Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage

Renewable and Sustainable Energy Reviews - Tập 82 - Trang 2730-2742 - 2018
Yaxue Lin1, Yuting Jia1, Guruprasad Alva1, Guiyin Fang1
1School of Physics, Nanjing University, Nanjing 210093, China

Tài liệu tham khảo

Liu, 2016, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew Sustain Energy Rev, 62, 305, 10.1016/j.rser.2016.04.057 Safari, 2017, A review on supercooling of Phase Change Materials in thermal energy storage systems, Renew Sustain Energy Rev, 70, 905, 10.1016/j.rser.2016.11.272 Khan, 2016, A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility, Energy Convers Manag, 115, 132, 10.1016/j.enconman.2016.02.045 Meng, 2017, Experimental and numerical investigation of a tube–in–tank latent thermal energy storage unit using composite PCM, Appl Energy, 190, 524, 10.1016/j.apenergy.2016.12.163 Ma, 2017, Binary eutectic mixtures of stearic acid-n-butyramide/n-octanamide as phase change materials for low temperature solar heat storage, Appl Therm Eng, 111, 1052, 10.1016/j.applthermaleng.2016.10.004 Miró, 2016, Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review, Appl Energy, 179, 284, 10.1016/j.apenergy.2016.06.147 Liu, 2017, Preparation and thermal properties of Na2CO3·10H2O–Na2HPO4.12H2O eutectic hydrate salt as a novel phase change material for energy storage, Appl Therm Eng, 112, 606, 10.1016/j.applthermaleng.2016.10.146 Sharif, 2015, Review of the application of phase change material for heating and domestic hot water systems, Renew Sustain Energy Rev, 42, 557, 10.1016/j.rser.2014.09.034 Huang, 2017, Morphological characterization and applications of phase change materials in thermal energy storage: a review, Renew Sustain Energy Rev, 72, 128, 10.1016/j.rser.2017.01.048 Mohamed, 2017, A review on current status and challenges of inorganic phase change materials for thermal energy storage systems, Renew Sustain Energy Rev, 70, 1072, 10.1016/j.rser.2016.12.012 Milián, 2017, A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties, Renew Sustain Energy Rev, 73, 983, 10.1016/j.rser.2017.01.159 Mohamed, 2017, Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage, Renew Sustain Energy Rev, 70, 1052, 10.1016/j.rser.2016.12.009 Gunasekara, 2017, Phase equilibrium in the design of phase change materials for thermal energy storage: state-of-the-art, Renew Sustain Energy Rev, 73, 558, 10.1016/j.rser.2017.01.108 Chandel, 2017, Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renew Sustain Energy Rev, 67, 581, 10.1016/j.rser.2016.09.070 Socaciu, 2016, PCM selection using AHP method to maintain thermal comfort of the vehicle occupants, Energy Procedia, 85, 489, 10.1016/j.egypro.2015.12.232 Zhou, 2015, Phase change materials for solar thermal energy storage in residential buildings in cold climate, Renew Sustain Energy Rev, 48, 692, 10.1016/j.rser.2015.04.048 Alva, 2017, Thermal energy storage materials and systems for solar energy applications, Renew Sustain Energy Rev, 68, 693, 10.1016/j.rser.2016.10.021 Giro–Paloma, 2016, Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review, Renew Sustain Energy Rev, 53, 1059, 10.1016/j.rser.2015.09.040 Jamekhorshid, 2014, A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium, Renew Sustain Energy Rev, 31, 531, 10.1016/j.rser.2013.12.033 Ibrahim, 2017, Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review, Renew Sustain Energy Rev, 74, 26, 10.1016/j.rser.2017.01.169 Khan, 2017, A review for phase change materials (PCMs) in solar absorption refrigeration systems, Renew Sustain Energy Rev, 76, 105, 10.1016/j.rser.2017.03.070 Kenisarin, 2016, Passive thermal control in residential buildings using phase change materials, Renew Sustain Energy Rev, 55, 371, 10.1016/j.rser.2015.10.128 Karaipekli, 2017, Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes, Energy Convers Manag, 134, 373, 10.1016/j.enconman.2016.12.053 Wang, 2012, Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials, Sol Energy Mater Sol Cells, 105, 21, 10.1016/j.solmat.2012.05.031 Ling, 2015, Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model, Energy Convers Manag, 102, 202, 10.1016/j.enconman.2014.11.040 Xu, 2016, Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material, Sol Energy Mater Sol Cells, 155, 141, 10.1016/j.solmat.2016.06.003 Tang, 2015, Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity, Sol Energy Mater Sol Cells, 141, 218, 10.1016/j.solmat.2015.05.045 Huang, 