Selection of multiple cued items is possible during visual short-term memory maintenance
Tóm tắt
Recent neuroimaging studies suggest that maintenance of a selected object feature held in visual short-term/working memory (VSTM/VWM) is supported by the same neural mechanisms that encode the sensory information. If VSTM operates by retaining “reasonable copies” of scenes constructed during sensory processing (Serences, Ester, Vogel, & Awh, 2009, p. 207, the sensory recruitment hypothesis), then attention should be able to select multiple items represented in VSTM as long as the number of these attended items does not exceed the typical VSTM capacity. It is well known that attention can select at least two noncontiguous locations at the same time during sensory processing. However, empirical reports from the studies that examined this possibility are inconsistent. In the present study, we demonstrate that (1) attention can indeed select more than a single item during VSTM maintenance when observers are asked to recognize a set of items in the manner that these items were originally attended, and (2) attention can select multiple cued items regardless of whether these items are perceptually organized into a single group (contiguous locations) or not (noncontiguous locations). The results also replicate and extend the recent finding that selective attention that operates during VSTM maintenance is sensitive to the observers’ goal and motivation to use the cueing information.
Tài liệu tham khảo
Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange, F. P. (2013). Shared representations for working memory and mental imagery in early visual cortex. Current Biology, 23, 1427–1431. doi:10.1016/j.cub.2013.05.065
Alvarez, G. A., Gill, J., & Cavanagh, P. (2012). Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5):9, 1–20. doi:10.1167/12.5.9.
Anderson, D. E., Ester, E. E., Serences, J. T., & Awh, E. (2013). Attending multiple items decreases the selectivity of population responses in human primary visual cortex. Journal of Neuroscience, 33, 9273–9282. doi:10.1523/JNEUROSCI.0239-13.2013
Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74, 146–162. doi:10.3758/s13414-011-0218-3
Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328. http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1961.tb03987.x/abstract
Awh, E., Dhaliwal, H., Christensen, S., & Matsukura, M. (2001). Evidence for two components of object-based selection. Psychological Science, 12, 329–334. doi:10.1111/1467-9280.00360
Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi:10.1016/S1364-6613(00)01593-X
Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834–846. doi:10.1037/0096-1523.26.2.834
Baddeley, A. D. (1986). Working memory. Oxford, UK: Oxford University Press, Clarendon Press.
Berryhill, M. E., Richmond, L. L., Shay, C. S., & Olson, I. R. (2012). Shifting attention among working memory representations: Testing cue type, awareness, and strategic control. Quarterly Journal of Experimental Psychology, 65, 426–438. doi:10.1080/17470218.2011.604786
Besner, D., Davies, J., & Daniels, S. (1981). Reading for meaning: The effects of concurrent articulation. Quarterly Journal of Experimental Psychology, 33A, 415–437. doi:10.1080/14640748108400801
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547. doi:10.1037/0033-295X.97.4.523
Christophel, T. B., Hebart, M. N., & Haynes, J.-D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32, 12983–12989. doi:10.1523/JNEUROSCI.0184-12.2012
Delvenne, J.-F., & Holt, J. L. (2012). Splitting attention across the two visual fields in short-term memory. Cognition, 122, 258–263. doi:10.1016/j.cognition.2011.10.015
Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161–177. doi:10.1037/0096-3445.123.2.161
Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25, 754–761. doi:10.1162/jocn_a_00357
Ester, E. F., Fukuda, K., May, L. M., Vogel, E. K., & Awh, E. (2014). Evidence for a fixed capacity limit in attending multiple locations. Cognitive, Affective, & Behavioral Neuroscience, 14, 62–77. doi:10.3758/s13415-013-0222-2
Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can be selected at once? Journal of Experimental Psychology: Human Perception and Performance, 33, 1003–1012. doi:10.1037/0096-1523.33.5.1003
Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176–1194. doi:10.1162/089892903322598139
Hahn, S., & Kramer, A. F. (1998). Further evidence for the division of attention between noncontiguous locations. Visual Cognition, 5, 217–256. doi:10.1080/713756781
Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632–635. doi:10.1038/nature07832
Hecht, L. N., & Vecera, S. P. (2007). Attentional selection of complex objects: Joint effects of surface uniformity and part structure. Psychonomic Bulletin & Review, 14, 1205–1211. doi:10.3758/BF03193114
Hollingworth, A., & Hwang, S. (2013). The relation between visual working memory and attention: Retention of precise color information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 1–9. doi:10.1098/rstb.2013.0061
Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39, 1047–1058. doi:10.1037/a0030238
Irwin, D. E., & Yeomans, J. M. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 12, 343–360. doi:10.1037/0096-1523.12.3.343
Janczyk, M., & Berryhill, M. E. (2014). Orienting attention in visual working memory requires central capacity: Decreased retro-cue effects under dual-task conditions. Attention, Perception, & Psychophysics, 76, 715–724. doi:10.3758/s13414-013-0615-x
Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 187–203). Hillsdale, NJ: Erlbaum.
Kramer, A. F., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 6, 381–386. doi:10.1111/j.1467-9280.1995.tb00530.x
Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43, 149–164. doi:10.1016/S0042-6989(02)00402-9
Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1, 476–490. doi:10.3758/BF03210951
Luck, S. J., & Vecera, S. P. (2002). Attention. In S. Yantis (Ed.), Stevens’ handbook of experimental psychology: Vol. 1: Sensation and perception (Vol. 3, pp. 235–286). New York: Wiley.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400. doi:10.1016/j.tics.2013.06.006
Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. Cambridge, UK: Cambridge University Press.
