Remote Sensing
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
A 33-Year NPP Monitoring Study in Southwest China by the Fusion of Multi-Source Remote Sensing and Station Data Knowledge of regional net primary productivity (NPP) is important for the systematic understanding of the global carbon cycle. In this study, multi-source data were employed to conduct a regional NPP study in southwest China, with a 33-year time span and a 1-km scale. A multi-sensor fusion framework was applied to obtain a new normalized difference vegetation index (NDVI) time series from 1982 to 2014, combining the advantages of different remote sensing datasets. As another key parameter for NPP modeling, the total solar radiation was calculated utilizing the improved Yang hybrid model (YHM), based on meteorological station data. The accuracy of the data processes is proved reliable by verification experiments. Moreover, NPP estimated by fused NDVI shows an obvious improved accuracy than that based on the original data. The spatio-temporal analysis results indicated that 67% of the study area showed an increasing NPP trend over the past three decades. The correlation between NPP and precipitation was significant heterogeneous at the monthly scale; specifically, the correlation is negative in the growing season and positive in the dry season. Meanwhile, the lagged positive correlation in the growing season and no lag in the dry season indicated the important impacts of precipitation on NPP. What is more, we found that there are three distinct stages during the variation of NPP, which were driven by different climatic factors. Significant climate warming led to a great increase of NPP from 1992 to 2002, while NPP clearly decreased during 1982–1992 and 2002–2014 due to the frequent droughts caused by the precipitation decrease.
Remote Sensing - Tập 9 Số 10 - Trang 1082
Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau The increasingly intensive and extensive coal mining activities on the Loess Plateau pose a threat to the fragile local ecosystems. Quantifying the effects of coal mining activities on environmental conditions is of great interest for restoring and managing the local ecosystems and resources. This paper generates dense NDVI (Normalized Difference Vegetation Index) time series between 2000 and 2011 at a spatial resolution of 30 m by blending Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and further evaluates its capability for mapping vegetation trends around a typical coalfield on the Loss Plateau. Synthetic NDVI images were generated using (1) STARFM-generated NIR (near infrared) and red band reflectance data (scheme 1) and (2) Landsat and MODIS NDVI images directly as inputs for STARFM (scheme 2). By comparing the synthetic NDVI images with the corresponding Landsat NDVI, we found that scheme 2 consistently generated better results (0.70 < R2 < 0.76) than scheme 1 (0.56 < R2 < 0.70) in this study area. Trend analysis was then performed with the synthetic dense NDVI time series and the annual maximum NDVI (NDVImax) time series. The accuracy of these trends was evaluated by comparing to those from the corresponding MODIS time series, and it was concluded that both the trends from synthetic/MODIS NDVI dense time series and synthetic/MODIS NDVImax time series (2000–2011) were highly consistent. Compared to trends from MODIS time series, trends from synthetic time series are better able to capture fine scale vegetation changes. STARFM-generated synthetic NDVI time series could be used to quantify the effects of mining activities on vegetation, but the test areas should be selected with caution, as the trends derived from synthetic and MODIS time series may be significantly different in some areas.
Remote Sensing - Tập 5 Số 9 - Trang 4255-4279
Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia Time series of images are required to extract and separate information on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term trends. While images from the Landsat Thematic Mapper (TM) sensor have the spatial and spectral characteristics suited for mapping a range of vegetation structural and compositional properties, its 16-day revisit period combined with cloud cover problems and seasonally limited latitudinal range, limit the availability of images at intervals and durations suitable for time series analysis of vegetation in many parts of the world. Landsat Image Time Series (LITS) is defined here as a sequence of Landsat TM images with observations from every 16 days for a five-year period, commencing on July 2003, for a Eucalyptus woodland area in Queensland, Australia. Synthetic Landsat TM images were created using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm for all dates when images were either unavailable or too cloudy. This was done using cloud-free scenes and a MODIS Nadir BRDF Adjusted Reflectance (NBAR) product. The ability of the LITS to measure attributes of vegetation phenology was examined by: (1) assessing the accuracy of predicted image-derived Foliage Projective Cover (FPC) estimates using ground-measured values; and (2) comparing the LITS-generated normalized difference vegetation index (NDVI) and MODIS NDVI (MOD13Q1) time series. The predicted image-derived FPC products (value ranges from 0 to 100%) had an RMSE of 5.6. Comparison between vegetation phenology parameters estimated from LITS-generated NDVI and MODIS NDVI showed no significant difference in trend and less than 16 days (equal to the composite period of the MODIS data used) difference in key seasonal parameters, including start and end of season in most of the cases. In comparison to similar published work, this paper tested the STARFM algorithm in a new (broadleaf) forest environment and also demonstrated that the approach can be used to form a time series of Landsat TM images to study vegetation phenology over a number of years.