2017, Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials, Appl Energy, 200, 19, 10.1016/j.apenergy.2017.05.074 Nomura, 2015, High thermal conductivity phase change composite with percolating carbon fiber network, Appl Energy, 154, 678, 10.1016/j.apenergy.2015.05.042 Zhang, 2017, Preparation and thermal properties of short carbon fibers/erythritol phase change materials, Energy Convers Manag, 136, 220, 10.1016/j.enconman.2017.01.023 Tian, 2016, Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials, Sol Energy, 127, 48, 10.1016/j.solener.2016.01.011 Fu, 2014, Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives, Int J Therm Sci, 86, 276, 10.1016/j.ijthermalsci.2014.07.011 Harish, 2015, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl Therm Eng, 80, 205, 10.1016/j.applthermaleng.2015.01.056 Mehrali, 2013, Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape–stabilized phase change material, Appl Therm Eng, 61, 633, 10.1016/j.applthermaleng.2013.08.035 Amin, 2017, Thermal properties of beeswax/graphene phase change material as energy storage for building applications, Appl Therm Eng, 112, 273, 10.1016/j.applthermaleng.2016.10.085 Liu, 2017, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim Acta, 647, 15, 10.1016/j.tca.2016.11.010 Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol Energy Mater Sol Cells, 128, 48, 10.1016/j.solmat.2014.05.018 Yang, 2016, Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage, Carbon, 100, 693, 10.1016/j.carbon.2016.01.063 Mehrali, 2014, Preparation of nitrogen–doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage, Appl Energy, 135, 339, 10.1016/j.apenergy.2014.08.100 Warzoha, 2015, Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials, Appl Energy, 154, 271, 10.1016/j.apenergy.2015.04.121 Wang, 2010, Experimental study on palmitic acid composites containing carbon nanotubes by acid treatment, J Eng Thermophys, 31, 1389 Xing, 2015, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, Int J Heat Mass Transf, 88, 609, 10.1016/j.ijheatmasstransfer.2015.05.005 Tao, 2015, Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material, Energy Convers Manag, 97, 103, 10.1016/j.enconman.2015.03.051 Ye, 2014, Multi–walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage, Particuology, 15, 56, 10.1016/j.partic.2013.05.001 Xu, 2014, Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites, Energy, 72, 371, 10.1016/j.energy.2014.05.049 Li, 2014, Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material, Energy Convers Manag, 83, 325, 10.1016/j.enconman.2014.04.002 Li, 2014, Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube, Appl Energy, 127, 166, 10.1016/j.apenergy.2014.04.029 Xiao, 2015, Study on the phase change thermal storage performance of palmitic acid/carbon nanotubes composites, Compos Part A: Appl Sci Manuf, 77, 50, 10.1016/j.compositesa.2015.06.020 Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl Energy, 106, 25, 10.1016/j.apenergy.2013.01.031 Seki, 2015, Graphite nanoplates loading into eutectic mixture of Adipic acid and Sebacic acid as phase change material, Sol Energy Mater Sol Cells, 140, 457, 10.1016/j.solmat.2015.05.003 Wang, 2017, Highly stable graphite nanoparticle–dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage, Appl Energy, 188, 97, 10.1016/j.apenergy.2016.11.122 Chen, 2014, Research progress of phase change materials (PCMs) embedded with metal foam (a review), Procedia Mater Sci, 4, 389, 10.1016/j.mspro.2014.07.579 Xiao, 2013, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl Energy, 112, 1357, 10.1016/j.apenergy.2013.04.050 Xiao, 2014, Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage, Int J Therm Sci, 81, 94, 10.1016/j.ijthermalsci.2014.03.006 Thapa, 2014, Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement, Energy Convers Manag, 79, 161, 10.1016/j.enconman.2013.12.019 Chen, 2014, Experimental and numerical study on melting of phase change materials in metal foams at pore scale, Int J Heat Mass Transf, 72, 646, 10.1016/j.ijheatmasstransfer.2014.01.003 Wang, 2015, Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery, Appl Therm Eng, 78, 428, 10.1016/j.applthermaleng.2015.01.009 Ghossein, 2017, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int J Heat Mass Transf, 107, 697, 10.1016/j.ijheatmasstransfer.2016.11.059 Oya, 2013, Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles, Appl Therm Eng, 61, 825, 10.1016/j.applthermaleng.2012.05.033 Cui, 2016, Experimental studies