Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review

Electrochimica Acta - Tập 259 - Trang 1170-1182 - 2018
C.G. Granqvist1, M.A. Arvizu1, İ. Bayrak Pehlivan1, H.-Y. Qu1,2, R.-T. Wen1, G.A. Niklasson1
1Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, PO Box 534, SE-75121 Uppsala, Sweden
2MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China

Tài liệu tham khảo

Granqvist, 1995 2015 Raupach, 2011, Pinning down the land carbon sink, Nat. Clim. Change, 1, 148, 10.1038/nclimate1123 U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Earthscan System Research Laboratory, Global Monitoring Division; http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html. Accessed 24 March 2017. 2013 2012 Burke, 2015, Global non-linear effect of temperature on economic production, Nature, 527, 235, 10.1038/nature15725 Matthews, 2017, Communicating the deadly consequences of global warming for human heat stress, Proc. Nat. Acad. Sci. USA, 114, 3861, 10.1073/pnas.1617526114 Wheeler, 2013, Climate change impacts global food security, Science, 341, 508, 10.1126/science.1239402 Henson, 2017, Rapid emergence of climate change in environmental drivers of marine ecosystems, Nat. Commun., 8, 14682/1, 10.1038/ncomms14682 Schädel, 2016, Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils, Nat. Clim. Change, 6, 950, 10.1038/nclimate3054 United Nations Department of Economic and Social Affairs, 2015 Akbari, 2016, Local climate change and urban heat island mitigation techniques: the state of the art, J. Civil Engr. Mgm., 22, 1 United Nations Environmental Programme, 2009 U.S. Department of Energy, 2012 Richter, 2008, How America can look within to achieve energy security and reduce global warming, Rev. Mod. Phys., 80, S1, 10.1103/RevModPhys.80.S1 http://ec.europa.eu/energy/en/topics/energy-efficiency. Accessed on 26 April 2017. Smith, 2010 2012 2013 2013 2013 2015 2016 2016 2017 Obama, 2017, The irreversible momentum of clean energy: private-sector efforts help drive decoupling of emissions and economic growth, Science, 355, 126, 10.1126/science.aam6284 Svensson, 1985, Electrochromic coatings for “smart windows”, Sol. Energy Mater, 12, 391, 10.1016/0165-1633(85)90033-4 Granqvist, 1990, Chromogenic materials for transmittance control of large-area windows, Crit. Rev. Solid State. Phys. Mater. Sci., 16, 291, 10.1080/10408439008242184 1990, vol. 4 Granqvist, 2014, Electrochromics for smart windows: oxide-based thin films and devices, Thin Solid Films, 564, 1, 10.1016/j.tsf.2014.02.002 Azens, 2003, Electrochromic smart windows: energy efficiency and device aspects, J. Solid State Electrochem., 7, 64, 10.1007/s10008-002-0313-4 Lee, 2006, Daylighting control performance of a thin-film ceramic electrochromic window: field study results, Energy Build., 38, 30, 10.1016/j.enbuild.2005.02.009 Lee, 2006 Dussault, 2012, Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads, Sol. Energy, 86, 3405, 10.1016/j.solener.2012.07.016 Pittaluga, 2015, Electrochromic glazing and walls for reducing building cooling needs, 473 DeForest, 2015, United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings, Build. Environ., 89, 107, 10.1016/j.buildenv.2015.02.021 DeForest, 2017, A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings, Appl. Energy, 192, 95, 10.1016/j.apenergy.2017.02.007 Tavares, 2015, The impact of electrochromic windows on the energy performance of buildings in Mediterranean climates: a case study, 499 Baldassarri, 2016, Energy and emissions analysis of next generation electrochromic devices, Sol. Energy Mater. Sol. Cells, 156, 170, 10.1016/j.solmat.2015.12.017 Clear, 2006, Subject