In search of the focus of attention in working memory: 13 years of the retro-cue effect

Attention, Perception, & Psychophysics - Tập 78 - Trang 1839-1860 - 2016
Alessandra S. Souza1, Klaus Oberauer1
1Department of Psychology, Cognitive Psychology Unit, University of Zurich, Zurich, Switzerland

Tóm tắt

The concept of attention has a prominent place in cognitive psychology. Attention can be directed not only to perceptual information, but also to information in working memory (WM). Evidence for an internal focus of attention has come from the retro-cue effect: Performance in tests of visual WM is improved when attention is guided to the test-relevant contents of WM ahead of testing them. The retro-cue paradigm has served as a test bed to empirically investigate the functions and limits of the focus of attention in WM. In this article, we review the growing body of (behavioral) studies on the retro-cue effect. We evaluate the degrees of experimental support for six hypotheses about what causes the retro-cue effect: (1) Attention protects representations from decay, (2) attention prioritizes the selected WM contents for comparison with a probe display, (3) attended representations are strengthened in WM, (4) not-attended representations are removed from WM, (5) a retro-cue to the retrieval target provides a head start for its retrieval before decision making, and (6) attention protects the selected representation from perceptual interference. The extant evidence provides support for the last four of these hypotheses.

Tài liệu tham khảo

Astle, D. E., Nobre, A. C., & Scerif, G. (2012). Attentional control constrains visual short-term memory: Insights from developmental and individual differences. Quarterly Journal of Experimental Psychology, 65, 277–294. doi:10.1080/17470218.2010.492622

Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74, 146–162. doi:10.3758/s13414-011-0218-3

Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7:1–11. doi:10.1167/9.10.7

Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321, 851–854. doi:10.1126/science.1158023

Beck, M. R., & van Lamsweerde, A. E. (2011). Accessing long-term memory representations during visual change detection. Memory & Cognition, 39, 433–446. doi:10.3758/s13421-010-0033-4

Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539–576. doi:10.1037/0033-295X.114.3.539

Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525. doi:10.1016/j.visres.2011.04.012

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. doi:10.1146/annurev.psych.093008.100427

Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547–552. doi:10.1016/j.tics.2003.10.005

Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19, 51–57. doi:10.1177/0963721409359277

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. doi:10.1016/S0022-5371(80)90312-6

Delvenne, J.-F., Cleeremans, A., & Laloyaux, C. (2010). Feature bindings are maintained in visual short-term memory without sustained focused attention. Experimental Psychology, 57, 108–116. doi:10.1027/1618-3169/a000014

Ecker, U. K. H., Lewandowsky, S., & Oberauer, K. (2014). Removal of information from working memory: A specific updating process. Journal of Memory and Language, 74, 77–90. doi:10.1016/j.jml.2013.09.003

Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297. doi:10.1146/annurev.psych.48.1.269

Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26, 263–276. doi:10.3758/BF03201138

Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16, 129–135. doi:10.1016/j.tics.2011.11.014

Gilchrist, A. L., Duarte, A., & Verhaeghen, P. (2016). Retrospective cues based on object features improve visual working memory performance in older adults. Neuropsychology, Development, and Cognition, Section B, 23, 184–195. doi:10.1080/13825585.2015.1069253

Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31, 8502–8511. doi:10.1523/JNEUROSCI.0208-11.2011

Gressmann, M., & Janczyk, M. (2016). The (un)clear effects of invalid retro-cues. Frontiers in Psychology, 7, 244. doi:10.3389/fpsyg.2016.00244

Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176–1194. doi:10.1162/089892903322598139

Heuer, A., & Schubö, A. (2016). Feature-based and spatial attentional selection in visual working memory. Memory & Cognition. Advance online publication. doi:10.3758/s13421-015-0584-5

Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29, 388–403. doi:10.1037/0096-1523.29.2.388

Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39, 1047–1058. doi:10.1037/a0030238

Johnson, M. K. (1992). MEM: Mechanisms of recollection. Journal of Cognitive Neuroscience, 4, 268–280. doi:10.1162/jocn.1992.4.3.268

Katus, T., Andersen, S. K., & Müller, M. M. (2012b). Nonspatial cueing of tactile STM causes shift of spatial attention. Journal of Cognitive Neuroscience, 24, 1596–1609. doi:10.1162/jocn_a_00234

Katus, T., Andersen, S. K., & Müller, M. M. (2014). Common mechanisms of spatial attention in memory and perception: A tactile dual-task study. Cerebral Cortex, 24, 707–718. doi:10.1093/cercor/bhs350

Kessler, Y., Rac-Lubashevsky, R., Lichtstein, C., Markus, H., Simchon, A., & Moscovitch, M. (2015). Updating visual working memory in the change detection paradigm. Journal of Vision, 15(9), 18. doi:10.1167/15.9.18

Kuo, B.-C., Stokes, M. G., & Nobre, A. C. (2012). Attention modulates maintenance of representations in visual short-term memory. Journal of Cognitive Neuroscience, 24, 51–60. doi:10.1162/jocn_a_00087

Lepsien, J., & Nobre, A. C. (2007). Attentional modulation of object representations in working memory. Cerebral Cortex, 17, 2072–2083. doi:10.1093/cercor/bhl116

Li, Q., & Saiki, J. (2014). The effects of sequential attention shifts within visual working memory. Frontiers in Psychology, 5, 965. doi:10.3389/fpsyg.2014.00965

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846

Makovski, T. (2012). Are multiple visual short-term memory storages necessary to explain the retro-cue effect? Psychonomic Bulletin & Review, 19, 470–476. doi:10.3758/s13423-012-0235-9

