Selection of multiple cued items is possible during visual short-term memory maintenance

Attention, Perception, & Psychophysics - Tập 77 - Trang 1625-1646 - 2015
Michi Matsukura1, Shaun P. Vecera1
1Department of Psychology, University of Iowa, Iowa City, USA

Tóm tắt

Recent neuroimaging studies suggest that maintenance of a selected object feature held in visual short-term/working memory (VSTM/VWM) is supported by the same neural mechanisms that encode the sensory information. If VSTM operates by retaining “reasonable copies” of scenes constructed during sensory processing (Serences, Ester, Vogel, & Awh, 2009, p. 207, the sensory recruitment hypothesis), then attention should be able to select multiple items represented in VSTM as long as the number of these attended items does not exceed the typical VSTM capacity. It is well known that attention can select at least two noncontiguous locations at the same time during sensory processing. However, empirical reports from the studies that examined this possibility are inconsistent. In the present study, we demonstrate that (1) attention can indeed select more than a single item during VSTM maintenance when observers are asked to recognize a set of items in the manner that these items were originally attended, and (2) attention can select multiple cued items regardless of whether these items are perceptually organized into a single group (contiguous locations) or not (noncontiguous locations). The results also replicate and extend the recent finding that selective attention that operates during VSTM maintenance is sensitive to the observers’ goal and motivation to use the cueing information.

