Electrochromic behavior of fluorine-doped tin oxide film via guided motion of Li ions

Journal of Alloys and Compounds - Tập 771 - Trang 100-105 - 2019
Dong Wang1, Lin Wei2, Peng Shi1, Yanxue Chen1, Shishen Yan1, Yufeng Tian1, Jun Jiao3
1School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2School of Microelectronics, Shandong University, Jinan, 250100, China
3Department of Mechanical and Materials Engineering, Portland State University, Post Office Box 751, Portland, OR 97207-0751, USA

Tài liệu tham khảo

Granqvist, 1995 Richardson, 2003, New electrochromic mirror systems, Solid State Ionics, 165, 305, 10.1016/j.ssi.2003.08.047 Bouessay, 2005, Electrochromic degradation in nickel oxide thin film: a self-discharge and dissolution phenomenon, Electrochim. Acta, 50, 3737, 10.1016/j.electacta.2005.01.020 Bechinger, 1996, Photoelectrochromic windows and displays, Nature, 383, 608, 10.1038/383608a0 Cummins, 2000, Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films, J. Phys. Chem. B, 104, 11449, 10.1021/jp001763b Kraft, 2009, Properties, performance and current status of the laminated electrochromic glass of Gesimat, Sol. Energy Mater. Sol. Cells, 93, 2088, 10.1016/j.solmat.2009.05.010 Lampert, 2003, Large-area smart glass and integrated photovoltaics, Sol. Energy Mater. Sol. Cells, 76, 489, 10.1016/S0927-0248(02)00259-3 Lampert, 2002, Electrochromics-history, current status and potential, Glass Sci. Technol., 75, 244 Bange, 1990, Electrochromic materials for optical switching devices, Adv. Mater., 2, 10, 10.1002/adma.19900020103 Ahn, 2003, Bleached state transmittance in charge-unbalanced all-solid-state electrochromic devices, Appl. Phys. Lett., 82, 3379, 10.1063/1.1575927 Mahmoud, 2002, Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis, Phys. B, 311, 366, 10.1016/S0921-4526(01)01024-9 Deb, 1969, A novel electrophotographic system, Appl. Optic., 8, 192, 10.1364/AO.8.S1.000192 Argazzi, 2004, Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors, Coord. Chem. Rev., 248, 1299, 10.1016/j.ccr.2004.03.026 Lee, 2006, Crystalline WO3 nanoparticles for highly improved electrochromic applications, Adv. Mater., 18, 763, 10.1002/adma.200501953 Burkhardt, 2018, In-situ monitoring of lateral hydrogen diffusion in amorphous and polycrystalline WO3 thin films, Adv. Mater. Interfaces, 5, 1701587, 10.1002/admi.201701587 Chandrasekhar, 2002, Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices, Adv. Funct. Mater., 12, 95, 10.1002/1616-3028(20020201)12:2<95::AID-ADFM95>3.0.CO;2-N Fungo, 2003, Plastic electrochromic devices: electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer, Chem. Mater., 15, 1264, 10.1021/cm0210445 Argun, 2003, The first truly all-polymer electrochromic devices, Adv. Mater., 15, 1338, 10.1002/adma.200305038 Zhang, 2018, Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance, Mater. Horiz., 5, 291, 10.1039/C7MH01128H Yun, 2017, Photoresponsive smart coloration electrochromic supercapacitor, Adv. Mater., 29, 1606728, 10.1002/adma.201606728 Wang, 2018, Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window, Nanoscale, 10, 8162, 10.1039/C8NR00790J Kim, 2015, Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance, Nano Lett., 15, 5574, 10.1021/acs.nanolett.5b02197 Heo, 2017, Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods, Nano Lett., 17, 5756, 10.1021/acs.nanolett.7b02730 Mandal, 2018, Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management, Adv. Funct. Mater., 10.1002/adfm.201802180 Lin, 2018, Thermochromic halide perovskite solar cells, Nat. Mater., 17, 261, 10.1038/s41563-017-0006-0 Wheeler, 2017, Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide, Nat. Commun., 8, 1722, 10.1038/s41467-017-01842-4 Cinnsealach, 1999, Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores, Sol. Energy Mater. Sol. Cells, 57, 107, 10.1016/S0927-0248(98)00156-1 Marguerettaz, 1994, Heterodyads: electron transfer at a semiconductor electrode-liquid electrolyte interface modified by an adsorbed spacer-acceptor complex, J. Am. Chem. Soc., 116, 2629, 10.1021/ja00085a057 Joint Committee on Powder Diffraction Standards (JCPDS), card No. 77-0450. Diéguez, 2001, The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys., 90, 1550, 10.1063/1.1385573 Huang, 2010, In-situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 330, 1515, 10.1126/science.1195628 Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1