Makovski, T., & Pertzov, Y. (2015). Attention and memory protection: Interactions between retrospective attention cueing and interference. Quarterly Journal of Experimental Psychology, 68, 1735–1743. doi:10.1080/17470218.2015.1049623

Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 369–380. doi:10.1037/0278-7393.34.2.369

Makovski, T., Watson, L. M., Koutstaal, W., & Jiang, Y. V. (2010). Method matters: Systematic effects of testing procedure on visual working memory sensitivity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1466–1479. doi:10.1037/a0020851

Matthey, L., Bays, P. M., & Dayan, P. (2015). A probabilistic palimpsest model of visual short-term memory. PLoS Computational Biology, 11, e1004003. doi:10.1371/journal.pcbi.1004003

Maxcey-Richard, A. M., & Hollingworth, A. (2013). The strategic retention of task-relevant objects in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 760–772. doi:10.1037/a0029496

McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 817–835. doi:10.1037/0278-7393.27.3.817

Myers, N. E., Walther, L., Wallis, G., Stokes, M. G., & Nobre, A. C. (2015). Temporal dynamics of attention during encoding versus maintenance of working memory: Complementary views from event-related potentials and alpha-band oscillations. Journal of Cognitive Neuroscience, 27, 492–508. doi:10.1162/jocn_a_00727

Nobre, A. C., Griffin, I. C., & Rao, A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1(4), 1–9. doi:10.3389/neuro.09.004.2007

Oberauer, K. (2001). Removing irrelevant information from working memory: A cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 948–957. doi:10.1037/0278-7393.27.4.948

Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411–421. doi:10.1037/0278-7393.28.3.411

Oberauer, K. (2005). Control of the contents of working memory—A comparison of two paradigms and two age groups. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 714–728. doi:10.1037/0278-7393.31.4.714

Oberauer, K. (2013). The focus of attention in working memory: From metaphors to mechanisms. Frontiers in Human Neuroscience, 7, 673. doi:10.3389/fnhum.2013.00673

Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244. doi:10.1037/0033-2909.116.2.220

Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39, 1224–1231. doi:10.1037/a0030947

Prinzmetal, W., Amiri, H., Allen, K., & Edwards, T. (1998). Phenomenology of attention: I. Color, location, orientation, and spatial frequency. Journal of Experimental Psychology: Human Perception and Performance, 24, 261–282. doi:10.1037/0096-1523.24.1.261

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922. doi:10.1162/neco.2008.12-06-420

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347–356. doi:10.1111/1467-9280.00067

Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245–277. doi:10.1146/annurev.psych.53.100901.135125

Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1075–1096. doi:10.1037/a0031172

Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763. doi:10.3758/BF03194742

Shipstead, Z., & Engle, R. W. (2013). Interference within the focus of attention: Working memory tasks reflect more than temporary maintenance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 277–289. doi:10.1037/a0028467

Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2009). V4 activity predicts the strength of visual short-term memory representations. Journal of Neuroscience, 29, 7432–7438. doi:10.1523/JNEUROSCI.0784-09.2009

Sligte, I. G., Vandenbroucke, A. R. E., Scholte, H. S., & Lamme, V. A. F. (2010). Detailed sensory memory, sloppy working memory. Frontiers in Psychology, 1, 175. doi:10.3389/fpsyg.2010.00175

Souza, A. S., Rerko, L., & Oberauer, K. (2016). Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference. Journal of Experimental Psychology: Human Perception and Performance. Advance online publication. doi:10.1037/a0036331

Teodorescu, A. R., & Usher, M. (2013). Disentangling decision models: From independence to competition. Psychological Review, 120, 1–38. doi:10.1037/a0030776

Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3–18. doi:10.1037/0096-1523.29.1.3

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550–592. doi:10.1037/0033-295X.111.3.757

van Moorselaar, D., Gunseli, E., Theeuwes, J., & Olivers, C. N. L. (2015). The time course of protecting a visual memory representation from perceptual interference. Frontiers in Human Neuroscience, 8, 1053. doi:10.3389/fnhum.2014.01053

Vandenbroucke, A. R. E., Sligte, I. G., Fahrenfort, J. J., Ambroziak, K. B., & Lamme, V. A. F. (2012). Non-attended representations are perceptual rather than unconscious in nature. PLoS ONE, 7, e50042. doi:10.1371/journal.pone.0050042

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64. doi:10.1037/0096-3445.131.1.48

Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11:1120–1135. doi:10.1167/4.12.11

Williams, M., Hong, S. W., Kang, M.-S., Carlisle, N. B., & Woodman, G. F. (2013). The benefit of forgetting. Psychonomic Bulletin & Review, 20, 348–355. doi:10.3758/s13423-012-0354-3

Yantis, S. (2008). The neural basis of selective attention cortical sources and targets of attentional modulation. Current Directions in Psychological Science, 17, 86–90. doi:10.1111/j.1467-8721.2008.00554.x

Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi:10.1111/j.1467-9280.2009.02322.x

Zokaei, N., Manohar, S., Husain, M., & Feredoes, E. (2014). Causal evidence for a privileged working memory state in early visual cortex. Journal of Neuroscience, 34, 158–162. doi:10.1523/JNEUROSCI.2899-13.2014

Zokaei, N., Ning, S., Manohar, S., Feredoes, E., & Husain, M. (2014). Flexibility of representational states in working memory. Frontiers in Human Neuroscience, 8, 853. doi:10.3389/fnhum.2014.00853