Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile
Tài liệu tham khảo
Adler, 1970, Electrical and optical properties of narrow-band materials, Phys. Rev. B, 2, 3112, 10.1103/PhysRevB.2.3112
Lang, 2010, Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon, J. Solid State Electrochem., 14, 1533, 10.1007/s10008-009-0984-1
Decker, 1992, The electrochromic process in non-stoichiometric nickel oxide thin film electrodes, Electrochim. Acta, 37, 1033, 10.1016/0013-4686(92)85220-F
Estrada, 1991, Infrared reflectance spectroscopy of electrochromic NiOxHy films made by reactive dc sputtering, J. Mater. Res., 6, 1715, 10.1557/JMR.1991.1715
Tong, 2012, Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device, Energy Environ. Sci., 5, 9472, 10.1039/c2ee22866a
Li, 2012, Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun., 48, 988, 10.1039/C2CC16101J
Li, 2010, Double-layered NiO photocathodes for p-type DSSCs with record IPCE, Adv. Mater., 22, 1759, 10.1002/adma.200903151
Nattestad, 2010, Highly efficient photocathodes for dye-sensitized tandem solar cells, Nat. Mater., 9, 31, 10.1038/nmat2588
Bonomo, 2016, Nanostructured p-type semiconductor electrodes and photoelectrochemistry of their reduction processes, Energies, 9, 373, 10.3390/en9050373
Cavallo, 2017, Nanostructured semiconductor materials for dye-sensitized solar cells, J. Nanomater., 2017
Irwin, 2008, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci., 105, 2783, 10.1073/pnas.0711990105
Hüfner, 1994, Electronic structure of NiO and related 3d-transition-metal compounds, Adv. Phys., 43, 183, 10.1080/00018739400101495
O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737, 10.1038/353737a0
He, 2000, Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode, Sol. Energy Mater. Sol. Cells, 62, 265, 10.1016/S0927-0248(99)00168-3
Sumikura, 2008, Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 199, 1, 10.1016/j.jphotochem.2008.04.007
Powar, 2012, Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(ii) oxide microballs, Energy Environ. Sci., 5, 8896, 10.1039/c2ee22127f
Bonomo, 2017, Electrochemical and photoelectrochemical properties of screen-Printed nickel oxide thin films obtained from precursor pastes with different compositions, J. Electrochem. Soc., 164, 1, 10.1149/2.0051704jes
Awais, 2011, Application of a novel microwave plasma treatment for the sintering of nickel oxide coatings for use in dye-sensitized solar cells, Surf. Coat. Technol., 205, S245, 10.1016/j.surfcoat.2011.01.020
Qin, 2008, Design of an organic chromophore for p-type dye-sensitized solar cells, J. Am. Chem. Soc., 130, 8570, 10.1021/ja8001474
Odobel, 2012, Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells, Coord. Chem. Rev., 256, 2414, 10.1016/j.ccr.2012.04.017
Bonomo, 2016, Beneficial effect of electron-withdrawing groups on the sensitizing action of squaraines for p-type dye-sensitized solar cells, J. Phys. Chem. C, 120, 16340, 10.1021/acs.jpcc.6b03965
Gibson, 2013, Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering, Phys. Chem. Chem. Phys., 15, 2411, 10.1039/c2cp43592f
Bonomo, 2016, Adsorption behavior of I3−and I−Ions at a nanoporous NiO/acetonitrile interface studied by X-ray photoelectron spectroscopy, Langmuir, 32, 11540, 10.1021/acs.langmuir.6b03695
Marrani, 2014, Probing the redox states at the surface of electroactive nanoporous NiO thin films, ACS Appl. Mater. Interfaces, 6, 143, 10.1021/am403671h
Awais, 2014, Fabrication of efficient NiO photocathodes prepared via RDS with novel routes of substrate processing for p-type dye-sensitized solar cells, ChemElectroChem, 1, 384, 10.1002/celc.201300178
McConnell, 2002, High pressure diamond and diamond-like carbon deposition using a microwave CAP reactor, Diam. Relat. Mater., 11, 1036, 10.1016/S0925-9635(01)00637-9
Scofield, 1976, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487eV, J. Electron. Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1
Powell, 2010
Tanuma, 1991, Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000eV range, Surf. Interface Anal., 17, 927, 10.1002/sia.740171305