Tài liệu tham khảo

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared representations for working memory and mental imagery in early visual cortex. Current Biology, 23, 1427–1431. doi:10.1016/j.cub.2013.05.065 Alvarez, G. A., Gill, J., & Cavanagh, P. (2012). Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5):9, 1–20. doi:10.1167/12.5.9. Anderson, D. E., Ester, E. E., Serences, J. T., & Awh, E. (2013). Attending multiple items decreases the selectivity of population responses in human primary visual cortex. Journal of Neuroscience, 33, 9273–9282. doi:10.1523/JNEUROSCI.0239-13.2013 Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74, 146–162. doi:10.3758/s13414-011-0218-3 Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328. http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1961.tb03987.x/abstract Awh, E., Dhaliwal, H., Christensen, S., & Matsukura, M. (2001). Evidence for two components of object-based selection. Psychological Science, 12, 329–334. doi:10.1111/1467-9280.00360 Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi:10.1016/S1364-6613(00)01593-X Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834–846. doi:10.1037/0096-1523.26.2.834 Baddeley, A. D. (1986). Working memory. Oxford, UK: Oxford University Press, Clarendon Press. Berryhill, M. E., Richmond, L. L., Shay, C. S., & Olson, I. R. (2012). Shifting attention among working memory representations: Testing cue type, awareness, and strategic control. Quarterly Journal of Experimental Psychology, 65, 426–438. doi:10.1080/17470218.2011.604786 Besner, D., Davies, J., & Daniels, S. (1981). Reading for meaning: The effects of concurrent articulation. Quarterly Journal of Experimental Psychology, 33A, 415–437. doi:10.1080/14640748108400801 Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547. doi:10.1037/0033-295X.97.4.523 Christophel, T. B., Hebart, M. N., & Haynes, J.-D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32, 12983–12989. doi:10.1523/JNEUROSCI.0184-12.2012 Delvenne, J.-F., & Holt, J. L. (2012). Splitting attention across the two visual fields in short-term memory. Cognition, 122, 258–263. doi:10.1016/j.cognition.2011.10.015 Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161–177. doi:10.1037/0096-3445.123.2.161 Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25, 754–761. doi:10.1162/jocn_a_00357 Ester, E. F., Fukuda, K., May, L. M., Vogel, E. K., & Awh, E. (2014). Evidence for a fixed capacity limit in attending multiple locations. Cognitive, Affective, & Behavioral Neuroscience, 14, 62–77. doi:10.3758/s13415-013-0222-2 Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can be selected at once? Journal of Experimental Psychology: Human Perception and Performance, 33, 1003–1012. doi:10.1037/0096-1523.33.5.1003 Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176–1194. doi:10.1162/089892903322598139 Hahn, S., & Kramer, A. F. (1998). Further evidence for the division of attention between noncontiguous locations. Visual Cognition, 5, 217–256. doi:10.1080/713756781 Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632–635. doi:10.1038/nature07832 Hecht, L. N., & Vecera, S. P. (2007). Attentional selection of complex objects: Joint effects of surface uniformity and part structure. Psychonomic Bulletin & Review, 14, 1205–1211. doi:10.3758/BF03193114 Hollingworth, A., & Hwang, S. (2013). The relation between visual working memory and attention: Retention of precise color information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 1–9. doi:10.1098/rstb.2013.0061 Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39, 1047–1058. doi:10.1037/a0030238 Irwin, D. E., & Yeomans, J. M. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 12, 343–360. doi:10.1037/0096-1523.12.3.343 Janczyk, M., & Berryhill, M. E. (2014). Orienting attention in visual working memory requires central capacity: Decreased retro-cue effects under dual-task conditions. Attention, Perception, & Psychophysics, 76, 715–724. doi:10.3758/s13414-013-0615-x Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 187–203). Hillsdale, NJ: Erlbaum. Kramer, A. F., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 6, 381–386. doi:10.1111/j.1467-9280.1995.tb00530.x Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43, 149–164. doi:10.1016/S0042-6989(02)00402-9 Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490. doi:10.3758/BF03210951 Luck, S. J., & Vecera, S. P. (2002). Attention. In S. Yantis (Ed.), Stevens’ handbook of experimental psychology: Vol. 1: Sensation and perception (Vol. 3, pp. 235–286). New York: Wiley. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846 Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400. doi:10.1016/j.tics.2013.06.006 Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. Cambridge, UK: Cambridge University Press. Makovski, T. (2012). Are multiple visual short-term memory storages necessary to explain the retro-cue effect? Psychonomic Bulletin & Review, 19, 470–476. doi:10.3758/s13423-012-0235-9 Makovski, T., & Jiang, Y. V. (2007). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review, 14, 1072–1078. doi:10.3758/BF03193093 Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 369–380. doi:10.1037/0278-7393.34.2.369 Matsukura, M., Cosman, J. D., Roper, Z. J. J., Vatterott, D. B., & Vecera, S. P. (2014). Location-specific effects of attention during visual short-term memory maintenance. Journal of Experimental Psychology: Human Perception and Performance, 40, 1103–1116. doi:10.1037/a0035685 Matsukura, M., & Hollingworth, A. (2011). Does visual short-term memory have a high-capacity stage? Psychonomic Bulletin & Review, 18, 1098–1104. doi:10.3758/s13423-011-0153-2 Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: Protection or prioritization? Perception & Psychophysics, 69, 1422–1434. doi:10.3758/BF03192957 Matsukura, M., & Vecera, S. P. (2006). The return of object-based attention: Selection of multiple-region objects. Perception & Psychophysics, 68, 1163–1175. doi:10.3758/BF03193718 Matsukura, M., & Vecera, S. P. (2011). Object-based selection from spatially-invariant representations: Evidence from a feature-report task. Attention, Perception, & Psychophysics, 73, 447–457. doi:10.3758/s13414-010-0039-9 Mazyar, H., van den Berg, R., & Ma, W. J. (2012). Does precision decrease with set size? Journal of Vision, 12(6):10, 1–16. doi:10.1167/12.6.10 Munneke, J., Belopolsky, A. V., & Theeuwes, J. (2012). Shifting attention within memory representations involves early visual areas. PloS One, 7, e35528. doi:10.1371/journal.pone.0035528 Murray, D. J. (1968). Articulation and acoustic confusability in short-term memory. Journal of Experimental Psychology, 78, 679–684. doi:10.1037/h0026641 Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological Science, 24, 550–556. doi:10.1177/0956797612457782 Palmer, J. (1990). Attentional limits on the perception and memory of visual information. Journal of Experimental Psychology: Human Perception and Performance, 16, 332–350. doi:10.1037/0096-1523.16.2.332 Palmer, E. M., Fencsik, D. E., Flusberg, S. J., Horowitz, T. S., & Wolfe, J. M. (2011). Signal detection evidence for limited capacity in visual search. Attention, Perception, & Psychophysics, 73, 2413–2424. doi:10.3758/s13414-011-0199-2 Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retroactive attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39, 1224–1231. doi:10.1037/a0030947 Poch, C., Campo, P., & Barnes, G. R. (2014). Modulation of alpha and gamma oscillations related to retrospectively orienting attention within working memory. European Journal of Neuroscience, 40, 2399–2405. doi:10.1111/ejn.12589 Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). Hillsdale, NJ: Erlbaum. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. doi:10.1037/0096-3445.109.2.160 Pratte, M. S., & Tong, F. (2014). Spatial specificity of working memory representations in the early visual cortex. Journal of Vision, 14(3):22, 1–12. doi:10.1167/14.3.22 Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1075–1096. doi:10.1037/a0031172 Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42, 712–728. doi:10.3758/s13421-013-0392-8 Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18, 324–330. doi:10.3758/s13423-011-0055-3 Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763. doi:10.3758/BF03194742 Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20, 207–214. doi:10.1111/j.1467-9280.2009.02276.x Shimi, A., Nobre, A. C., Astle, D., & Scerif, G. (2014). Orienting attention within visual short-term memory: Development and mechanisms. Child Development, 85, 578–592. doi:10.1111/cdev.12150 Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PloS One, 3, e1699. doi:10.1371/journal.pone.0001699 Souza, A. S., Rerko, L., Lin, H.-Y., & Oberauer, K. (2014). Focused attention improves working memory: Implications for flexible-resource and discrete-capacity models. Attention, Perception, & Psychophysics, 76, 2080–2102. doi:10.3758/s13414-014-0687-2 Souza, A. S., Rerko, L., & Oberauer, K. (2014). Unloading and reloading working memory: Attending to one item frees capacity. Journal of Experimental Psychology: Human Perception and Performance, 40, 1237–1256. doi:10.1037/a0036331 Sperling, G. (1960). The information available in brief visual presentations. Psychological Monograph: General and Applied, 74(11, Whole No. 498), 1–29. doi:10.1037/h0093759 Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114. doi:10.1037/0096-1523.27.1.92 Williams, M., Hong, S. W., Kang, M.-S., Carlisle, N. B., & Woodman, G. F. (2013). The benefit of forgetting. Psychonomic Bulletin & Review, 20, 348–355. doi:10.3758/s13423-012-0354-3 Williams, M., & Woodman, G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1206–1220. doi:10.1037/a0027389 Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–764. doi:10.1016/S0896-6273(01)80033-7 Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin & Review, 10, 80–87. doi:10.3758/BF03196470 Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 73–103). Cambridge, MA: MIT Press. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi:10.1111/j.1467-9280.2009.02322.x