on the supercooling and melting/freezing characteristics of nano–copper/sodium acetate trihydrate composite phase change materials, Renew Energy, 99, 1029, 10.1016/j.renene.2016.08.001 Sahan, 2015, Improving thermal conductivity phase change materials-a study of paraffin nanomagnetite composites, Sol Energy Mater Sol Cells, 137, 61, 10.1016/j.solmat.2015.01.027 Babapoor, 2015, Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: comparison and optimization, Appl Therm Eng, 90, 945, 10.1016/j.applthermaleng.2015.07.083 Nourani, 2016, Thermal behavior of paraffin–nano–Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity, Renew Energy, 88, 474, 10.1016/j.renene.2015.11.043 Wei, 2017, Preparation and characterization of a lauric–myristic–stearic acid/Al2O3–loaded expanded vermiculite composite phase change material with enhanced thermal conductivity, Sol Energy Mater Sol Cells, 166, 1, 10.1016/j.solmat.2017.03.003 Tang, 2014, PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity, Mater Chem Phys, 144, 162, 10.1016/j.matchemphys.2013.12.036 Tang, 2016, Synthesis and thermal properties of the MA/HDPE composites with nano–additives as form-stable PCM with improved thermal conductivity, Appl Energy, 180, 116, 10.1016/j.apenergy.2016.07.106 Deng, 2016, Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem Eng J, 295, 427, 10.1016/j.cej.2016.03.068 Reyes, 2017, Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material, Renew Energy, 101, 225, 10.1016/j.renene.2016.08.057 Li, 2015, Experimental study on melting/solidification and thermal conductivity enhancement of phase change material inside a sphere, Int Commun Heat Mass Transf, 68, 276, 10.1016/j.icheatmasstransfer.2015.09.004 Su, 2016, Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage, Energy Build, 131, 35, 10.1016/j.enbuild.2016.09.022 Fang, 2014, Thermal energy storage performance of paraffin–based composite phase change materials filled with hexagonal boron nitride nanosheets, Energy Convers Manag, 80, 103, 10.1016/j.enconman.2014.01.016 Motahar, 2014, A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity, Int Commun Heat Mass Transf, 56, 114, 10.1016/j.icheatmasstransfer.2014.06.005 Yataganbaba, 2017, Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015), Appl Energy, 185, 720, 10.1016/j.apenergy.2016.10.107 Yu, 2014, Microencapsulation of n–octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation, Appl Energy, 114, 632, 10.1016/j.apenergy.2013.10.029 Wang, 2016, Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage, Appl Energy, 171, 113, 10.1016/j.apenergy.2016.03.037 Zhang, 2010, Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase–change material with enhanced thermal conductivity and performance, J Colloid Interface Sci, 343, 246, 10.1016/j.jcis.2009.11.036 Zhang, 2016, Microencapsulation of n–dodecane into zirconia shell doped with rare earth: design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage, Energy, 97, 113, 10.1016/j.energy.2015.12.114 Peng, 2017, Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage, Appl Clay Sci, 138, 100, 10.1016/j.clay.2017.01.003 Wang, 2017, Experimental study on effective thermal conductivity of microcapsules based phase change composites, Int J Heat Mass Transf, 109, 930, 10.1016/j.ijheatmasstransfer.2017.02.068 Yuan, 2015, Novel slurry containing graphene oxide–grafted microencapsulated phase change material with enhanced thermo–physical properties and photo–thermal performance, Sol Energy Mater Sol Cells, 143, 29, 10.1016/j.solmat.2015.06.034 Al–Shannaq, 2016, Innovative method of metal coating of microcapsules containing phase change materials, Sol Energy, 129, 54, 10.1016/j.solener.2016.01.043 Jiang, 2015, Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3, Appl Energy, 137, 731, 10.1016/j.apenergy.2014.09.028 Fu, 2017, Thermophysical properties of n-tetradecane@polystyrene–silica composite nanoencapsulated phase change material slurry for cold energy storage, Energy Build, 136, 26, 10.1016/j.enbuild.2016.12.001 Yang, 2016, Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy, Sol Energy Mater Sol Cells, 151, 89, 10.1016/j.solmat.2016.02.020 Sharma, 2015, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers Manag, 95, 193, 10.1016/j.enconman.2015.01.084 Wang, 2015, Applications of solar water heating system with phase change material, Renew Sustain Energy Rev, 52, 645, 10.1016/j.rser.2015.07.184 Narayanan, 