Charge balancing and optical contrast optimization in Fe-MEPE/Ni1-xO electrochromic devices containing a Li reference electrode

Solar Energy Materials and Solar Cells - Tập 227 - Trang 111080 - 2021
Lukas Niklaus1, Marco Schott1, Uwe Posset1, Mohor Mihelčič2, Ivan Jerman3, Guinevere A. Giffin1
1Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg, Germany
2University of Ljubljana, Faculty for Mechanical Engineering, Laboratory of Experimental Mechanics, Aškerčeva ulica 6, 1000 Ljubljana, Slovenia
3National Institute of Chemistry NIC, Hajdrihova ulica 19, 1000, Ljubljana, Slovenia

Tài liệu tham khảo

2015

Vasilyeva, 2009, Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes, ACS Appl. Mater. Interfaces, 1, 2288, 10.1021/am900435j

Invernale, 2009, Polythieno[3,4- b ]thiophene as an optically transparent ion-storage layer, Chem. Mater., 21, 3332, 10.1021/cm900843b

Avellaneda, 2008, Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route, Sol. Energy Mater. Sol. Cell., 92, 240, 10.1016/j.solmat.2007.03.035

Azens, 1998, Optically passive counter electrodes for electrochromic devices: transition metal–cerium oxide thin films, Sol. Energy Mater. Sol. Cell., 54, 85, 10.1016/S0927-0248(97)00267-5

Hassab, 2016, Using WO3 as a transparent, optically-passive counter electrode in an unbalanced electrochromic configuration, Electrochem. Commun., 72, 87, 10.1016/j.elecom.2016.09.001

Hassab, 2018, Exploring unbalanced electrode configurations for electrochromic devices, J. Mater. Chem. C, 6, 393, 10.1039/C7TC04730D

Macher, 2020, Avoiding voltage-induced degradation in PET-ITO-based flexible electrochromic devices, ACS Appl. Mater. Interfaces, 10.1021/acsami.0c07860

Niklaus, 2019, Metallopolymers and non-stoichiometric nickel oxide: towards neutral tint large-area electrochromic devices, Sol. Energy Mater. Sol. Cell., 200, 110002, 10.1016/j.solmat.2019.110002

Qu, 2017, Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films, ACS Appl. Mater. Interfaces, 9, 42420, 10.1021/acsami.7b13815

Wen, 2015, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO 3 thin films, Nat. Mater., 14, 996, 10.1038/nmat4368

Schott, 2019, Electrochromic metallo-supramolecular polymers showing visible and near-infrared light transmittance modulation, Sol. Energy Mater. Sol. Cell., 200, 110001, 10.1016/j.solmat.2019.110001

L. Niklaus, M. Schott, U. Posset, G.A. Giffin, Redox electrolytes for hybrid type II electrochromic devices with Fe‐MEPE or Ni1‐xO as electrode materials, ChemElectroChem. https://doi.org/10.1002/celc.202000583.

Constable, 1992, Multinucleating 2,2′ 6′,2″-terpyridine ligands as building blocks for the assembly of co-ordination polymers and oligomers, J. Chem. Soc., Dalton Trans., 3467, 10.1039/DT9920003467

Higuchi, 2014, Stimuli-responsive metallo-supramolecular polymer films: design, synthesis and device fabrication, J. Mater. Chem. C, 2, 9331, 10.1039/C4TC00689E

Sorar, 2020, Electrochromism in Ni oxide thin films made by advanced gas deposition and sputtering: a comparative study demonstrating the significance of surface effects, J. Electrochem. Soc., 167, 116519, 10.1149/1945-7111/aba5d9

Granqvist, 1995

Liu, 2018, In situ electrochromic efficiency of a nickel oxide thin film: origin of electrochemical process and electrochromic degradation, J. Mater. Chem. C, 6, 646, 10.1039/C7TC04696K

Panagopoulou, 2017, Tunable properties of Mg-doped V2O5 thin films for energy applications: Li-Ion batteries and electrochromics, J. Phys. Chem. C, 121, 70, 10.1021/acs.jpcc.6b09018

Remmele, 2015, High performance and long-term stability in ambiently fabricated segmented solid-state polymer electrochromic displays, ACS Appl. Mater. Interfaces, 7, 12001, 10.1021/acsami.5b02090