At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019

Ecological Economics - Tập 195 - Trang 107363 - 2022
Sara Cano-Rodríguez1, Mar Rubio-Varas1, Diego Sesma-Martín1,2
1Institute for Advanced Research in Business and Economics (INARBE), Public University of Naverre (UPNA), Jerónimo de Ayanz Centre, Arrosadia Campus, 31006 Pamplona, Spain
2Department of Economics and Business, University of La Rioja, Quintiliano Building, 26004 Logroño, Spain

Tài liệu tham khảo

Alcántara, 2003, “Key” sectors in final energy consumption: an input–output application to the Spanish case, Energy Policy, 31, 1673, 10.1016/S0301-4215(02)00233-1

Alcántara, 1995, Energy and CO2 emissions in Spain: methodology of analysis and some results for 1980–1990, Energy Econ., 17, 221, 10.1016/0140-9883(95)00014-L

Aldao, 2019, Energías renovables y economía verde: la inversión en protección ambiental en el sector eléctrico, RAITES, 5

Averyt, 2011

Bello, 2018, The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: the role of hydropower in an emerging economy, J. Environ. Manag., 219, 218, 10.1016/j.jenvman.2018.04.101

Berger, 2015, Saving the planet’s climate or water resources? The trade-off between carbon and water footprints of European biofuels, Sustainability, 7, 6665, 10.3390/su7066665

Bonamente, 2016, Environmental impact of an Italian wine bottle: carbon and water footprint assessment, Sci. Total Environ., 560, 274, 10.1016/j.scitotenv.2016.04.026

Byers, 2014, Electricity generation and cooling water use: UK pathways to 2050, Glob. Environ. Chang., 25, 16, 10.1016/j.gloenvcha.2014.01.005

Chen, 2020, Tradeoffs in water and carbon footprints of shale gas, natural gas, and coal in China, Fuel, 263, 10.1016/j.fuel.2019.116778

Chini, 2018, Virtual water transfers of the US electric grid, Nat. Energy, 3, 1115, 10.1038/s41560-018-0266-1

DeNooyer, 2016, Integrating water resources and power generation: the energy–water nexus in Illinois, Appl. Energy, 162, 363, 10.1016/j.apenergy.2015.10.071

EEA (European Energy Agency)

Ferng, 2003, Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit, Ecol. Econ., 46, 121, 10.1016/S0921-8009(03)00104-6

Francke, 2013, Carbon and water footprint analysis of a soap bar produced in Brazil by Natura cosmetics, Water Resour. Ind., 1, 37, 10.1016/j.wri.2013.03.003

Galli, 2012, Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet, Ecol. Indic., 16, 100, 10.1016/j.ecolind.2011.06.017

Gupta, 2021, An integrated assessment framework for the decarbonization of the electricity generation sector, Appl. Energy, 288, 10.1016/j.apenergy.2021.116634

Hamiche, 2016, A review of the water-energy nexus, Renew. Sust. Energ. Rev., 65, 319, 10.1016/j.rser.2016.07.020

Hardy, 2010

Hardy, 2012, Evaluation of Spain's water-energy nexus, Int. J. Water Resour. Dev., 28, 151, 10.1080/07900627.2012.642240

Hoekstra, 2011

Hussey, 2012, The energy–water nexus: managing the links between energy and water for a sustainable future, Ecol. Soc., 17, 10.5751/ES-04641-170131

IEA

IEA

IEA

IEA (International Energy Agency)

IEAE (International Atomic Energy Agency)

IPCC, 2014

Kanakoudis, 2011, Carbon and water footprints in the urban water supply chain: Two neglected parts of the full water services cost focusing on the water losses, 823

Kenny, 2009

Lenzen, 1998, Primary energy and greenhouse gases embodied in Australian final consumption: an input–output analysis, Energy Policy, 26, 495, 10.1016/S0301-4215(98)00012-3

Liu, 2021, Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 C target, Commun. Earth Environ., 2, 1, 10.1038/s43247-021-00097-8

López-Peña, 2011, Análisis retrospectivo de la eficiencia de la promoción de las renovables y del ahorro energético para la reducción de emisiones de CO2 en España, Informacion Comercial Espanola-Revista de Economia, 862, 19

Macknick, 2012, Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature, Environ. Res. Lett., 7, 10.1088/1748-9326/7/4/045802

Matthews, 2008, The importance of carbon footprint estimation boundaries, Environ. Sci. Technol., 42, 5839, 10.1021/es703112w

Mekonnen, 2012, The blue water footprint of electricity from hydropower, Hydrol. Earth Syst. Sci., 16, 179, 10.5194/hess-16-179-2012

Mekonnen, 2015, The consumptive water footprint of electricity and heat: a global assessment, Environ. Sci. Water Res. Technol., 1, 285, 10.1039/C5EW00026B

Mekonnen, 2016, Future electricity: the challenge of reducing both carbon and water footprint, Sci. Total Environ., 569, 1282, 10.1016/j.scitotenv.2016.06.204

MITERD (various years). Registro Estatal de Emisiones y Fuentes Contaminantes. Available at http://www.prtr-es.es/ (Accessed 29 June 2021).