2017, Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating, Resour Technol Su, 2017, Development of microencapsulated phase change material for solar thermal energy storage, Appl Therm Eng, 112, 1205, 10.1016/j.applthermaleng.2016.11.009 Khalifa, 2013, A storage domestic solar hot water system with a back layer of phase change material, Exp Therm Fluid Sci, 44, 174, 10.1016/j.expthermflusci.2012.05.017 Py, 2013, Concentrated solar power: current technologies, major innovative issues and applicability to West African countries, Renew Sustain Energy Rev, 18, 306, 10.1016/j.rser.2012.10.030 Xu, 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl Energy, 160, 286, 10.1016/j.apenergy.2015.09.016 Mahfuz, 2014, Metselaar IHSC. Exergetic analysis of a solar thermal power system with PCM storage, Energy Convers Manag, 78, 486, 10.1016/j.enconman.2013.11.016 Robak, 2011, Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications, Sol Energy, 85, 2461, 10.1016/j.solener.2011.07.006 Bhagat, 2016, Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant, Renew Energy, 95, 323, 10.1016/j.renene.2016.04.018 Konuklu, 2015, Review on using microencapsulated phase change materials (PCM) in building applications, Energy Build, 106, 134, 10.1016/j.enbuild.2015.07.019 Sharifi, 2017, Application of phase change materials in gypsum boards to meet building energy conservation goals, Energy Build, 138, 455, 10.1016/j.enbuild.2016.12.046 Ye, 2017, Experimental and numerical investigations on the thermal performance of building plane containing CaCl2.6H2O/expanded graphite composite phase change material, Appl Energy, 193, 325, 10.1016/j.apenergy.2017.02.049 Xia, 2016, Experimental research on a double-layer radiant floor system with phase change material under heating mode, Appl Therm Eng, 96, 600, 10.1016/j.applthermaleng.2015.11.133 Johra, 2017, Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: a review, Renew Sustain Energy Rev, 69, 19, 10.1016/j.rser.2016.11.145 Krishna, 2017, Heat pipe with nano enhanced–PCM for electronic cooling application, Exp Therm Fluid Sci, 81, 84, 10.1016/j.expthermflusci.2016.10.014 Itani, 2017, Cooling vest with optimized PCM arrangement targeting torso sensitive areas that trigger comfort when cooled for improving human comfort in hot conditions, Energy Build, 139, 417, 10.1016/j.enbuild.2017.01.036 Yusufoglu, 2015, Improving performance of household refrigerators by incorporating phase change materials, Int J Refrig, 57, 173, 10.1016/j.ijrefrig.2015.04.020 Akeiber, 2016, A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renew Sustain Energy Rev, 60, 1470, 10.1016/j.rser.2016.03.036 Souayfane, 2016, Phase change materials (PCM) for cooling applications in buildings: a review, Energy Build, 129, 396, 10.1016/j.enbuild.2016.04.006 Sarier, 2012, Organic phase change materials and their textile applications: an overview, Thermochim Acta, 540, 7, 10.1016/j.tca.2012.04.013 Shaid, 2016, Preparation of aerogel–eicosane microparticles for thermoregulatory coating on textile, Appl Therm Eng, 107, 602, 10.1016/j.applthermaleng.2016.06.187 Nejman, 2014, Methods of PCM microcapsules application and the thermal properties of modified knitted fabric, Thermochim Acta, 589, 158, 10.1016/j.tca.2014.05.037 Kazemi, 2014, A new method of application of hydrated salts on textiles to achieve thermoregulating properties, Thermochim Acta, 589, 56, 10.1016/j.tca.2014.05.015 Carreira, 2017, Preparation of acrylic based microcapsules using different reaction conditions for thermo–regulating textiles production, Eur Polym J, 93, 33, 10.1016/j.eurpolymj.2017.05.027 Xia, 2016, Cold storage condensation heat recovery system with a novel composite phase change material, Appl Energy, 175, 259, 10.1016/j.apenergy.2016.05.001 Jia, 2015, Experimental investigations on using phase change material for performance improvement of storage–enhanced heat recovery room air-conditioner, Energy, 93, 1394, 10.1016/j.energy.2015.10.053 Bertrand, 2017, In-building waste water heat recovery: an urban–scale method for the characterisation of water streams and the assessment of energy savings and costs, Appl Energy, 192, 110, 10.1016/j.apenergy.2017.01.096 Mardiana–Idayu, 2012, Review on heat recovery technologies for building applications, Renew Sustain Energy Rev, 16, 1241, 10.1016/j.rser.2011.09.026 Cuce, 2015, A comprehensive review of heat recovery systems for building applications, Renew Sustain Energy Rev, 47, 665, 10.1016/j.rser.2015.03.087