Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term

Psychonomic Bulletin & Review - Tập 22 - Trang 1349-1357 - 2015
Ashleigh M. Maxcey1, Keisuke Fukuda2, Won S. Song2, Geoffrey F. Woodman2
1Department of Psychology, Manchester University, North Manchester, USA
2Department of Psychology, Vanderbilt Vision Research Center, and Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, USA

Tóm tắt

As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.

Tài liệu tham khảo

Baddeley, A. (1986). Working memory. Oxford, UK: Oxford University Press, Clarendon Press. Baddeley, A. (2007). Working memory, thought, and action. Oxford, UK: Oxford University Press. Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple-component model. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). Cambridge, UK: Cambridge University Press. Blalock, L. D., & McCabe, D. P. (2011). Proactive interference and practice effects in visuospatial working memory span task performance. Memory, 19, 83–91. doi:10.1080/09658211.2010.537035 Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105, 14325–14329. doi:10.1073/pnas.0803390105 Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357 Brown, G. D. A., Chater, N., & Neath, I. (2008). Serial and free recall: Common effects and common mechanisms? A reply to Murdock. Psychological Review, 115, 781–785. doi:10.1037/a0012563 Bunting, M. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 183–196. doi:10.1037/0278-7393.32.2.183 Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 31, 9315–9322. doi:10.1523/JNEUROSCI. 1097-11.2011 Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1, 42–45. Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge, UK: Cambridge University Press. Crowder, R. G. (1982). The demise of short-term memory. Acta Psychologica, 50, 291–323. doi:10.1016/0001-6918(82)90044-0 Danker, J. F., Hwang, G. M., Gauthier, L., Geller, A., Kahana, M. J., & Sekuler, R. (2008). Characterizing the ERP Old–New effect in a short-term memory task. Psychophysiology, 45, 784–793. doi:10.1111/j.1469-8986.2008.00672.x Diana, R. A., Vilberg, K. L., & Reder, L. M. (2005). Identifying the ERP correlate of a recognition memory search attempt. Cognitive Brain Research, 24, 674–684. Duarte, A., Ranganath, C., Winward, L., Hayward, D., & Knight, R. T. (2004). Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. Cognitive Brain Research, 18, 255–272. doi:10.1016/j.cogbrainres.2003.10.010 Endress, A. D., & Potter, M. C. (2014). Large capacity temporary visual memory. Journal of Experimental Psychology: General, 143, 548–565. doi:10.1037/a0033934 Friedman, D. (2004). ERP studies of recognition memory: Differential effects of familiarity, recollection, and episodic priming. Cognitive Sciences, 1, 81–121. Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176–1194. doi:10.1162/089892903322598139 Hartshorne, J. K. (2008). Visual working memory capacity and proactive interference. PLoS ONE, 3, e2716. doi:10.1371/journal.pone.0002716 Hollingworth, A. (2004). Constructing visual representations of natural scenes: The roles of short- and long-term visual memory. Journal of Experimental Psychology: Human Perception and Performance, 30, 519–537. doi:10.1037/0096-1523.30.3.519 Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences, 16, 576–579. doi:10.1016/j.tics.2012.10.003 Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1, 153–161. Lin, P.-H., & Luck, S. J. (2012). Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task. Frontiers in Psychology, 3(42), 1–9. doi:10.3389/fpsyg.2012.00042 Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130, 199–207. doi:10.1037/0096-3445.130.2.199 Makovski, T., & Jiang, Y. V. (2008). Proactive interference from items previously stored in visual working memory. Memory & Cognition, 36, 43–52. doi:10.3758/MC.36.1.43 Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 369–380. doi:10.1037/0278-7393.34.2.369 Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: Protection or prioritization. Perception & Psychophysics, 69, 1422–1434. doi:10.3758/BF03192957 Maxcey, A. M., & Woodman, G. F. (2014). Can we throw information out of visual working memory and does this leave informational residue in long-term memory? Frontiers in Psychology, 5, 294. doi:10.3389/fpsyg.2014.00294 Maxcey-Richard, A. M., & Hollingworth, A. (2013). The strategic retention of task-relevant objects in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 760–772. doi:10.1037/a0029496 May, C. P., Hasher, L., & Kane, M. J. (1999). The role of interference in memory span. Memory & Cognition, 27, 759–767. Nairne, J. S., Neath, I., Serra, M., & Byun, E. (1997). Positional distinctiveness and the ratio rule in free recall. Journal of Memory and Language, 37, 155–166. doi:10.1006/jmla.1997.2513 Neath, I. (1993). Distinctiveness and serial position effects in recognition. Memory & Cognition, 21, 689–698. doi:10.3758/BF03197199 Nee, D. E., & Jonides, J. (2011). Dissociable contributions of prefrontal cortex and the hippocampus to short-term memory: Evidence for a 3-state model of memory. NeuroImage, 54, 1540–1548. Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75, 522–536. doi:10.1037/h0026699 Paller, K. A., Lucas, H. D., & Voss, J. L. (2012). Assuming too much from “familiar” brain potentials. Trends in Cognitive Sciences, 6, 313–315. doi:10.1016/j.tics.2012.04.010 Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116, 129–156. doi:10.1037/a0014420 Reinhart, R. M. G., & Woodman, G. F. (2014). High stakes trigger the use of multiple memories to enhance the control of attention. Cerebral Cortex, 24, 2022–2035. doi:10.1093/cercor/bht057 Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595–598. doi:10.1038/33396 Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11, Whole No. 498), 1–29. Surprenant, A. M., & Neath, I. (2009). Principles of memory. New York, NY: Psychology Press. Thorn, A. S. C., Gathercole, S. E., & Frankish, C. R. (2005). Redintegration and the benefits of long-term knowledge in verbal short-term memory: An evaluation of Schweikert’s (1993) multinomial processing tree model. Cognitive Psychology, 50, 133–158. doi:10.1016/j.cogpsych.2004.07.001 Tsivilis, D., Otten, L. J., & Rugg, M. D. (2001). Context effects on the neural correlates of recognition memory: And electrophysiological study. Neuron, 31, 497–505. Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133, 1038–1066. doi:10.1037/0033-2909.133.6.1038 Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi:10.1038/nature02447 Voss, J. L., Schendan, H. E., & Paller, K. A. (2010). Finding meaning in novel geometric shapes influences electrophysiological correlates of repetition and dissociates perceptual and conceptual priming. NeuroImage, 49, 2879–2889. doi:10.1016/j.neuroimage.2009.09.012 Wickens, D. D., Born, D. G., & Allen, C. K. (1963). Proactive inhibition and item similarity in short-term memory. Journal of Verbal Learning and Verbal Behavior, 2, 440–445. doi:10.1016/S0022-5371(63)80045-6 Williams, M., & Woodman, G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1206–1220. doi:10.1037/a0027389 Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1–17. doi:10.1167/13.3.1 Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138. doi:10.1037/0096-1523.29.1.121