Makovski, T. (2012). Are multiple visual short-term memory storages necessary to explain the retro-cue effect? Psychonomic Bulletin & Review, 19, 470–476. doi:10.3758/s13423-012-0235-9
Makovski, T., & Jiang, Y. V. (2007). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review, 14, 1072–1078. doi:10.3758/BF03193093
Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 369–380. doi:10.1037/0278-7393.34.2.369
Matsukura, M., Cosman, J. D., Roper, Z. J. J., Vatterott, D. B., & Vecera, S. P. (2014). Location-specific effects of attention during visual short-term memory maintenance. Journal of Experimental Psychology: Human Perception and Performance, 40, 1103–1116. doi:10.1037/a0035685
Matsukura, M., & Hollingworth, A. (2011). Does visual short-term memory have a high-capacity stage? Psychonomic Bulletin & Review, 18, 1098–1104. doi:10.3758/s13423-011-0153-2
Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: Protection or prioritization? Perception & Psychophysics, 69, 1422–1434. doi:10.3758/BF03192957
Matsukura, M., & Vecera, S. P. (2006). The return of object-based attention: Selection of multiple-region objects. Perception & Psychophysics, 68, 1163–1175. doi:10.3758/BF03193718
Matsukura, M., & Vecera, S. P. (2011). Object-based selection from spatially-invariant representations: Evidence from a feature-report task. Attention, Perception, & Psychophysics, 73, 447–457. doi:10.3758/s13414-010-0039-9
Mazyar, H., van den Berg, R., & Ma, W. J. (2012). Does precision decrease with set size? Journal of Vision, 12(6):10, 1–16. doi:10.1167/12.6.10
Munneke, J., Belopolsky, A. V., & Theeuwes, J. (2012). Shifting attention within memory representations involves early visual areas. PloS One, 7, e35528. doi:10.1371/journal.pone.0035528
Murray, D. J. (1968). Articulation and acoustic confusability in short-term memory. Journal of Experimental Psychology, 78, 679–684. doi:10.1037/h0026641
Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological Science, 24, 550–556. doi:10.1177/0956797612457782
Palmer, J. (1990). Attentional limits on the perception and memory of visual information. Journal of Experimental Psychology: Human Perception and Performance, 16, 332–350. doi:10.1037/0096-1523.16.2.332
Palmer, E. M., Fencsik, D. E., Flusberg, S. J., Horowitz, T. S., & Wolfe, J. M. (2011). Signal detection evidence for limited capacity in visual search. Attention, Perception, & Psychophysics, 73, 2413–2424. doi:10.3758/s13414-011-0199-2
Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retroactive attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39, 1224–1231. doi:10.1037/a0030947
Poch, C., Campo, P., & Barnes, G. R. (2014). Modulation of alpha and gamma oscillations related to retrospectively orienting attention within working memory. European Journal of Neuroscience, 40, 2399–2405. doi:10.1111/ejn.12589
Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–556). Hillsdale, NJ: Erlbaum.
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. doi:10.1037/0096-3445.109.2.160
Pratte, M. S., & Tong, F. (2014). Spatial specificity of working memory representations in the early visual cortex. Journal of Vision, 14(3):22, 1–12. doi:10.1167/14.3.22
Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1075–1096. doi:10.1037/a0031172
Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42, 712–728. doi:10.3758/s13421-013-0392-8
Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18, 324–330. doi:10.3758/s13423-011-0055-3
Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763. doi:10.3758/BF03194742
Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20, 207–214. doi:10.1111/j.1467-9280.2009.02276.x
Shimi, A., Nobre, A. C., Astle, D., & Scerif, G. (2014). Orienting attention within visual short-term memory: Development and mechanisms. Child Development, 85, 578–592. doi:10.1111/cdev.12150
Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PloS One, 3, e1699. doi:10.1371/journal.pone.0001699
Souza, A. S., Rerko, L., Lin, H.-Y., & Oberauer, K. (2014). Focused attention improves working memory: Implications for flexible-resource and discrete-capacity models. Attention, Perception, & Psychophysics, 76, 2080–2102. doi:10.3758/s13414-014-0687-2
Souza, A. S., Rerko, L., & Oberauer, K. (2014). Unloading and reloading working memory: Attending to one item frees capacity. Journal of Experimental Psychology: Human Perception and Performance, 40, 1237–1256. doi:10.1037/a0036331
Sperling, G. (1960). The information available in brief visual presentations. Psychological Monograph: General and Applied, 74(11, Whole No. 498), 1–29. doi:10.1037/h0093759
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114. doi:10.1037/0096-1523.27.1.92
Williams, M., Hong, S. W., Kang, M.-S., Carlisle, N. B., & Woodman, G. F. (2013). The benefit of forgetting. Psychonomic Bulletin & Review, 20, 348–355. doi:10.3758/s13423-012-0354-3
Williams, M., & Woodman, G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1206–1220. doi:10.1037/a0027389
Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–764. doi:10.1016/S0896-6273(01)80033-7
Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin & Review, 10, 80–87. doi:10.3758/BF03196470
Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 73–103). Cambridge, MA: MIT Press.
Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi:10.1111/j.1467-9280.2009.02322.x