Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Duan, 2008, Influence of China’s population mobility on the change of regional disparity since 1978, China Popul. Resour. Environ, 18, 27, 10.1016/S1872-583X(09)60018-8
Amaral, 2005, Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data, Comput. Environ. Urban Syst, 29, 179, 10.1016/j.compenvurbsys.2003.09.004
Ma, 2008, From state monopoly to renewable portfolio: Restructuring China’s electric utility, Energy Policy, 36, 1697, 10.1016/j.enpol.2008.01.012
Rawski, 2001, What is happening to China’s GDP statistics?, China Econ. Rev, 12, 347, 10.1016/S1043-951X(01)00062-1
Mehrotra, 2011, Comparing China’s GDP statistics with coincident indicators, J. Comp. Econ, 39, 406, 10.1016/j.jce.2011.03.003
Michieka, 2012, An investigation of the role of China’s urban population on coal consumption, Energy Policy, 48, 668, 10.1016/j.enpol.2012.05.080
Henderson, 2011, A bright idea for measuring economic growth, Am. Econ. Rev, 101, 194, 10.1257/aer.101.3.194
Elvidge, 1997, Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption, Int. J. Remote Sens, 18, 1373, 10.1080/014311697218485
Zhao, 2012, Mapping spatio-temporal changes of Chinese electric power consumption using night-time imagery, Int. J. Remote Sens, 33, 6304, 10.1080/01431161.2012.684076
Townsend, 2010, The use of night-time lights satellite imagery as a measure of Australia’s regional electricity consumption and population distribution, Int. J. Remote Sens, 31, 4459, 10.1080/01431160903261005
He, 2012, Spatiotemporal dynamics of electric power consumption in Chinese Mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data, J. Geogr. Sci, 22, 125, 10.1007/s11442-012-0916-3
Levin, 2012, High spatial resolution night-time light images for demographic and socio-economic studies, Remote Sens. Environ, 119, 1, 10.1016/j.rse.2011.12.005
Colomb, 2003, SAC-C mission and the international am constellation for earth observation, Acta Astronout, 52, 995, 10.1016/S0094-5765(03)00082-1
Letu, 2012, A saturated light correction method for DMSP/OLS nighttime satellite imagery, IEEE Trans. Geosci. Remote Sens, 50, 389, 10.1109/TGRS.2011.2178031
Wu, 2013, Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery, Remote Sens. Environ, 134, 111, 10.1016/j.rse.2013.03.001
He, 2006, Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data, Chin. Sci. Bull, 51, 1614, 10.1007/s11434-006-2006-3
Li, 2013, Potential of NPP-VIIRS nighttime light imagery for MODELING the regional economy of China, Remote Sens, 5, 3057, 10.3390/rs5063057
Chen, 2011, Using luminosity data as a proxy for economic statistics, Proc. Natl. Acad. Sci, 108, 8589, 10.1073/pnas.1017031108
He, C., Ma, Q., Liu, Z., and Zhang, Q. (2013). Modeling the spatiotemporal dynamics of electric power consumption in Mainland China using saturation-corrected DMSP/OLS nighttime stable light data. Int. J. Digit. Earth.
Liu, 2012, Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008, Landsc. Urban Plan, 106, 62, 10.1016/j.landurbplan.2012.02.013
Zullo, 2004, Brazil’s 2001 energy crisis monitored from space, Int. J. Remote Sens, 25, 2475, 10.1080/01431160410001662220
Propastin, 2012, Assessing satellite-observed nighttime lights for monitoring socioeconomic parameters in the Republic of Kazakhstan, Giscience Remote Sens, 49, 538, 10.2747/1548-1603.49.4.538
Min, 2013, Detection of rural electrification in Africa using DMSP-OLS night lights imagery, Int. J. Remote Sens, 34, 8118, 10.1080/01431161.2013.833358
Zhao, 2011, Net primary production and gross domestic product in China derived from satellite imagery, Ecol. Econ, 70, 921, 10.1016/j.ecolecon.2010.12.023
Letu, 2010, Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects, Int. J. Remote Sens, 31, 4443, 10.1080/01431160903277464
Elvidge, 1999, Radiance calibration of DMSP-OLS low-light imaging data of human settlements, Remote Sens. Environ, 68, 77, 10.1016/S0034-4257(98)00098-4
Yang, Y., He, C., Zhang, Q., Han, L., and Du, S. (2013). Timely and accurate national-scale mapping of urban land in China using Defense Meteorological Satellite Program’s Operational Linescan System nighttime stable light data. J. Appl. Remote Sens, 7.
