At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019
Tài liệu tham khảo
Alcántara, 2003, “Key” sectors in final energy consumption: an input–output application to the Spanish case, Energy Policy, 31, 1673, 10.1016/S0301-4215(02)00233-1
Alcántara, 1995, Energy and CO2 emissions in Spain: methodology of analysis and some results for 1980–1990, Energy Econ., 17, 221, 10.1016/0140-9883(95)00014-L
Aldao, 2019, Energías renovables y economía verde: la inversión en protección ambiental en el sector eléctrico, RAITES, 5
Averyt, 2011
Bello, 2018, The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: the role of hydropower in an emerging economy, J. Environ. Manag., 219, 218, 10.1016/j.jenvman.2018.04.101
Berger, 2015, Saving the planet’s climate or water resources? The trade-off between carbon and water footprints of European biofuels, Sustainability, 7, 6665, 10.3390/su7066665
Bonamente, 2016, Environmental impact of an Italian wine bottle: carbon and water footprint assessment, Sci. Total Environ., 560, 274, 10.1016/j.scitotenv.2016.04.026
Byers, 2014, Electricity generation and cooling water use: UK pathways to 2050, Glob. Environ. Chang., 25, 16, 10.1016/j.gloenvcha.2014.01.005
Chen, 2020, Tradeoffs in water and carbon footprints of shale gas, natural gas, and coal in China, Fuel, 263, 10.1016/j.fuel.2019.116778
Chini, 2018, Virtual water transfers of the US electric grid, Nat. Energy, 3, 1115, 10.1038/s41560-018-0266-1
DeNooyer, 2016, Integrating water resources and power generation: the energy–water nexus in Illinois, Appl. Energy, 162, 363, 10.1016/j.apenergy.2015.10.071
EEA (European Energy Agency)
Ferng, 2003, Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit, Ecol. Econ., 46, 121, 10.1016/S0921-8009(03)00104-6
Francke, 2013, Carbon and water footprint analysis of a soap bar produced in Brazil by Natura cosmetics, Water Resour. Ind., 1, 37, 10.1016/j.wri.2013.03.003
Galli, 2012, Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet, Ecol. Indic., 16, 100, 10.1016/j.ecolind.2011.06.017
Gupta, 2021, An integrated assessment framework for the decarbonization of the electricity generation sector, Appl. Energy, 288, 10.1016/j.apenergy.2021.116634
Hamiche, 2016, A review of the water-energy nexus, Renew. Sust. Energ. Rev., 65, 319, 10.1016/j.rser.2016.07.020
Hardy, 2010
Hardy, 2012, Evaluation of Spain's water-energy nexus, Int. J. Water Resour. Dev., 28, 151, 10.1080/07900627.2012.642240
Hoekstra, 2011
Hussey, 2012, The energy–water nexus: managing the links between energy and water for a sustainable future, Ecol. Soc., 17, 10.5751/ES-04641-170131
IEA
IEA
IEA
IEA (International Energy Agency)
IEAE (International Atomic Energy Agency)
IPCC, 2014
Kanakoudis, 2011, Carbon and water footprints in the urban water supply chain: Two neglected parts of the full water services cost focusing on the water losses, 823
Kenny, 2009
Lenzen, 1998, Primary energy and greenhouse gases embodied in Australian final consumption: an input–output analysis, Energy Policy, 26, 495, 10.1016/S0301-4215(98)00012-3
Liu, 2021, Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 C target, Commun. Earth Environ., 2, 1, 10.1038/s43247-021-00097-8
López-Peña, 2011, Análisis retrospectivo de la eficiencia de la promoción de las renovables y del ahorro energético para la reducción de emisiones de CO2 en España, Informacion Comercial Espanola-Revista de Economia, 862, 19
Macknick, 2012, Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature, Environ. Res. Lett., 7, 10.1088/1748-9326/7/4/045802
Matthews, 2008, The importance of carbon footprint estimation boundaries, Environ. Sci. Technol., 42, 5839, 10.1021/es703112w
Mekonnen, 2012, The blue water footprint of electricity from hydropower, Hydrol. Earth Syst. Sci., 16, 179, 10.5194/hess-16-179-2012
Mekonnen, 2015, The consumptive water footprint of electricity and heat: a global assessment, Environ. Sci. Water Res. Technol., 1, 285, 10.1039/C5EW00026B
Mekonnen, 2016, Future electricity: the challenge of reducing both carbon and water footprint, Sci. Total Environ., 569, 1282, 10.1016/j.scitotenv.2016.06.204
MITERD (various years). Registro Estatal de Emisiones y Fuentes Contaminantes. Available at http://www.prtr-es.es/ (Accessed 29 June 2021).