responses to electrochromic windows, Energy Build., 38, 758, 10.1016/j.enbuild.2006.03.011 Zinzi, 2006, Office worker preferences of electrochromic windows: a pilot study, Build. Environ., 41, 1262, 10.1016/j.buildenv.2005.05.010 Piccolo, 2015, Performance requirements for electrochromic smart window, J. Build. Engr., 3, 94, 10.1016/j.jobe.2015.07.002 Eichholtz, 2010, Doing well by doing good? Green office buildings, Am. Econ. Rev., 100, 2492, 10.1257/aer.100.5.2492 Lampert, 1984, Electrochromic materials and devices for energy efficient windows, Sol. Energy Mater., 11, 1, 10.1016/0165-1633(84)90024-8 Svensson, 1984, Electrochromic tungsten oxide films for energy efficient windows, Sol. Energy Mater., 11, 29, 10.1016/0165-1633(84)90025-X Jelle, 2012, Fenestration today and tomorrow: a state-of-the-art review and future research opportunities, Sol. Energy Mater. Sol. Cells, 96, 1, 10.1016/j.solmat.2011.08.010 Jelle, 2015, Electrochromic smart windows for dynamic daylight and solar energy control in buildings, 419 Mardaljevic, 2015, Electrochromic glazing in buildings: a case study, 571 Barile, 2017, Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition, Joule, 1, 133, 10.1016/j.joule.2017.06.001 Barrios, 2013, Toward a quantitative model for suspended particle devices: optical scattering and absorption coefficients, Sol. Energy Mater. Sol. Cells, 111, 115, 10.1016/j.solmat.2012.12.012 Cupelli, 2009, Electrically switchable chromogenic materials for external glazing, Sol. Energy Mater. Sol. Cells, 93, 329, 10.1016/j.solmat.2008.11.010 Yoshimura, 2013, Metal hydrides for smart window and sensor applications, MRS Bull., 38, 495, 10.1557/mrs.2013.129 Llordés, 2013, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites, Nature, 500, 323, 10.1038/nature12398 Llordés, 2015, Plasmonic electrochromism in metal oxide nanocrystals, 363 Li, 2012, Plasmon-induced near-infrared electrochromism based on transparent conducting nanoparticles: approximate performance limits, Appl. Phys. Lett., 101, 071903/1 Byker, 2015, Solution-phase electrochromic devices and systems, 401 Beaujuge, 2010, Color control in π-conjugated organic polymers for use in electrochromic devices, Chem. Rev., 110, 268, 10.1021/cr900129a Dyer, 2015, Conjugated electrochromic polymers: structure-driven colour and processing control, 113 Ho, 2015, Electrochromic devices based on metal hexacyanometallate/viologen pairings, 91 Monk, 2015, Electrochromic materials and devices based on viologens, 57 Freedonia, 2014 Wyszecki, 2000 ASTM, 2012, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on a 37° tilted surface, 14.04 Granqvist, 2014, Oxide-based chromogenic coatings and devices for energy efficient fenestration: brief survey and update on thermochromics and electrochromics, J. Vac. Sci. Technol. B, 32, 060801/1 Granqvist, 2016, Recent progress in thermochromics and electrochromics: a brief survey, Thin Solid Films, 614, 90, 10.1016/j.tsf.2016.02.029 Granqvist, 2015, Electrochromic metal oxides: an introduction to materials and devices, 3 Azens, 2003, Electrochromic devices on polyester foil, Solid State Ionics, 165, 1, 10.1016/j.ssi.2003.08.009 Azens, 2005, Flexible foils with electrochromic coatings: science, technology and applications, Mater. Sci. Engr. B, 119, 214, 10.1016/j.mseb.2004.12.085 Granqvist, 2015, Electrochromic foil: a case study, 527 C.G. Granqvist, İ. Bayrak Pehlivan, G.A. Niklasson, Electrochromics on a roll: web-coating and lamination for smart windows, Surf. Coatings. Technol., https://doi.org/10.1016/j.surfcoat.2017.08.006. Andersson, 1989, Electrochromic LixWO3/polymer laminate/LiyV2O5 