thumbnail

Remote Sensing

  2072-4292

 

 

Cơ quản chủ quản:  MDPI , Multidisciplinary Digital Publishing Institute (MDPI)

Lĩnh vực:
Earth and Planetary Sciences (miscellaneous)

Các bài báo tiêu biểu

Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use
Tập 4 Số 6 - Trang 1671-1692
Adam C. Watts, Vincent G. Ambrosia, Everett Hinkley
Unmanned Aircraft Systems (UAS) have evolved rapidly over the past decade driven primarily by military uses, and have begun finding application among civilian users for earth sensing reconnaissance and scientific data collection purposes. Among UAS, promising characteristics are long flight duration, improved mission safety, flight repeatability due to improving autopilots, and reduced operational costs when compared to manned aircraft. The potential advantages of an unmanned platform, however, depend on many factors, such as aircraft, sensor types, mission objectives, and the current UAS regulatory requirements for operations of the particular platform. The regulations concerning UAS operation are still in the early development stages and currently present significant barriers to entry for scientific users. In this article we describe a variety of platforms, as well as sensor capabilities, and identify advantages of each as relevant to the demands of users in the scientific research sector. We also briefly discuss the current state of regulations affecting UAS operations, with the purpose of informing the scientific community about this developing technology whose potential for revolutionizing natural science observations is similar to those transformations that GIS and GPS brought to the community two decades ago.
Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method
Tập 6 Số 10 - Trang 9829-9852
Xiaolei Yu, Xulin Guo, Zhaocong Wu
Accurate inversion of land surface geo/biophysical variables from remote sensing data for earth observation applications is an essential and challenging topic for the global change research. Land surface temperature (LST) is one of the key parameters in the physics of earth surface processes from local to global scales. The importance of LST is being increasingly recognized and there is a strong interest in developing methodologies to measure LST from the space. Landsat 8 Thermal Infrared Sensor (TIRS) is the newest thermal infrared sensor for the Landsat project, providing two adjacent thermal bands, which has a great benefit for the LST inversion. In this paper, we compared three different approaches for LST inversion from TIRS, including the radiative transfer equation-based method, the split-window algorithm and the single channel method. Four selected energy balance monitoring sites from the Surface Radiation Budget Network (SURFRAD) were used for validation, combining with the MODIS 8 day emissivity product. For the investigated sites and scenes, results show that the LST inverted from the radiative transfer equation-based method using band 10 has the highest accuracy with RMSE lower than 1 K, while the SW algorithm has moderate accuracy and the SC method has the lowest accuracy.
Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives
Tập 11 Số 1 - Trang 48
Decheng Zhou, Jingfeng Xiao, Stefania Bonafoni, Christian Berger, Kaveh Deilami, Yuyu Zhou, Steve Frolking, Rui Yao, Zhi Qiao, José A. Sobrino
The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling.
Remote Sensing of Mangrove Ecosystems: A Review
Tập 3 Số 5 - Trang 878-928
Claudia Kuenzer, Andrea Bluemel, Steffen Gebhardt, Tuan Vo Quoc, Stefan Dech
Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR) data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove ecosystem mapping, as well as the numerous methods and techniques used for data analyses, and to further discuss their potential and limitations.
Development of a UAV-LiDAR System with Application to Forest Inventory
Tập 4 Số 6 - Trang 1519-1543
Luke Wallace, Arko Lucieer, Christopher Watson, Darren Turner
We present the development of a low-cost Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) system and an accompanying workflow to produce 3D point clouds. UAV systems provide an unrivalled combination of high temporal and spatial resolution datasets. The TerraLuma UAV-LiDAR system has been developed to take advantage of these properties and in doing so overcome some of the current limitations of the use of this technology within the forestry industry. A modified processing workflow including a novel trajectory determination algorithm fusing observations from a GPS receiver, an Inertial Measurement Unit (IMU) and a High Definition (HD) video camera is presented. The advantages of this workflow are demonstrated using a rigorous assessment of the spatial accuracy of the final point clouds. It is shown that due to the inclusion of video the horizontal accuracy of the final point cloud improves from 0.61 m to 0.34 m (RMS error assessed against ground control). The effect of the very high density point clouds (up to 62 points per m2) produced by the UAV-LiDAR system on the measurement of tree location, height and crown width are also assessed by performing repeat surveys over individual isolated trees. The standard deviation of tree height is shown to reduce from 0.26 m, when using data with a density of 8 points perm2, to 0.15mwhen the higher density data was used. Improvements in the uncertainty of the measurement of tree location, 0.80 m to 0.53 m, and crown width, 0.69 m to 0.61 m are also shown.
Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture
Tập 12 Số 16 - Trang 2659
Bing Lu, Phuong D. Dao, Jiangui Liu, Yuhong He, Jiali Shang
Remote sensing is a useful tool for monitoring spatio-temporal variations of crop morphological and physiological status and supporting practices in precision farming. In comparison with multispectral imaging, hyperspectral imaging is a more advanced technique that is capable of acquiring a detailed spectral response of target features. Due to limited accessibility outside of the scientific community, hyperspectral images have not been widely used in precision agriculture. In recent years, different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall Micro-Hyperspec, Cubert UHD 185-Firefly) have been developed, and advanced spaceborne hyperspectral sensors have also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI). Hyperspectral imaging is becoming more widely available to agricultural applications. Meanwhile, the acquisition, processing, and analysis of hyperspectral imagery still remain a challenging research topic (e.g., large data volume, high data dimensionality, and complex information analysis). It is hence beneficial to conduct a thorough and in-depth review of the hyperspectral imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing hyperspectral information, and recent advances of hyperspectral imaging in agricultural applications. Publications over the past 30 years in hyperspectral imaging technology and applications in agriculture were thus reviewed. The imaging platforms and sensors, together with analytic methods used in the literature, were discussed. Performances of hyperspectral imaging for different applications (e.g., crop biophysical and biochemical properties’ mapping, soil characteristics, and crop classification) were also evaluated. This review is intended to assist agricultural researchers and practitioners to better understand the strengths and limitations of hyperspectral imaging to agricultural applications and promote the adoption of this valuable technology. Recommendations for future hyperspectral imaging research for precision agriculture are also presented.
Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data
Tập 6 Số 2 - Trang 1705-1724
Kaifang Shi, Bailang Yu, Huang Yi-xiu, Yingjie Hu, Bing Yin, Zuoqi Chen, Liujia Chen, Jianping Wu
The nighttime light data records artificial light on the Earth’s surface and can be used to estimate the spatial distribution of the gross domestic product (GDP) and the electric power consumption (EPC). In early 2013, the first global NPP-VIIRS nighttime light data were released by the Earth Observation Group of National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC). As new-generation data, NPP-VIIRS data have a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. This study aims to investigate the potential of NPP-VIIRS data in modeling GDP and EPC at multiple scales through a case study of China. A series of preprocessing procedures are proposed to reduce the background noise of original data and to generate corrected NPP-VIIRS nighttime light images. Subsequently, linear regression is used to fit the correlation between the total nighttime light (TNL) (which is extracted from corrected NPP-VIIRS data and DMSP-OLS data) and the GDP and EPC (which is from the country’s statistical data) at provincial- and prefectural-level divisions of mainland China. The result of the linear regression shows that R2 values of TNL from NPP-VIIRS with GDP and EPC at multiple scales are all higher than those from DMSP-OLS data. This study reveals that the NPP-VIIRS data can be a powerful tool for modeling socioeconomic indicators; such as GDP and EPC.
Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues
Tập 2 Số 3 - Trang 833-860
Xuelian Meng, Nate Currit, Kaiguang Zhao
This paper reviews LiDAR ground filtering algorithms used in the process of creating Digital Elevation Models. We discuss critical issues for the development and application of LiDAR ground filtering algorithms, including filtering procedures for different feature types, and criteria for study site selection, accuracy assessment, and algorithm classification. This review highlights three feature types for which current ground filtering algorithms are suboptimal, and which can be improved upon in future studies: surfaces with rough terrain or discontinuous slope, dense forest areas that laser beams cannot penetrate, and regions with low vegetation that is often ignored by ground filters.
UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis
Tập 7 Số 1 - Trang 1074-1094
Quanlong Feng, Jiantao Liu, Jianhua Gong
Unmanned aerial vehicle (UAV) remote sensing has great potential for vegetation mapping in complex urban landscapes due to the ultra-high resolution imagery acquired at low altitudes. Because of payload capacity restrictions, off-the-shelf digital cameras are widely used on medium and small sized UAVs. The limitation of low spectral resolution in digital cameras for vegetation mapping can be reduced by incorporating texture features and robust classifiers. Random Forest has been widely used in satellite remote sensing applications, but its usage in UAV image classification has not been well documented. The objectives of this paper were to propose a hybrid method using Random Forest and texture analysis to accurately differentiate land covers of urban vegetated areas, and analyze how classification accuracy changes with texture window size. Six least correlated second-order texture measures were calculated at nine different window sizes and added to original Red-Green-Blue (RGB) images as ancillary data. A Random Forest classifier consisting of 200 decision trees was used for classification in the spectral-textural feature space. Results indicated the following: (1) Random Forest outperformed traditional Maximum Likelihood classifier and showed similar performance to object-based image analysis in urban vegetation classification; (2) the inclusion of texture features improved classification accuracy significantly; (3) classification accuracy followed an inverted U relationship with texture window size. The results demonstrate that UAV provides an efficient and ideal platform for urban vegetation mapping. The hybrid method proposed in this paper shows good performance in differentiating urban vegetation mapping. The drawbacks of off-the-shelf digital cameras can be reduced by adopting Random Forest and texture analysis at the same time.
Implementation of the LandTrendr Algorithm on Google Earth Engine
Tập 10 Số 5 - Trang 691
Robert E. Kennedy, Zhiqiang Yang, Noel Gorelick, Justin Braaten, Lucas Costa Pereira Cavalcante, Warren B. Cohen, Sean P. Healey
The LandTrendr (LT) algorithm has been used widely for analysis of change in Landsat spectral time series data, but requires significant pre-processing, data management, and computational resources, and is only accessible to the community in a proprietary programming language (IDL). Here, we introduce LT for the Google Earth Engine (GEE) platform. The GEE platform simplifies pre-processing steps, allowing focus on the translation of the core temporal segmentation algorithm. Temporal segmentation involved a series of repeated random access calls to each pixel’s time series, resulting in a set of breakpoints (“vertices”) that bound straight-line segments. The translation of the algorithm into GEE included both transliteration and code analysis, resulting in improvement and logic error fixes. At six study areas representing diverse land cover types across the U.S., we conducted a direct comparison of the new LT-GEE code against the heritage code (LT-IDL). The algorithms agreed in most cases, and where disagreements occurred, they were largely attributable to logic error fixes in the code translation process. The practical impact of these changes is minimal, as shown by an example of forest disturbance mapping. We conclude that the LT-GEE algorithm represents a faithful translation of the LT code into a platform easily accessible by the broader user community.