Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method

Remote Sensing - Tập 6 Số 10 - Trang 9829-9852
Xiaolei Yu1, Xulin Guo1, Zhaocong Wu2
1Department of Geography and Planning, University of Saskatchewan, Kirk Hall 117 Science Place, Saskatoon, SK S7N 5C8, Canada
2School of Remote Sensing and Information Engineering, Wuhan University, No. 129, Luoyu Road, Wuhan 430079, China

Tóm tắt

Accurate inversion of land surface geo/biophysical variables from remote sensing data for earth observation applications is an essential and challenging topic for the global change research. Land surface temperature (LST) is one of the key parameters in the physics of earth surface processes from local to global scales. The importance of LST is being increasingly recognized and there is a strong interest in developing methodologies to measure LST from the space. Landsat 8 Thermal Infrared Sensor (TIRS) is the newest thermal infrared sensor for the Landsat project, providing two adjacent thermal bands, which has a great benefit for the LST inversion. In this paper, we compared three different approaches for LST inversion from TIRS, including the radiative transfer equation-based method, the split-window algorithm and the single channel method. Four selected energy balance monitoring sites from the Surface Radiation Budget Network (SURFRAD) were used for validation, combining with the MODIS 8 day emissivity product. For the investigated sites and scenes, results show that the LST inverted from the radiative transfer equation-based method using band 10 has the highest accuracy with RMSE lower than 1 K, while the SW algorithm has moderate accuracy and the SC method has the lowest accuracy.

Từ khóa


Tài liệu tham khảo

Liang, S., Li, X., and Wang, J. (2012). Advanced Remote Sensing: Terrestrial Information Extraction and Applications, Elsevier Science.

Zhang, 2013, Generation of Landsat surface temperature product for China, 2000–2010, Int. J. Remote Sens, 34, 7369, 10.1080/01431161.2013.820368

Sobrino, 2008, Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors, IEEE Geosci. Remote Sens. Lett, 5, 806, 10.1109/LGRS.2008.2001636

Li, 2014, Evaluation of the VIIRS and MODIS LST products in an arid area of northwest China, Remote Sens. Environ, 142, 111, 10.1016/j.rse.2013.11.014

Weng, 2014, Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data, Remote Sens. Environ, 140, 267, 10.1016/j.rse.2013.09.002

Weng, 2014, Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data, Remote Sens. Environ, 145, 55, 10.1016/j.rse.2014.02.003

Roy, 2014, Landsat-8: Science and product vision for terrestrial global change research, Remote Sens. Environ, 145, 154, 10.1016/j.rse.2014.02.001

Markham, 2004, Landsat sensor performance: History and current status, IEEE Trans. Geosci. Remote Sens, 42, 2691, 10.1109/TGRS.2004.840720

Huang, 2010, An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks, Remote Sens. Environ, 114, 183, 10.1016/j.rse.2009.08.017

Cristobal, 2009, Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data, IEEE Trans. Geosci. Remote Sens, 47, 339, 10.1109/TGRS.2008.2007125

Sobrino, 2004, Land surface temperature retrieval from Landsat TM 5, Remote Sens. Environ, 90, 434, 10.1016/j.rse.2004.02.003

Jimenez-Munoz, J.C., and Sobrino, J.A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res.: Atmos.

Qin, 2001, A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, Int. J. Remote Sens, 22, 3719, 10.1080/01431160010006971

Li, 2013, Satellite-derived land surface temperature: Current status and perspectives, Remote Sens. Environ, 131, 14, 10.1016/j.rse.2012.12.008

Sobrino, 1993, Theoretical split-window algorithms for determining the actual surface temperature, Il Nuovo Cimento C, 16, 219, 10.1007/BF02524225

Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., Roy, D., Ju, J., Vermote, E., and Prince, S. (2007, January 23–28). Generating a long-term land data record from the AVHRR and MODIS instruments. Barcelona, Spain.