device: toward an all-solid-state smart window, Appl. Opt., 28, 3295, 10.1364/AO.28.003295 Passerini, 1989, An electrochromic window based on LixWO3/(PEO)8LiClO4/NiO, J. Electrochem. Soc., 136, 3394, 10.1149/1.2096458 Deb, 1973, Optical and photoelectric properties and colour centres in thin films of tungsten oxide, Philos. Mag., 27, 801, 10.1080/14786437308227562 Granqvist, 2007, Transparent conductors as solar energy materials: a panoramic review, Sol. Energy Mater. Sol. Cell., 91, 1529, 10.1016/j.solmat.2007.04.031 2010 Lin, 2015, Graphene as an efficient interfacial layer for electrochromic devices, ACS Appl. Mater. Interfaces, 7, 11330, 10.1021/acsami.5b01777 Lin, 2015, Solid-state conversion reaction to enhance charge transfer in electrochromic materials, Adv. Mater. Interfaces., 2, 1400523/1, 10.1002/admi.201400523 Bogati, 2017, Photoelectrochromic devices based on sputtered WO3 and TiO2 films, Sol. Energy Mater. Sol. Cells, 163, 170, 10.1016/j.solmat.2017.01.016 Wen, 2015, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films, Nat. Mater., 14, 996, 10.1038/nmat4368 Wen, 2016, Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring, Chem. Mater., 28, 4670, 10.1021/acs.chemmater.6b01503 Talledo, 1995, Electrochromic vanadium-pentoxide-based films: structural, electrochemical, and optical properties, J. Appl. Phys., 77, 4655, 10.1063/1.359433 Lykissa, 2014, Electronic density-of-states of amorphous vanadium pentoxide films: electrochemical data and density functional calculations, J. Appl. Phys., 115, 183701/1, 10.1063/1.4875636 Vernardou, 2017, Using an atmospheric pressure chemical vapor deposition process for the development of V2O5 as electrochromic material, Coatings, 7, 24/1, 10.3390/coatings7020024 Azens, 2001, Electrochromic devices embodying W oxide/Ni oxide tandem films, J. Appl. Phys., 89, 7885, 10.1063/1.1337091 Niklasson, 2007, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem., 17, 127, 10.1039/B612174H Nanba, 1989, X-ray diffraction study of microstructure in amorphous tungsten trioxide films prepared by electron beam vacuum evaporation, J. Solid State Chem., 83, 304, 10.1016/0022-4596(89)90180-1 Triana, 2017, Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides, Sci. Rep., 7, 2044/1, 10.1038/s41598-017-01151-2 Maleknia, 1991, Characterization of the reactive and dissociative behavior of transition metal oxide cluster ions in the gas phase, J. Am. Soc. Mass Spectrom., 2, 212, 10.1016/1044-0305(91)80046-A Sai, 2012, Lowest-energy structures of (WO3)n (2 ≤ n ≤ 12) clusters from first-principles global search, Chem. Phys. Lett., 544, 7, 10.1016/j.cplett.2012.06.050 Qi, 2016, In-situ transmission electron microscopy imaging of formation and evolution of LixWO3 during lithiation of WO3 nanowires, Appl. Phys. Lett., 108, 233103/1, 10.1063/1.4950968 Thornton, 1977, High-rate thick film growth, Ann. Rev. Mater. Sci., 7, 239, 10.1146/annurev.ms.07.080177.001323 Petrov, 2003, Microstructural evolution during film growth, J. Vac. Sci. Technol., A21, S117, 10.1116/1.1601610 Anders, 2010, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518, 4087, 10.1016/j.tsf.2009.10.145 Hawkeye, 2014 Barranco, 2016, Perspectives on oblique angle deposition of thin films: from fundamentals to devices, Progr. Mater. Sci., 76, 59, 10.1016/j.pmatsci.2015.06.003 Gil-Rostra, 2012, Electrochromic behavior of WxSiyOz thin films prepared by reactive magnetron sputtering at normal and glancing angles, ACS Appl. Mater. Interfaces, 4, 628, 10.1021/am2014629 Giannuzzi, 2015, On the Li intercalation kinetics in tree-like WO3 electrodes and their implementation in fast switchable