Qian, 2013, Can night-time light data identify typologies of urbanization? A global assessment of successes and failures, Remote Sens, 5, 3476, 10.3390/rs5073476
Li, 2013, Satellite-observed nighttime light variation as evidence for global armed conflicts, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 6, 2302, 10.1109/JSTARS.2013.2241021
Zhang, 2013, The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity, Remote Sens. Environ, 129, 32, 10.1016/j.rse.2012.10.022
Elvidge, 2013, VIIRS nightfire: Satellite pyrometry at night, Remote Sens, 5, 4423, 10.3390/rs5094423
Weng, F., Zou, X., Wang, X., Yang, S., and Goldberg, M.D. (2012). Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res.: Atmos.
Gambacorta, 2013, Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS), IEEE Trans. Geosci. Remote Sens, 51, 3207, 10.1109/TGRS.2012.2220369
Chen, 2013, Validation of total ozone column derived from OMPS using ground-based spectroradiometer measurements, Remote Sens. Lett, 4, 937, 10.1080/2150704X.2013.820004
Flynn, 2009, Measurements and products from the Solar Backscatter Ultraviolet (SBUV/2) and Ozone Mapping and Profiler Suite (OMPS) instruments, Int. J. Remote Sens, 30, 4259, 10.1080/01431160902825040
Wielicki, 1998, Clouds and the earth’s radiant energy system (CERES): Algorithm overview, IEEE Trans. Geosci. Remote Sens, 36, 1127, 10.1109/36.701020
Wielicki, 1996, Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment, Bull. Am. Meteorol. Soc, 77, 853, 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
Cao, 2013, Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring, J. Geophys. Res.: Atmos, 118, 11,664, 10.1002/2013JD020418
Liao, 2013, Suomi NPP VIIRS Day-Night-Band (DNB) on-orbit performance, J. Geophys. Res.: Atmos, 118, 705, 10.1002/2013JD020475
Xiong, X., Butler, J., Chiang, K., Efremova, B., Fulbright, J., Lei, N., McIntire, J., Oudrari, H., Sun, J., and Wang, Z. (2013). VIIRS on-orbit calibration methodology and performance. J. Geophys. Res.: Atmos.
Hillger, 2013, First-Light Imagery from Suomi NPP VIIRS, Bull. Am. Meteorol. Soc, 94, 1019, 10.1175/BAMS-D-12-00097.1
Lee, 2006, The NPOESS VIIRS day/night visible sensor, Bull. Am. Meteorol. Soc, 87, 191, 10.1175/BAMS-87-2-191
Miller, 2012, Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities, Proc. Natl. Acad. Sci. USA, 109, 15706, 10.1073/pnas.1207034109
Baugh, 2013, Nighttime lights compositing using the VIIRS day-night band: Preliminary results, Proc. Asia Pac. Adv. Netw, 35, 70
Elvidge, 2013, Why VIIRS data are superior to DMSP for mapping nighttime lights, Proc. Asia Pac. Adv. Netw, 35, 62
Elvidge, 2009, A fifteen year record of global natural gas flaring derived from satellite data, Energies, 2, 595, 10.3390/en20300595
Baugh, 2010, Development of a 2009 stable lights product using DMSP-OLS data, Proc. Asia Pac. Adv. Netw, 30, 114
Zhang, 2011, Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data, Remote Sens. Environ, 115, 2320, 10.1016/j.rse.2011.04.032
Lo, 2001, Modeling the population of China using DMSP operational linescan system nighttime data, Photogramm. Eng. Remote Sens, 67, 1037
Small, 2005, Spatial analysis of global urban extent from DMSP-OLS night lights, Remote Sens. Environ, 96, 277, 10.1016/j.rse.2005.02.002
Henderson, 2003, Validation of urban boundaries derived from global night-time satellite imagery, Int. J. Remote Sens, 24, 595, 10.1080/01431160304982