The binding pool: A model of shared neural resources for distinct items in visual working memory
Tóm tắt
Visual working memory (VWM) refers to the ability to encode, store, and retrieve visual information. The two prevailing theories that describe VWM assume that information is stored either in discrete slots or within a shared pool of resources. However, there is not yet a good understanding of the neural mechanisms that would underlie such theories. To address this gap, we provide a computationally realized neural account that uses a pool of shared neurons to store information about one or more distinct stimuli. The binding pool model is a neural network that is essentially a hybrid of the slot and resource theories. It describes how information can be stored and retrieved from a pool of shared resources using a type/token architecture (Bowman & Wyble in Psychological Review 114(1), 38–70, 2007; Kanwisher in Cognition 27, 117–143, 1987; Mozer in Journal of Experimental Psychology: Human Perception and Performance 15(2), 287–303, 1989). The model can store multiple distinct objects, each containing binding links to one or more features. The binding links are stored in a pool of shared resources and, thus, produce mutual interference as memory load increases. Given a cue, the model retrieves a specific object and then reconstructs other features bound to that object, along with a confidence metric. The model can simulate data from continuous report and change detection paradigms and generates testable predictions about the interaction of report accuracy, confidence, and stimulus similarity. The testing of such predictions will help to identify the boundaries of shared resource theories, thereby providing insight into the roles of ensembles and context in explaining our ability to remember visual information.
Tài liệu tham khảo
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.
Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628.
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. The Psychology of Learning and Motivation: Advances in Research and Theory, 8, 47–89.
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 1–11.
Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011a). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10), 1–15.
Bays, P. M., Wu, E. Y., & Husain, M. (2011b). Dynamic updating of working memory resources for visual objects. Journal of Neurosciences, 31(23), 8502–8511.
Block, H. D. (1962). The perceptron: a model for brain functioning. Reviews of Modern Physics, 34(1), 123–135.
Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model of temporal attention and working memory. Psychological Review, 114(1), 38–70.
Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384–392.
Brady, T. F., & Tenenbuam, J. B. (2013). A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120(1), 85–109.
Caramazza, A., & Miceli, G. (1990). The structure of graphemic representations. Cognition, 37, 243–297.
Fougnie, D., & Alvarez, G. A. (2011). Object features fail independently in visual working memory; evidence for a probabilistic feature-store model. Journal of Vision, 11(12), 1–12.
Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of working memory. Nature Communication, 3, 1229.
Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision, 10(12), 1–11.
Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134–141.
Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. The Journal of Neuroscience, 31(23), 8502–8511.
Hartshorne, J. K. (2008). Visual working memory capacity and proactive interference. PLoS one, 3(7), e2716.
Hasselmo, M. E., Fransen, E., Dickson, C., & Alonso, A. A. (2000). Computational modeling of entorhinal cortex. Annals of the New York Academy of Sciences, 911(617), 418–446.
Huang, J., & Sekuler, R. (2010). Distortions in recall from visual memory: two classes of attractors at work. Journal of Vision, 10, 1–27.
Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, memory, and cognition., 26(3), 683–702.
Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: a noisy exemplar approach. Vision Research, 42(18), 2177–2192.
Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & R. Davies (Eds.), Varieties in Attention (pp. 29–61). New York: Academic Press.
Kanerva, P. (1993). Sparse distributed memory and related models. Associate Neural Memories: Theory and Implementation, 50–73
Kanwisher, N. G. (1987). Repetition blindness: type recognition without token individuation. Cognition, 27, 117–143.
Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1(3), 153–161.
Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No evidence for an item limit in change detection. PLoS Computational Biology, 9(2), e1002927.
Lin, P., & Luck, S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17(3), 1–15.
Lin, P., & Luck, S. J. (2012). Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical detection task. Frontiers in Psychology, 3(2), 1–9.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.
Luo, C. R., & Caramazza, A. (1996). Temporal and spatial repetition blindness: effects of presentation mode and repetition lag on the perception of repeated items. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 95–113.
Marr, D. (1976). Early processing of visual information. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 275(942), 483–519.
McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing. Cambridge: The MIT Press.
Mihalas, S., Dong, Y., von der Heydt, R., & Niebur, E. (2011). Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7583–7588.
Mozer, M. C. (1989). Types and tokens in visual letter perception. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 287–303.
Murdock, B. B., Jr. (1983). A distributed memory model for serial-order information. Psychological Review, 90(4), 316–338.
Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51(9), 45–100.
Oberauer, K., & Eichenberger, S. (2013). Visual working memory declines when more features must be remembered for each object. Memory & Cognition, May 2013
Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: an interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779–819.
Orhan, A. E., & Jacobs, R. A. (2013). A probabilistic clustering theory of the organization of visual short-term memory. Psychological Review, 120(2), 297–328.
Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural Network, 6(3), 623–641.
Prinzmetal, W., Amiri, H., Allen, K., & Edwards, T. (1998). Phenomenology of attention: 1. Color, location, orientation, and spatial frequency. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 261–282.
Rademaker, R. L., Tredway, C. H., & Tong, F. (2012). Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. Journal of Vision, 12(13), 1–13.
Rock, I., Linnet, C. M., Grant, P., & Mack, A. (1992). Perception without attention: results of a new method. Cognitive Psychology, 24, 502–534.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.
Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119(4), 807–830.
Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolBox. Journal of Vision, 13(10):9, 1–8.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.
Treisman, A. M., & Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cognitive Psychology, 14, 107–141.
van den Berg, R., Shin, H., Chou, W., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8780–8785.
van Lamsweerde, A. E., & Beck, M. R. (2012). Attention shifts or volatile representations: what causes binding deficits in visual working memory? Visual Cognition, 20(7), 771–792.
VanRullen, R. (2009). Binding hardwired versus on-demand feature conjunctions. Visual Cognition, 17(1–2), 103–119.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436–1451.
Vul, E., Frank, M. C., Alvarez, G. A., & Tenenbuam, J. B. (2010). Explaining human multiple object tracking as a resource-constrained approximate inference in a dynamic probabilistic model. Advances in Neural Information Processing Systems, 22, 1–9.
Vul, E., & Rich, A. N. (2010). Independent sampling of features enables conscious perception of bound objects. Psychological Science, 21(8), 1168–1175.
Wei, W., Wang, X. J., & Wang, D. (2012). From Distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. Journal of Neuroscience, 32, 11228–11240.
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Jorunal of Experimental Psychology: General., 131(1), 48–64.
Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135.
Williams, M., Hong, S. W., Kang, M., Carlisle, N. B., & Woodman, G. E. (2013). The benefit of forgetting. Psychonomics Bulletin & Review., 19(6).
Wyble, B., Bowman, H., & Nieuwenstein, M. (2009). The attentional blin provides episodic distinctiveness: sparing at a cost. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 787–807.
Wyble, B., Potter, M. C., Bowman, H., & Nieuwenstein, M. (2011). Attentional episodes in visual perception. Journal of Experimental Psychology. General, 140(3), 488–505.
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 452(7192), 233–235.
Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16, 2112–2126.