electrochromic devices, Adv. Opt. Mater., 3, 1614, 10.1002/adom.201500152 Kim, 2015, Nanocomposite architecture for rapid spectrally-selective electrochromic modulation of solar transmittance, Nano Lett., 15, 5574, 10.1021/acs.nanolett.5b02197 Wen, 2015, Anodic electrochromism for energy-efficient windows: cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films, Adv. Funct. Mater., 25, 3359, 10.1002/adfm.201500676 Hjelm, 1996, Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3, Phys. Rev. B, 54, 2436, 10.1103/PhysRevB.54.2436 de Wijs, 1999, Structure and electronic properties of amorphous WO3, Phys. Rev. B, 60, 16463, 10.1103/PhysRevB.60.16463 Bondarenko, 2015, Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide, Phys. Rev. B, 92, 165119/1, 10.1103/PhysRevB.92.165119 Triana, 2015, Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films, J. Appl. Phys., 118, 024901/1, 10.1063/1.4926488 Hamdi, 2016, First-principles reinvestigation of bulk WO3, Phys. Rev. B, 94, 245124/1, 10.1103/PhysRevB.94.245124 Berggren, 2006, Optical charge transfer absorption in lithium-intercalated tungsten oxide thin films, Appl. Phys. Lett., 88, 081906/1, 10.1063/1.2177548 Berggren, 2007, Optical absorption in lithiated tungsten oxide thin films: experiment and theory, J. Appl. Phys., 102, 083538/1, 10.1063/1.2800838 Avendaño, 2005, Proton diffusion and electrochromism in hydrated NiOy and Ni1–xVxOy thin films, J. Electrochem. Soc., 152, F203, 10.1149/1.2077308 Avendaño, 2009, Coloration mechanism in proton-intercalated electrochromic hydrated NiOy and Ni1–xVxOy thin films, J. Electrochem. Soc., 156, P132, 10.1149/1.3148327 Goodenough, 1971, Metallic oxides, vol. 5, 145 Gavrilyuk, 2011, Photoinjection of hydrogen and the nature of a giant shift of the fundamental absorption edge in highly disordered V2O5 films, Phys. Chem. Chem. Phys., 13, 9490, 10.1039/c0cp02201b Schirmer, 1977, Dependence of WO3 electrochromic absorption on crystallinity, J. Electrochem. Soc., 124, 749, 10.1149/1.2133399 Ederth, 2004, Small polaron formation in porous WO3–x nanoparticle films, J. Appl. Phys., 96, 5722, 10.1063/1.1804617 Zhang, 1997, Chromic mechanism in amorphous WO3 films, J. Electrochem. Soc., 144, 2022, 10.1149/1.1837737 Darmawi, 2015, Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide, Phys. Chem. Chem. Phys., 17, 10.1039/C5CP02482J Reik, 1967, Frequency dependence of the electrical conductivity of small polarons for high and low temperatures, J. Phys. Chem. Solids., 28, 581, 10.1016/0022-3697(67)90089-3 Bryksin, 1982, Optical intraband absorption in disordered systems during strong electron–phonon interaction, Fiz. Tverd. Tela, 24, 1110 Zhou, 2016, A nanocrystalline tungsten oxide electrochromic coating with excellent cycling stability prepared via a complexation-assisted sol–gel method, J. Mater. Chem. C, 4, 8041, 10.1039/C6TC03194C Arvizu, 2014, Electrochromism in sputter-deposited W–Ti oxide films: durability enhancement due to Ti, Sol. Energy Mater. Sol. Cells, 125, 184, 10.1016/j.solmat.2014.02.037 Wen, 2015, Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films, ACS Appl. Mater. Interfaces., 7, 9319, 10.1021/acsami.5b01715 Wen, 2016, Electrochromic iridium-containing nickel oxide films with excellent electrochemical performance, J. Electrochem. Soc., 163, E7, 10.1149/2.0591602jes Arvizu, 2017, Electrochromic W1–x–yTixMoyO3 thin films made by sputter deposition: large optical modulation, good cycling durability, and approximate color neutrality, Chem. Mater., 29, 2246, 10.1021/acs.chemmater.6b05198 Hashimoto, 1991, Lifetime and electrochromism of amorphous WO3–TiO2 thin films, J. Electrochem. Soc., 