Boschloo, 2001, Spectroelectrochemistry of nanostructured NiO, J. Phys. Chem. B, 105, 3039, 10.1021/jp003499s
Passerini, 1993, Thin metal oxide films on transparent substrates for Li-insertion devices, J. Appl. Electrochem., 23, 1187, 10.1007/BF00625594
Passerini, 1994, Characterization of nonstoichiometric nickel oxide thin-film electrodes, J. Electrochem. Soc., 141, 889, 10.1149/1.2054853
Dini, 1998, Stress in thin films of metal oxide electrodes for intercalation reactions, Electrochim. Acta, 43, 2919, 10.1016/S0013-4686(98)00032-2
Wehrens-Dijksma, 2006, Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes, Electrochim. Acta, 51, 3609, 10.1016/j.electacta.2005.10.022
Beverskog, 1997, Revised Pourbaix diagrams for nickel at 25–300°C, Corros. Sci., 39, 969, 10.1016/S0010-938X(97)00002-4
Awais, 2013, Spray-deposited NiOx films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells, J. Appl. Electrochem., 43, 191, 10.1007/s10800-012-0506-1
Dini, 2015, The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells, Coord. Chem. Rev., 304–305, 179, 10.1016/j.ccr.2015.03.020
Wood, 2016, A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion, Phys. Chem. Chem. Phys., 18, 10727, 10.1039/C5CP05326A
Novelli, 2015, Electrochemical characterization of rapid discharge sintering (RDS) NiO cathodes for dye-sensitized solar cells of p-type, Am. J. Anal. Chem., 6, 176, 10.4236/ajac.2015.62016
Hagfeldt, 2010, Dye-sensitized solar cells, Chem. Rev., 110, 6595, 10.1021/cr900356p
Van Elp, 1992, Electronic structure of Li-doped NiO, Phys. Rev. B, 45, 1612, 10.1103/PhysRevB.45.1612
Alders, 1996, Nonlocal screening effects in 2p x-ray photoemission spectroscopy of NiO (100), Phys. Rev. B, 54, 7716, 10.1103/PhysRevB.54.7716
Grosvenor, 2006, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci., 600, 1771, 10.1016/j.susc.2006.01.041
Biesinger, 2009, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surf. Interface Anal., 41, 324, 10.1002/sia.3026
Soriano, 2007, Surface effects in the Ni 2p x-ray photoemission spectra of NiO, Phys. Rev. B – Condens. Matter Mater. Phys., 75, 1, 10.1103/PhysRevB.75.233417
Preda, 2012, Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG, Surf. Sci., 606, 1426, 10.1016/j.susc.2012.05.005
Mossanek, 2011, Investigation of surface and non-local screening effects in the Ni 2p core level photoemission spectra of NiO, Chem. Phys. Lett., 501, 437, 10.1016/j.cplett.2010.11.050
Van Veenendaal, 1993, Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds, Phys. Rev. Lett., 70, 2459, 10.1103/PhysRevLett.70.2459
Biju, 2002, Electronic structure of nanostructured nickel oxide using Ni 2p XPS analysis, J. Nanopart. Res., 4, 247, 10.1023/A:1019949805751
Peck, 2012, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS, Chem. Mater., 24, 4483, 10.1021/cm300739y
D’Addato, 2011, Structure and stability of nickel/nickel oxide core-shell nanoparticles, J. Phys. Condens. Matter., 23, 175003, 10.1088/0953-8984/23/17/175003
Kuiper, 1989, Character of holes in LixNi1-xO and their magnetic behavior, Phys. Rev. Lett., 62, 221, 10.1103/PhysRevLett.62.221
Dupin, 2000, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys Chem. Chem. Phys., 2, 1319, 10.1039/a908800h
Uhlenbrock, 1992, The influence of defects on the Ni 2p and 0 1s XPS of NiO, J. Phys. Condens. Matter., 4, 7973, 10.1088/0953-8984/4/40/009
McKay, 1985, Surface electronic structure of NiO: defect states, O2 and H2O interactions, Phys. Rev. B, 32, 6764, 10.1103/PhysRevB.32.6764
Eskes, 1991, Doping dependence of high-energy spectral weights for the high-Tc cuprates, Phys. Rev. B., 43, 119, 10.1103/PhysRevB.43.119
Thorn, 1985, States determined by photoelectron spectroscopy in the perchlorate and perrhenate of TMTSF, J. Phys. C Solid State Phys, 18, 5501, 10.1088/0022-3719/18/28/019
Nefedov, 1977, A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy, J. Electron Spectros Relat. Phenom., 10, 121, 10.1016/0368-2048(77)85010-X