OECD/IEA, 2016
Page, 2012, Carbon and water footprint tradeoffs in fresh tomato production, J. Clean. Prod., 32, 219, 10.1016/j.jclepro.2012.03.036
Peer, 2021, Historical values of water and carbon intensity of global electricity production, Environ. Res. Infrastruct. Sustain., 10.1088/2634-4505/ac0a94
Piłatowska, 2020, The effect of renewable and nuclear energy consumption on decoupling economic growth from CO2 emissions in Spain, Energies, 13, 2124, 10.3390/en13092124
Qian, 2021, Carbon footprint and water footprint assessment of virgin and recycled polyester textiles, Text. Res. J., 10.1177/00405175211006213
REE (Red Eléctrica España) (various years). Informe del Sistema Eléctrico. Available at https://www.ree.es/es (Accessed 29 June 2021).
REE (Red Eléctrica España)
Rinaldi, 2016, Water and carbon footprint of wine: methodology review and application to a case study, Sustainability, 8, 621, 10.3390/su8070621
Ritchie
Sánchez, 2011, Análisis económico y medioambiental del sector eléctrico en España, Estudios de Economía Aplicada, 29, 493
Sanders, 2015, Critical review: uncharted waters? The future of the electricity-water nexus, Environ. Sci. Technol., 49, 51, 10.1021/es504293b
Santamaría, 2011, Costes de reducción de CO2 en la industria española
Sesma Martin, 2019, The weak data on the water–energy nexus in Spain, Water Policy, 21, 382, 10.2166/wp.2019.081
Sesma-Martín, 2019, The river’s light: water needs for thermoelectric power generation in the Ebro River Basin, 1969–2015, Water, 11, 441, 10.3390/w11030441
Shaikh, 2017, A framework for water and carbon footprint analysis of national electricity production scenarios, Energy, 139, 406, 10.1016/j.energy.2017.07.124
Sharifzadeh, 2019, China’s roadmap to low-carbon electricity and water: disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage, Appl. Energy, 235, 31, 10.1016/j.apenergy.2018.10.087
Siddik, 2020, Water and carbon footprints of electricity are sensitive to geographical attribution methods, Environ. Sci. Technol., 54, 7533, 10.1021/acs.est.0c00176
Sovacool, 2009, Identifying future electricity–water tradeoffs in the United States, Energy Policy, 37, 2763, 10.1016/j.enpol.2009.03.012
Tarancon, 2007, CO2 emissions and intersectoral linkages. The case of Spain, Energy Policy, 35, 1100, 10.1016/j.enpol.2006.01.018
Tarancón Morán, 2007, Centrales eléctricas y emisiones de CO2 en España: identificación de las transacciones y sectores estructuralmente responsables
Terrapon-Pfaff, 2020, Water demand scenarios for electricity generation at the global and regional levels, Water, 12, 2482, 10.3390/w12092482
UNESA (various years). Memoria Estadística Eléctrica 1971-2015. Madrid. UNESA.
Vaca-Jiménez, 2019, Water-electricity nexus in Ecuador: the dynamics of the electricity’s blue water footprint, Sci. Total Environ., 696, 10.1016/j.scitotenv.2019.133959
Van Vliet, 2012, Vulnerability of US and European electricity supply to climate change, Nat. Clim. Chang., 2, 676, 10.1038/nclimate1546
Wackernagel, 1998, vol. 9
Webber, 2016, One. Healthy, wealthy, and free, 1
Zhang, 2014, Water− carbon trade-off in China’s coal power industry, Environ. Sci. Technol., 48, 11082, 10.1021/es5026454