal performance of building plane containing CaCl2.6H2O/expanded graphite composite phase change material, Appl Energy, 193, 325, 10.1016/j.apenergy.2017.02.049
Xia, 2016, Experimental research on a double-layer radiant floor system with phase change material under heating mode, Appl Therm Eng, 96, 600, 10.1016/j.applthermaleng.2015.11.133
Johra, 2017, Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review, Renew Sustain Energy Rev, 69, 19, 10.1016/j.rser.2016.11.145
Krishna, 2017, Heat pipe with nano enhanced–PCM for electronic cooling application, Exp Therm Fluid Sci, 81, 84, 10.1016/j.expthermflusci.2016.10.014
Itani, 2017, Cooling vest with optimized PCM arrangement targeting torso sensitive areas that trigger comfort when cooled for improving human comfort in hot conditions, Energy Build, 139, 417, 10.1016/j.enbuild.2017.01.036
Yusufoglu, 2015, Improving performance of household refrigerators by incorporating phase change materials, Int J Refrig, 57, 173, 10.1016/j.ijrefrig.2015.04.020
Akeiber, 2016, A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renew Sustain Energy Rev, 60, 1470, 10.1016/j.rser.2016.03.036
Souayfane, 2016, Phase change materials (PCM) for cooling applications in buildings: a review, Energy Build, 129, 396, 10.1016/j.enbuild.2016.04.006
Sarier, 2012, Organic phase change materials and their textile applications: an overview, Thermochim Acta, 540, 7, 10.1016/j.tca.2012.04.013
Shaid, 2016, Preparation of aerogel–eicosane microparticles for thermoregulatory coating on textile, Appl Therm Eng, 107, 602, 10.1016/j.applthermaleng.2016.06.187
Nejman, 2014, Methods of PCM microcapsules application and the thermal properties of modified knitted fabric, Thermochim Acta, 589, 158, 10.1016/j.tca.2014.05.037
Kazemi, 2014, A new method of application of hydrated salts on textiles to achieve thermoregulating properties, Thermochim Acta, 589, 56, 10.1016/j.tca.2014.05.015
Carreira, 2017, Preparation of acrylic based microcapsules using different reaction conditions for thermo–regulating textiles production, Eur Polym J, 93, 33, 10.1016/j.eurpolymj.2017.05.027
Xia, 2016, Cold storage condensation heat recovery system with a novel composite phase change material, Appl Energy, 175, 259, 10.1016/j.apenergy.2016.05.001
Jia, 2015, Experimental investigations on using phase change material for performance improvement of storage–enhanced heat recovery room air-conditioner, Energy, 93, 1394, 10.1016/j.energy.2015.10.053
Bertrand, 2017, In-building waste water heat recovery: an urban–scale method for the characterisation of water streams and the assessment of energy savings and costs, Appl Energy, 192, 110, 10.1016/j.apenergy.2017.01.096
Mardiana–Idayu, 2012, Review on heat recovery technologies for building applications, Renew Sustain Energy Rev, 16, 1241, 10.1016/j.rser.2011.09.026
Cuce, 2015, A comprehensive review of heat recovery systems for building applications, Renew Sustain Energy Rev, 47, 665, 10.1016/j.rser.2015.03.087