138, 2403, 10.1149/1.2085985 Hashimoto, 1992, Prolonged lifetime of electrochromism of amorphous WO3–TiO2 thin films, Surf. Interfaces. Anal., 19, 464, 10.1002/sia.740190187 Faughnan, 1977, Optical properties of mixed-oxide WO3/MoO3 electrochromic films, Appl. Phys. Lett., 31, 834, 10.1063/1.89566 Lin, 2013, Enhanced lithium electrochromism of atmospheric pressure plasma jet-synthesized tungsten/molybdenum oxide films for flexible electrochromic devices, J. Solid State Electrochem., 17, 1077, 10.1007/s10008-012-1969-z Arvizu, 2016, Electrochromism in sputter deposited W1–yMoyO3 thin films, J. Phys. Conf. Ser., 682, 012005/1, 10.1088/1742-6596/682/1/012005 Gillaspie, 2010, Nanocomposite counter electrode materials for electrochromic windows, J. Electrochem. Soc., 157, H328, 10.1149/1.3276779 Lin, 2013, Hole doping in Al-containing nickel oxide materials to improve electrochromic performance, ASC Appl. Mater. Interfaces, 5, 301, 10.1021/am302097b Lin, 2013, Origin of electrochromism in high-performing nanocomposite nickel oxide, ACS Appl. Mater. Interfaces., 5, 3643, 10.1021/am400105y Lin, 2015, Lithium electrochromic performance of flexible Ni oxide films enhanced by Fe oxide addition with an atmospheric pressure plasma jet for flexible electrochromic application, J. Solid State Electrochem., 19, 1671, 10.1007/s10008-015-2795-x Zhou, 2015, Enhanced electrochromic performances and cycle stability of NiO-based thin films via Li–Ti co-doping prepared by sol–gel method, Electrochim. Acta, 186, 182, 10.1016/j.electacta.2015.10.154 Cha, 2013, The activation process through a bimodal transmittance state for improving electrochromic performance of nickel oxide thin film, Sol. Energy Mater. Sol. Cells, 108, 22, 10.1016/j.solmat.2012.09.012 Granqvist, 2010, Advances in chromogenic materials and devices, Thin Solid Films, 518, 3046, 10.1016/j.tsf.2009.08.058 Zhang, 2008, An UV-photochromic memory effect in proton-based WO3 electrochromic devices, Appl. Phys. Lett., 93, 203508/1, 10.1063/1.3029775 Granqvist, 2008, Electrochromic foil-based devices: optical transmittance and modulation range, effect of ultraviolet irradiation, and quality assessment by 1/f current noise, Thin Solid Films, 516, 5921, 10.1016/j.tsf.2007.10.074 Wang, 2016, Disentangling photochromism and electrochromism by blocking hole transfer at the electrolyte interface, Chem. Mater., 28, 7198, 10.1021/acs.chemmater.6b03793 Miyazaki, 2016, Nickel oxide-based photochromic composite films, J. Ceram. Soc. Jpn., 124, 1175, 10.2109/jcersj2.16136 Jonsson, 2010, The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil, Sol. Energy Mater. Sol. Cells, 94, 992, 10.1016/j.solmat.2010.02.007 Bayrak Pehlivan, 2012, [PEI–SiO2]:[LiTFSI] nanocomposite polymer electrolytes: ion conduction and optical properties, Sol. Energy Mater. Sol. Cells, 98, 465, 10.1016/j.solmat.2011.11.021 Bayrak Pehlivan, 2012, A polymer electrolyte with high luminous transmittance and low solar throughput: polyethyleneimine-lithium bis(trifluoromethylsulfonyl) imide with In2O3:Sn nanocrystals, Appl. Phys. Lett., 100, 241902/1, 10.1063/1.4728994 Bayrak Pehlivan, 2014, Electrochromic devices with polymer electrolytes functionalized by SiO2 and In2O3:Sn nanoparticles: rapid coloration/bleaching dynamics and strong near-infrared absorption, Sol. Energy Mater. Sol. Cells, 126, 241, 10.1016/j.solmat.2013.06.010 Hamberg, 1986, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows, J. Appl. Phys., 60, R123, 10.1063/1.337534 Niklasson, 1981, Effective medium models for the optical properties of inhomogeneous materials, Appl. Opt., 20, 26, 10.1364/AO.20.000026 