Coll, 2012, Long-term accuracy assessment of land surface temperatures derived from the advanced along-track scanning radiometer, Remote Sens. Environ, 116, 211, 10.1016/j.rse.2010.01.027

Wan, 1996, A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Trans. Geosci. Remote Sens, 34, 892, 10.1109/36.508406

Galve, 2011, Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data, Remote Sens. Environ, 115, 2126, 10.1016/j.rse.2011.04.017

Sun, D., and Pinker, R.T. (2003). Estimation of land surface temperature from a geostationary operational environmental satellite (GOES-8). J. Geophys. Res.: Atmos.

Quattrochi, D.A., and Luvall, J.C. (2004). Thermal Remote Sensing in Land Surface Processing, CRC Press.

Rozenstein, 2014, Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm, Sensors, 14, 5768, 10.3390/s140405768

Sobrino, 2014, Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data, IEEE Geosci. Remote Sens. Lett, 11, 1840, 10.1109/LGRS.2014.2312032

Mao, 2005, A practical split-window algorithm for retrieving land-surface temperature from MODIS data, Int. J. Remote Sens, 26, 3181, 10.1080/01431160500044713

Mao, 2005, The research of split-window algorithm on the MODIS, Geomat. Inf. Sci. Wuhan Univers, 30, 703

Qin, 2001, Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data, J. Geophys. Res.: Atmos, 106, 22655, 10.1029/2000JD900452

Sobrino, 2008, Land surface emissivity retrieval from different VNIR and TIR sensors, IEEE Trans. Geosci. Remote Sens, 46, 316, 10.1109/TGRS.2007.904834

Schott, 2012, Simulation of image performance characteristics of the Landsat data continuity mission (LDCM) thermal infrared sensor (TIRS), Remote Sens, 4, 2477, 10.3390/rs4082477

Li, 2013, Evaluation of the NCEP and MODIS atmospheric products for single channel land surface temperature retrieval with ground measurements: A case study of HJ-1B IRS data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 6, 1399, 10.1109/JSTARS.2013.2255118

Kalnay, 1996, The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc, 77, 437, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Barsi, J.A., Barker, J.L., and Schott, J.R. (2003, January 21–25). An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. Toulouse, France.

Coe, 2000, Modeling terrestrial hydrological systems at the continental scale: Testing the accuracy of an atmospheric GCM, J. Clim, 13, 686, 10.1175/1520-0442(2000)013<0686:MTHSAT>2.0.CO;2

Coll, 2012, Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data, Remote Sens. Environ, 117, 199, 10.1016/j.rse.2011.09.018

Sobrino, 2006, Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data, Int. J. Remote Sens, 27, 999, 10.1080/01431160500075907

Sobrino, 2010, A single-channel algorithm for land-surface temperature retrieval from ASTER data, IEEE Geosci. Remote Sens. Lett, 7, 176, 10.1109/LGRS.2009.2029534

Salisbury, 1992, Emissivity of terrestrial materials in the 8–14 μm atmospheric window, Remote Sens. Environ, 42, 83, 10.1016/0034-4257(92)90092-X

Li, 2012, Land surface emissivity retrieval from satellite data, Int. J. Remote Sens, 34, 3084, 10.1080/01431161.2012.716540

Masiello, 2013, Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances, Appl. Opt, 52, 2428, 10.1364/AO.52.002428

Masiello, 2013, Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances, Atmos. Meas. Tech, 6, 3613, 10.5194/amt-6-3613-2013

Sobrino, 2001, A comparative study of land surface emissivity retrieval from NOAA data, Remote Sens. Environ, 75, 256, 10.1016/S0034-4257(00)00171-1

Coll, 2010, Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements, IEEE Trans. Geosci. Remote Sens, 48, 547, 10.1109/TGRS.2009.2024934

Gillespie, 1998, A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images, IEEE Trans. Geosci. Remote Sens, 36, 1113, 10.1109/36.700995

Peres, 2005, Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI, IEEE Trans. Geosci. Remote Sens, 43, 1834, 10.1109/TGRS.2005.851172

Owe, 1993, On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, Int. J. Remote Sens, 14, 1119, 10.1080/01431169308904400

Valor, 1996, Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sens. Environ, 57, 167, 10.1016/0034-4257(96)00039-9

