In operando XAFS experiments on flexible electrochromic devices based on Fe(II)-metallo-supramolecular polyelectrolytes and vanadium oxide

Solar Energy Materials and Solar Cells - Tập 147 - Trang 61-67 - 2016
Marco Schott1,2, Wojciech Szczerba3,4, Uwe Posset1, Angela Šurca Vuk5, Matthias Beck2, Heinrich Riesemeier3, Andreas F. Thünemann3, Dirk G. Kurth2
1Fraunhofer-Institut für Silicatforschung (ISC), Neunerplatz 2, D-97082 Würzburg, Germany
2Julius-Maximilians-Universität Würzburg, Chemische Technologie der Materialsyntheseó, Röntgenring 11, D-97070 Würzburg, Germany
3BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
4AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology (ACMiN), Al. Mickiewicza 30, 30-059 Krakow, Poland
5National Institute of Chemistry, Hajdrihova 19, Sl-1000 Ljubljana, Slovenia

Tài liệu tham khảo

Monk, 2007 Granqvist, 1995 Mortimer, 2011, Electrochromic materials, Annu. Rev. Mater. Res., 41, 241, 10.1146/annurev-matsci-062910-100344 Higuchi, 2014, Stimuli-responsive metallo-supramolecular polymer films: design, synthesis and device fabrication, J. Mater. Chem. C, 2, 9331, 10.1039/C4TC00689E Hu, 2014, Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency, ACS Appl. Mater. Interfaces, 6, 9118, 10.1021/am5010859 Hossain, 2013, A green copper-based metallo-supramolecular polymer: synthesis, structure, and electrochromic properties, Chem. Asian J., 8, 76, 10.1002/asia.201200668 Hu, 2013, Multi-colour electrochromic properties of Fe/Ru-based bimetallo-supramolecular polymers, J. Mater. Chem. C, 1, 3408, 10.1039/c3tc30440j Schott, 2014, State-of-the-art electrochromic materials based on metallo-supramolecular polymers, Sol. Energy Mater. Sol. Cells, 126, 68, 10.1016/j.solmat.2014.03.032 Schott, 2015, Fabricating electrochromic thin films based on metallo-polymers using layer-by-layer self-assembly: an attractive laboratory experiment, J. Chem. Educ., 92, 364, 10.1021/ed5002174 Schott, 2014, Detailed study of layer-by-layer self-assembled and dip-coated electrochromic thin films based on metallo-supramolecular polymers, Langmuir, 30, 10721, 10.1021/la501590a Niklasson, 2007, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem., 17, 127, 10.1039/B612174H Granqvist, 2000, Electrochromic tungsten oxide films: review of progress 1993–1998, Sol. Energy Mater. Sol. Cells, 60, 201, 10.1016/S0927-0248(99)00088-4 Conell, 1992, The electrochromic properties of sputtered nickel oxide films, Sol. Energy Mater. Sol. Cells, 25, 301, 10.1016/0927-0248(92)90075-Z Yoshimura, 1995, Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering, Jpn. J. Appl. Phys., 34, 2440, 10.1143/JJAP.34.2440 Han, 2008, Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties, J. Am. Chem. Soc., 130, 2073, 10.1021/ja710380a Han, 2007, Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials, Adv. Mater., 19, 3928, 10.1002/adma.200700931 Bunker, 2010 Hajzeri, 2012, Sol–gel vanadium oxide thin films for a flexible electronically conductive polymeric substrate, Sol. Energy Mater. Sol. Cells, 99, 62, 10.1016/j.solmat.2011.03.041 Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719 Newville, 2001, IFEFFIT: interactive XAFS analysis and FEFF fitting, J. Synchrotron Radiat., 8, 322, 10.1107/S0909049500016964 Šurca, 1999, Ex situ and in situ infrared spectroelectrochemical investigations of V2O5 crystalline films, J. Electrochem. Soc., 146, 232, 10.1149/1.1391592 Cogan, 1989, Optical properties of electrochromic vanadium pentoxide, J. Appl. Phys., 66, 1333, 10.1063/1.344432 Biesinger, 2010, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887, 10.1016/j.apsusc.2010.07.086 Barbero, 2003, XPS studies for vanadium pentoxide along the catalytic bed: oxidative dehydrogenation of propane, Appl. Catal. A: Gen., 246, 237, 10.1016/S0926-860X(03)00025-5 Benayad, 2006, XPS investigations achieved on the first cycle of V2O5 thin films used in lithium microbatteries, J. Electron Spectrosc. Relat. Phenom., 150, 1, 10.1016/j.elspec.2005.09.001 Zhang, 2014, Anion effects to electrochromic properties of Ru-based metallo-supramolecular polymers, J. Photopolym. Sci. Technol., 27, 297, 10.2494/photopolymer.27.297 Szczerba, 2014, Thermally induced structural rearrangement of the Fe(II) coordination geometry in metallo-supramolecular polyelectrolytes, Phys. Chem. Chem Phys., 16, 19694, 10.1039/C4CP01187B