Granqvist, 2012, Progress in oxide-based electrochromics: towards roll-to-roll manufacturing, Mater. Res. Soc. Symp. Proc., 1315, 89 Bishop, 2015 Bishop, 2015 Badding, 1997, Performance and durability testing of lithium-ion monolithic electrochromic glazings, 369 Czanderna, 1999, Durability issues and service lifetime prediction of electrochromic windows for buildings applications, Sol. Energy Mater. Sol. Cells, 56, 419, 10.1016/S0927-0248(98)00183-4 Lampert, 1999, Durability evaluation of electrochromic devices: an industry perspective, Sol. Energy Mater. Sol. Cells, 56, 449, 10.1016/S0927-0248(98)00185-8 Nagai, 1999, Durability of electrochromic glazing, Sol. Energy Mater. Sol. Cells, 56, 309, 10.1016/S0927-0248(98)00140-8 Sbar, 1999, Progress toward durable, cost effective electrochromic window glazing, Sol. Energy Mater. Sol. Cells, 56, 321, 10.1016/S0927-0248(98)00141-X Kubo, 2003, Performance and durability of electrochromic windows with carbon-based counter electrode and their application in the architectural and automotive fields, Solid State Ionics, 165, 97, 10.1016/j.ssi.2003.08.042 Wen, 2014, Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: power-law decay of the charge density exchange, Appl. Phys. Lett., 105, 163502/1, 10.1063/1.4899069 Wen, 2016, Anodic electrochromic nickel oxide thin films: decay of charge density upon extensive electrochemical cycling, ChemElectroChem, 3, 266, 10.1002/celc.201500457 Wen, 2017, Degradation dynamics for electrochromic WO3 films under extended charge insertion/extraction: unveiling physicochemical mechanisms, ACS Appl. Mater. Interfaces, 9, 12872, 10.1021/acsami.7b01324 Plonka, 2001, Dispersive kinetics, Annu. Rep. Prog. Chem. Sect. C, 97, 91, 10.1039/b100666p Wen, 2015, Sustainable rejuvenation of electrochromic WO3 films, ACS Appl. Mater. Interfaces, 7, 28100, 10.1021/acsami.5b09035 Wen, 2016, Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping, ACS Appl. Mater. Interfaces., 8, 5777, 10.1021/acsami.6b00457 Arvizu, 2016, Rejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary results, J. Phys. Conf. Ser., 764, 012009/1, 10.1088/1742-6596/764/1/012009 Bisquert, 2002, Analysis of the kinetics of ion intercalation: ion trapping approach to the solid-state relaxation processes, Electrochim. Acta, 47, 2435, 10.1016/S0013-4686(02)00102-0 Bisquert, 2002, Analysis of the kinetics of ion intercalation: two state model describing the coupling of solid state ion diffusion and ion binding processes, Electrochim. Acta, 47, 3977, 10.1016/S0013-4686(02)00372-9 Bisquert, 2003, Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk, Phys. Rev. Lett., 91, 010602/1, 10.1103/PhysRevLett.91.010602 Bisquert, 2008, Beyond the quasistatic approximation: impedance and capacitance of an exponential distribution of traps, Phys. Rev. B, 77, 235203/1, 10.1103/PhysRevB.77.235203 Arvizu, 2015, Galvanostatic ion detrapping rejuvenates oxide thin films, ACS Appl. Mater. Interfaces., 7, 26387, 10.1021/acsami.5b09430 Baloukas, 2017, Galvanostatic rejuvenation of electrochromic WO3 thin films: ion trapping and detrapping observed by optical measurements and by time-of-flight secondary ion mass spectroscopy, ACS Appl. Mater. Interfaces., 9, 16995, 10.1021/acsami.7b01260 Qu, 2017, Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films, ACS Appl. Mater. Interfaces., 10.1021/acsami.7b13815 Li, 2015, Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance, Sol. Energy Mater. Sol. Cells, 132, 6, 10.1016/j.solmat.2014.08.014 Wojcik, 2015, Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices, Nanoscale, 7, 1696, 10.1039/C4NR05765A Alonso, 