Momeni, 2007, Evaluating NDVI-based emissivities of MODIS bands 31 and 32 using emissivities derived by day/night LST algorithm, Remote Sens. Environ, 106, 190, 10.1016/j.rse.2006.08.005

Wan, 1997, A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Trans. Geosci. Remote Sens, 35, 980, 10.1109/36.602541

Becker, 1990, Temperature-independent spectral indices in thermal infrared bands, Remote Sens. Environ, 32, 17, 10.1016/0034-4257(90)90095-4

Becker, 1990, Towards a local split window method over land surfaces, Int. J. Remote Sens, 11, 369, 10.1080/01431169008955028

Sobrino, 2000, Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco, Int. J. Remote Sens, 21, 353, 10.1080/014311600210876

Dash, 2005, Separating surface emissivity and temperature using two-channel spectral indices and emissivity composites and comparison with a vegetation fraction method, Remote Sens. Environ, 96, 1, 10.1016/j.rse.2004.12.023

Dash, 2002, Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends, Int. J. Remote Sens, 23, 2563, 10.1080/01431160110115041

Sobrino, 2004, Land surface temperature retrieval from MSG1-SEVIRI data, Remote Sens. Environ, 92, 247, 10.1016/j.rse.2004.06.009

Sobrino, 2003, Surface temperature and water vapour retrieval from MODIS data, Int. J. Remote Sens, 24, 5161, 10.1080/0143116031000102502

Tang, 2011, Estimation of broadband surface emissivity from narrowband emissivities, Opt. Express, 19, 185, 10.1364/OE.19.000185

Scavone, 2008, Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region, J. Hydrol, 351, 58, 10.1016/j.jhydrol.2007.11.041

Baldridge, 2009, The ASTER spectral library version 2.0, Remote Sens. Environ, 113, 711, 10.1016/j.rse.2008.11.007

Augustine, 2000, SURFRAD—A national surface radiation budget network for atmospheric research, Bull. Am. Meteorol. Soc, 81, 2341, 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2

Augustine, 2005, An update on SURFRAD—The GCOS surface radiation budget network for the continental United States, J. Atmos. Ocean. Technol, 22, 1460, 10.1175/JTECH1806.1

DeLuisi, J., Augustine, J., Cornwall, C., and Hodges, G. (1999, January 22–26). Contrasting ARM’s SRB measurements with six SURFRAD stations. San Antonio, TX, USA.

Augustine, J.A., Hodges, G.B., Dutton, E.G., Michalsky, J.J., and Cornwall, C.R. (2008). An aerosol optical depth climatology for NOAA’s national surface radiation budget network (SURFRAD). J. Geophys. Res.: Atmos.

Yu, 2012, Validation of GOES-R satellite land surface temperature algorithm using SURFRAD ground measurements and statistical estimates of error properties, IEEE Trans. Geosci. Remote Sens, 50, 704, 10.1109/TGRS.2011.2162338

Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X., and Haginoya, S. (2005). Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res.: Atmos.

Buck, 1981, New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol, 20, 1527, 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2

Wan, 2008, Radiance-based validation of the v5 MODIS land-surface temperature product, Int. J. Remote Sens, 29, 5373, 10.1080/01431160802036565

Hale, 2010, Characterization of variability at in situ locations for calibration/validation of satellite-derived land surface temperature data, Remote Sens. Lett, 2, 41, 10.1080/01431161.2010.490569

Qian, 2013, Land surface temperature and emissivity retrieval from time-series mid-infrared and thermal infrared data of SVISSR/FY-2C, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 6, 1552, 10.1109/JSTARS.2013.2259146

Yu, 2008, Evaluation of split-window land surface temperature algorithms for generating climate data records, IEEE Trans. Geosci. Remote Sens, 46, 179, 10.1109/TGRS.2007.909097

Miller, R.G. (1997). Beyond Anova: Basics of Applied Statistics, CRC Press.

Lee, E.T., and Wang, J.W. (2013). Statistical Methods for Survival Data Analysis, John Wiley & Sons.