Charge balancing and optical contrast optimization in Fe-MEPE/Ni1-xO electrochromic devices containing a Li reference electrode
Tài liệu tham khảo
2015
Vasilyeva, 2009, Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes, ACS Appl. Mater. Interfaces, 1, 2288, 10.1021/am900435j
Invernale, 2009, Polythieno[3,4- b ]thiophene as an optically transparent ion-storage layer, Chem. Mater., 21, 3332, 10.1021/cm900843b
Avellaneda, 2008, Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route, Sol. Energy Mater. Sol. Cell., 92, 240, 10.1016/j.solmat.2007.03.035
Azens, 1998, Optically passive counter electrodes for electrochromic devices: transition metal–cerium oxide thin films, Sol. Energy Mater. Sol. Cell., 54, 85, 10.1016/S0927-0248(97)00267-5
Hassab, 2016, Using WO3 as a transparent, optically-passive counter electrode in an unbalanced electrochromic configuration, Electrochem. Commun., 72, 87, 10.1016/j.elecom.2016.09.001
Hassab, 2018, Exploring unbalanced electrode configurations for electrochromic devices, J. Mater. Chem. C, 6, 393, 10.1039/C7TC04730D
Macher, 2020, Avoiding voltage-induced degradation in PET-ITO-based flexible electrochromic devices, ACS Appl. Mater. Interfaces, 10.1021/acsami.0c07860
Niklaus, 2019, Metallopolymers and non-stoichiometric nickel oxide: towards neutral tint large-area electrochromic devices, Sol. Energy Mater. Sol. Cell., 200, 110002, 10.1016/j.solmat.2019.110002
Qu, 2017, Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films, ACS Appl. Mater. Interfaces, 9, 42420, 10.1021/acsami.7b13815
Wen, 2015, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO 3 thin films, Nat. Mater., 14, 996, 10.1038/nmat4368
Schott, 2019, Electrochromic metallo-supramolecular polymers showing visible and near-infrared light transmittance modulation, Sol. Energy Mater. Sol. Cell., 200, 110001, 10.1016/j.solmat.2019.110001
L. Niklaus, M. Schott, U. Posset, G.A. Giffin, Redox electrolytes for hybrid type II electrochromic devices with Fe‐MEPE or Ni1‐xO as electrode materials, ChemElectroChem. https://doi.org/10.1002/celc.202000583.
Constable, 1992, Multinucleating 2,2′ 6′,2″-terpyridine ligands as building blocks for the assembly of co-ordination polymers and oligomers, J. Chem. Soc., Dalton Trans., 3467, 10.1039/DT9920003467
Higuchi, 2014, Stimuli-responsive metallo-supramolecular polymer films: design, synthesis and device fabrication, J. Mater. Chem. C, 2, 9331, 10.1039/C4TC00689E
Sorar, 2020, Electrochromism in Ni oxide thin films made by advanced gas deposition and sputtering: a comparative study demonstrating the significance of surface effects, J. Electrochem. Soc., 167, 116519, 10.1149/1945-7111/aba5d9
Granqvist, 1995
Liu, 2018, In situ electrochromic efficiency of a nickel oxide thin film: origin of electrochemical process and electrochromic degradation, J. Mater. Chem. C, 6, 646, 10.1039/C7TC04696K
Panagopoulou, 2017, Tunable properties of Mg-doped V2O5 thin films for energy applications: Li-Ion batteries and electrochromics, J. Phys. Chem. C, 121, 70, 10.1021/acs.jpcc.6b09018