OECD/IEA, 2016

Page, 2012, Carbon and water footprint tradeoffs in fresh tomato production, J. Clean. Prod., 32, 219, 10.1016/j.jclepro.2012.03.036

Peer, 2021, Historical values of water and carbon intensity of global electricity production, Environ. Res. Infrastruct. Sustain., 10.1088/2634-4505/ac0a94

Piłatowska, 2020, The effect of renewable and nuclear energy consumption on decoupling economic growth from CO2 emissions in Spain, Energies, 13, 2124, 10.3390/en13092124

Qian, 2021, Carbon footprint and water footprint assessment of virgin and recycled polyester textiles, Text. Res. J., 10.1177/00405175211006213

REE (Red Eléctrica España) (various years). Informe del Sistema Eléctrico. Available at https://www.ree.es/es (Accessed 29 June 2021).

REE (Red Eléctrica España)

Rinaldi, 2016, Water and carbon footprint of wine: methodology review and application to a case study, Sustainability, 8, 621, 10.3390/su8070621

Ritchie

Sánchez, 2011, Análisis económico y medioambiental del sector eléctrico en España, Estudios de Economía Aplicada, 29, 493

Sanders, 2015, Critical review: uncharted waters? The future of the electricity-water nexus, Environ. Sci. Technol., 49, 51, 10.1021/es504293b

Santamaría, 2011, Costes de reducción de CO2 en la industria española

Sesma Martin, 2019, The weak data on the water–energy nexus in Spain, Water Policy, 21, 382, 10.2166/wp.2019.081

Sesma-Martín, 2019, The river’s light: water needs for thermoelectric power generation in the Ebro River Basin, 1969–2015, Water, 11, 441, 10.3390/w11030441

Shaikh, 2017, A framework for water and carbon footprint analysis of national electricity production scenarios, Energy, 139, 406, 10.1016/j.energy.2017.07.124

Sharifzadeh, 2019, China’s roadmap to low-carbon electricity and water: disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage, Appl. Energy, 235, 31, 10.1016/j.apenergy.2018.10.087

Siddik, 2020, Water and carbon footprints of electricity are sensitive to geographical attribution methods, Environ. Sci. Technol., 54, 7533, 10.1021/acs.est.0c00176

Sovacool, 2009, Identifying future electricity–water tradeoffs in the United States, Energy Policy, 37, 2763, 10.1016/j.enpol.2009.03.012

Stillwell, 2011, The energy-water nexus in Texas, Ecol. Soc., 16, 10.5751/ES-03781-160102

Tarancon, 2007, CO2 emissions and intersectoral linkages. The case of Spain, Energy Policy, 35, 1100, 10.1016/j.enpol.2006.01.018

Tarancón Morán, 2007, Centrales eléctricas y emisiones de CO2 en España: identificación de las transacciones y sectores estructuralmente responsables

Terrapon-Pfaff, 2020, Water demand scenarios for electricity generation at the global and regional levels, Water, 12, 2482, 10.3390/w12092482

UNESA (various years). Memoria Estadística Eléctrica 1971-2015. Madrid. UNESA.

Vaca-Jiménez, 2019, Water-electricity nexus in Ecuador: the dynamics of the electricity’s blue water footprint, Sci. Total Environ., 696, 10.1016/j.scitotenv.2019.133959

Van Vliet, 2012, Vulnerability of US and European electricity supply to climate change, Nat. Clim. Chang., 2, 676, 10.1038/nclimate1546

Wackernagel, 1998, vol. 9

Webber, 2016, One. Healthy, wealthy, and free, 1

Zhang, 2014, Water− carbon trade-off in China’s coal power industry, Environ. Sci. Technol., 48, 11082, 10.1021/es5026454

Zhang, 2020, Optimization of China's electric power sector targeting water stress and carbon emissions, Appl. Energy, 271, 10.1016/j.apenergy.2020.115221