Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

Applied Surface Science - Tập 403 - Trang 441-447 - 2017
Matteo Bonomo1, Andrea Giacomo Marrani1, Vittoria Novelli1, Muhammad Awais2,3, Denis P. Dowling3,4, Johannes G. Vos5, Danilo Dini1,3
1Department of Chemistry, University of Rome, “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
2Department of Industrial Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
3Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4, Ireland
4School of Mechanical and Materials Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
5School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9, Ireland

Tài liệu tham khảo

Adler, 1970, Electrical and optical properties of narrow-band materials, Phys. Rev. B, 2, 3112, 10.1103/PhysRevB.2.3112 Lang, 2010, Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon, J. Solid State Electrochem., 14, 1533, 10.1007/s10008-009-0984-1 Decker, 1992, The electrochromic process in non-stoichiometric nickel oxide thin film electrodes, Electrochim. Acta, 37, 1033, 10.1016/0013-4686(92)85220-F Estrada, 1991, Infrared reflectance spectroscopy of electrochromic NiOxHy films made by reactive dc sputtering, J. Mater. Res., 6, 1715, 10.1557/JMR.1991.1715 Tong, 2012, Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device, Energy Environ. Sci., 5, 9472, 10.1039/c2ee22866a Li, 2012, Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun., 48, 988, 10.1039/C2CC16101J Li, 2010, Double-layered NiO photocathodes for p-type DSSCs with record IPCE, Adv. Mater., 22, 1759, 10.1002/adma.200903151 Nattestad, 2010, Highly efficient photocathodes for dye-sensitized tandem solar cells, Nat. Mater., 9, 31, 10.1038/nmat2588 Bonomo, 2016, Nanostructured p-type semiconductor electrodes and photoelectrochemistry of their reduction processes, Energies, 9, 373, 10.3390/en9050373 Cavallo, 2017, Nanostructured semiconductor materials for dye-sensitized solar cells, J. Nanomater., 2017 Irwin, 2008, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci., 105, 2783, 10.1073/pnas.0711990105 Hüfner, 1994, Electronic structure of NiO and related 3d-transition-metal compounds, Adv. Phys., 43, 183, 10.1080/00018739400101495 O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737, 10.1038/353737a0 He, 2000, Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode, Sol. Energy Mater. Sol. Cells, 62, 265, 10.1016/S0927-0248(99)00168-3 Sumikura, 2008, Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 199, 1, 10.1016/j.jphotochem.2008.04.007 Powar, 2012, Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(ii) oxide microballs, Energy Environ. Sci., 5, 8896, 10.1039/c2ee22127f Bonomo, 2017, Electrochemical and photoelectrochemical properties of screen-Printed nickel oxide thin films obtained from precursor pastes with different compositions, J. Electrochem. Soc., 164, 1, 10.1149/2.0051704jes Awais, 2011, Application of a novel microwave plasma treatment for the sintering of nickel oxide coatings for use in dye-sensitized solar cells, Surf. Coat. Technol., 205, S245, 10.1016/j.surfcoat.2011.01.020 Qin, 2008, Design of an organic chromophore for p-type dye-sensitized solar cells, J. Am. Chem. Soc., 130, 8570, 10.1021/ja8001474 Odobel, 2012, Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells, Coord. Chem. Rev., 256, 2414, 10.1016/j.ccr.2012.04.017 Bonomo, 2016, Beneficial effect of electron-withdrawing groups on the sensitizing action of squaraines for p-type dye-sensitized solar cells, J. Phys. Chem. C, 120, 16340, 10.1021/acs.jpcc.6b03965 Gibson, 2013, Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering, Phys. Chem. Chem. Phys., 15, 2411, 10.1039/c2cp43592f Bonomo, 2016, Adsorption behavior of I3−and I−Ions at a nanoporous NiO/acetonitrile interface studied by X-ray photoelectron spectroscopy, Langmuir, 32, 11540, 10.1021/acs.langmuir.6b03695 Marrani, 2014, Probing the redox states at the surface of electroactive nanoporous NiO thin films, ACS Appl. Mater. Interfaces, 6, 143, 10.1021/am403671h Awais, 2014, Fabrication of efficient NiO photocathodes prepared via RDS with novel routes of substrate processing for p-type dye-sensitized solar cells, ChemElectroChem, 1, 384, 10.1002/celc.201300178 McConnell, 2002, High pressure diamond and diamond-like carbon deposition using a microwave CAP reactor, Diam. Relat. Mater., 11, 1036, 10.1016/S0925-9635(01)00637-9 Scofield, 1976, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487eV, J. Electron. Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1 Powell, 2010 Tanuma, 1991, Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000eV range, Surf. Interface Anal., 17, 927, 10.1002/sia.740171305 Boschloo, 2001, Spectroelectrochemistry of nanostructured NiO, J. Phys. Chem. B, 105, 3039, 10.1021/jp003499s Passerini, 1993, Thin metal oxide films on transparent substrates for Li-insertion devices, J. Appl. Electrochem., 23, 1187, 10.1007/BF00625594 Passerini, 1994, Characterization of nonstoichiometric nickel oxide thin-film electrodes, J. Electrochem. Soc., 141, 889, 10.1149/1.2054853 Dini, 1998, Stress in thin films of metal oxide electrodes for intercalation reactions, Electrochim. Acta, 43, 2919, 10.1016/S0013-4686(98)00032-2 Wehrens-Dijksma, 2006, Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes, Electrochim. Acta, 51, 3609, 10.1016/j.electacta.2005.10.022 Beverskog, 1997, Revised Pourbaix diagrams for nickel at 25–300°C, Corros. Sci., 39, 969, 10.1016/S0010-938X(97)00002-4 Awais, 2013, Spray-deposited NiOx films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells, J. Appl. Electrochem., 43, 191, 10.1007/s10800-012-0506-1 Dini, 2015, The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells, Coord. Chem. Rev., 304–305, 179, 10.1016/j.ccr.2015.03.020 Wood, 2016, A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion, Phys. Chem. Chem. Phys., 18, 10727, 10.1039/C5CP05326A Novelli, 2015, Electrochemical characterization of rapid discharge sintering (RDS) NiO cathodes for dye-sensitized solar cells of p-type, Am. J. Anal. Chem., 6, 176, 10.4236/ajac.2015.62016 Hagfeldt, 2010, Dye-sensitized solar cells, Chem. Rev., 110, 6595, 10.1021/cr900356p Van Elp, 1992, Electronic structure of Li-doped NiO, Phys. Rev. B, 45, 1612, 10.1103/PhysRevB.45.1612 Alders, 1996, Nonlocal screening effects in 2p x-ray photoemission spectroscopy of NiO (100), Phys. Rev. B, 54, 7716, 10.1103/PhysRevB.54.7716 Grosvenor, 2006, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci., 600, 1771, 10.1016/j.susc.2006.01.041 Biesinger, 2009, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surf. Interface Anal., 41, 324, 10.1002/sia.3026 Soriano, 2007, Surface effects in the Ni 2p x-ray photoemission spectra of NiO, Phys. Rev. B – Condens. Matter Mater. Phys., 75, 1, 10.1103/PhysRevB.75.233417 Preda, 2012, Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG, Surf. Sci., 606, 1426, 10.1016/j.susc.2012.05.005 Mossanek, 2011, Investigation of surface and non-local screening effects in the Ni 2p core level photoemission spectra of NiO, Chem. Phys. Lett., 501, 437, 10.1016/j.cplett.2010.11.050 Van Veenendaal, 1993, Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds, Phys. Rev. Lett., 70, 2459, 10.1103/PhysRevLett.70.2459 Biju, 2002, Electronic structure of nanostructured nickel oxide using Ni 2p XPS analysis, J. Nanopart. Res., 4, 247, 10.1023/A:1019949805751 Peck, 2012, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS, Chem. Mater., 24, 4483, 10.1021/cm300739y D’Addato, 2011, Structure and stability of nickel/nickel oxide core-shell nanoparticles, J. Phys. Condens. Matter., 23, 175003, 10.1088/0953-8984/23/17/175003 Kuiper, 1989, Character of holes in LixNi1-xO and their magnetic behavior, Phys. Rev. Lett., 62, 221, 10.1103/PhysRevLett.62.221 Dupin, 2000, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys Chem. Chem. Phys., 2, 1319, 10.1039/a908800h Uhlenbrock, 1992, The influence of defects on the Ni 2p and 0 1s XPS of NiO, J. Phys. Condens. Matter., 4, 7973, 10.1088/0953-8984/4/40/009 McKay, 1985, Surface electronic structure of NiO: defect states, O2 and H2O interactions, Phys. Rev. B, 32, 6764, 10.1103/PhysRevB.32.6764 Eskes, 1991, Doping dependence of high-energy spectral weights for the high-Tc cuprates, Phys. Rev. B., 43, 119, 10.1103/PhysRevB.43.119 Thorn, 1985, States determined by photoelectron spectroscopy in the perchlorate and perrhenate of TMTSF, J. Phys. C Solid State Phys, 18, 5501, 10.1088/0022-3719/18/28/019 Nefedov, 1977, A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy, J. Electron Spectros Relat. Phenom., 10, 121, 10.1016/0368-2048(77)85010-X