2012, Evaluating rare earth element availability: a case with revolutionary demand on clean technologies, Environm. Sci. Technol., 46, 3406, 10.1021/es203518d Fernandes, 2015, Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both, Electrochim. Acta, 161, 226, 10.1016/j.electacta.2015.02.036 Fernandes, 2017, Eco-friendly sol–gel derived sodium-based ormolytes for electrochromic devices, Electrochim. Acta, 232, 484, 10.1016/j.electacta.2017.02.098 Cai, 2016, Next-generation multifunctional electrochromic devices, Acc. Chem. Res., 49, 1469, 10.1021/acs.accounts.6b00183 Huang, 2016, Multifunctional energy storage and conversion devices, Adv. Mater., 28, 8344, 10.1002/adma.201601928 Cannavale, 2016, Forthcoming perspectives on photoelectrochromic devices: a critical review, Energy Environ. Sci., 9, 2682, 10.1039/C6EE01514J Bella, 2016, A new design paradigm for smart windows: photocurable polymers for quasi-solid photoelectrochromic devices with excellent long-term stability under real outdoor operating conditions, Adv. Funct. Mater, 26, 1127, 10.1002/adfm.201503762 Cai, 2015, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles, Nano Energy, 12, 258, 10.1016/j.nanoen.2014.12.031 Shen, 2016, Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires, Chem. Commun., 52, 6296, 10.1039/C6CC01139J Yang, 2014, Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage, Angew. Chem. Int. Ed., 53, 11935, 10.1002/anie.201407365 Yang, 2016, Electrochromic energy storage devices, Mater. Today, 19, 394, 10.1016/j.mattod.2015.11.007 Zhou, 2016, Bi-functional Mo-doped WO3 nanowire array electrochromism-plus-electrochemical energy storage, J. Colloid Interface Sci., 465, 112, 10.1016/j.jcis.2015.11.068 Luo, 2017, A europium ion doped WO3 film with the bi-functionality of enhanced electrochromic switching and tunable red emission, J. Mater. Chem. C, 5, 3488, 10.1039/C7TC00248C Garcia, 2011, Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals, Nano Lett., 11, 4415, 10.1021/nl202597n Llordés, 2016, Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing, Nat. Mater., 15, 1267, 10.1038/nmat4734 Runnerstrom, 2014, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals, Chem. Commun., 50, 10555, 10.1039/C4CC03109A Williams, 2014, NIR-selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices, J. Mater. Chem. C, 2, 3328, 10.1039/c3tc32247e Wang, 2016, Switchable materials for smart windows, Annu. Rev. Chem. Biomol. Engr., 7, 283, 10.1146/annurev-chembioeng-080615-034647 Li, 2010, Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation, J. Appl. Phys., 108, 063525/1 Li, 2012, Thermochromic fenestration with VO2-based materials: three challenges and how they can be met, Thin Solid Films, 520, 3823, 10.1016/j.tsf.2011.10.053 Li, 2014, Thermochromic undoped and Mg-doped VO2 thin films and nanoparticles: optical properties and performance limits for energy efficient windows, J. Appl. Phys., 115, 053513/1 Ji, 2016, Thermochromics for energy-efficient buildings: thin surface coatings and nanoparticle composites, 71 Granqvist, 2007, Nanomaterials for benign indoor environments: electrochromics for “smart” windows, sensors for air quality, and photo-catalysis for air cleaning, Sol. Energy Mater. Sol. Cells, 91, 355, 10.1016/j.solmat.2006.10.011 Stefanov, 2017 2014 LeCuyer, 2008 Fahlteich, 2015, More than just protection: surface functionalization of fluoropolymer films for exterior applications, Kunstst. Int., 12, 45 2014 Weller, 2015, Flash lamp annealing of ITO thin films on ultra-thin glass: improvement of the electrical and optical properties, Vac. Forsch. .Praxis, 27, 29, 10.1002/vipr.201500586