Remote Sensing - Tập 4 Số 6 - Trang 1856-1886
Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011 Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover) in China and their relations with climatic factors during 1982–2011, using the updated Global Inventory Modeling and Mapping Studies (GIMMS) third generation global satellite Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) dataset and climate data acquired from the National Centers for Environmental Prediction (NCEP). Major findings are as follows: (1) annual mean NDVI over China significantly increased by about 0.0006 per year from 1982 to 2011; (2) of the vegetated area in China, over 33% experienced a significant positive trend in vegetation growth, mostly located in central and southern China; about 21% experienced a significant positive trend in growth seasonality, most of which occurred in northern China (>35°N); (3) changes in vegetation growth dynamics were significantly correlated with air temperature and precipitation (p < 0.001) at a region scale; (4) at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01) and not associated with annual precipitation (p > 0.1); (5) of the vegetated area, about 24% showed significant correlations between annual mean NDVI and air temperature (93% positive and remainder negative), and 12% showed significant correlations of annual mean NDVI with annual precipitation (65% positive and 35% negative). The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities; and (6) monthly NDVI was significantly correlated with the preceding month’s temperature and precipitation in western, central and northern China. The effects of a climate lag of more than two months in southern China may be caused mainly by the abundance of precipitation. These findings suggest that continuing efforts to monitor vegetation changes (in situ and satellite observations) over time and at broad scales are greatly needed, and are critical for the management of ecosystems and adapting to global climatic changes. It is likewise difficult to predict well future vegetation growth without linking these observations to mechanistic terrestrial ecosystem processes models that integrate all the satellite and in situ observations.
Remote Sensing - Tập 6 Số 4 - Trang 3263-3283
Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “Index-then-Blend” and “Blend-then-Index” Approaches The objective of this paper was to evaluate the accuracy of two advanced blending algorithms, Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to downscale Moderate Resolution Imaging Spectroradiometer (MODIS) indices to the spatial resolution of Landsat. We tested two approaches: (i) “Index-then-Blend” (IB); and (ii) “Blend-then-Index” (BI) when simulating nine indices, which are widely used for vegetation studies, environmental moisture assessment and standing water identification. Landsat-like indices, generated using both IB and BI, were simulated on 45 dates in total from three sites. The outputs were then compared with indices calculated from observed Landsat data and pixel-to-pixel accuracy of each simulation was assessed by calculating the: (i) bias; (ii) R2; and (iii) Root Mean Square Deviation (RMSD). The IB approach produced higher accuracies than the BI approach for both blending algorithms for all nine indices at all three sites. We also found that the relative performance of the STARFM and ESTARFM algorithms depended on the spatial and temporal variances of the Landsat-MODIS input indices. Our study suggests that the IB approach should be implemented for blending of environmental indices, as it was: (i) less computationally expensive due to blending single indices rather than multiple bands; (ii) more accurate due to less error propagation; and (iii) less sensitive to the choice of algorithm.
Remote Sensing - Tập 6 Số 10 - Trang 9213-9238
Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods This paper presents an automated and effective method for detecting 3D edges and tracing feature lines from 3D-point clouds. This method is named Analysis of Geometric Properties of Neighborhoods (AGPN), and it includes two main steps: edge detection and feature line tracing. In the edge detection step, AGPN analyzes geometric properties of each query point’s neighborhood, and then combines RANdom SAmple Consensus (RANSAC) and angular gap metric to detect edges. In the feature line tracing step, feature lines are traced by a hybrid method based on region growing and model fitting in the detected edges. Our approach is experimentally validated on complex man-made objects and large-scale urban scenes with millions of points. Comparative studies with state-of-the-art methods demonstrate that our method obtains a promising, reliable, and high performance in detecting edges and tracing feature lines in 3D-point clouds. Moreover, AGPN is insensitive to the point density of the input data.
Remote Sensing - Tập 8 Số 9 - Trang 710
Improved Accuracy of Chlorophyll-a Concentration Estimates from MODIS Imagery Using a Two-Band Ratio Algorithm and Geostatistics: As Applied to the Monitoring of Eutrophication Processes over Tien Yen Bay (Northern Vietnam)
Remote Sensing - Tập 6 Số 1 - Trang 421-442 - 2014
Sea eutrophication is a natural process of water enrichment caused by increased nutrient loading that severely affects coastal ecosystems by decreasing water quality. The degree of eutrophication can be assessed by chlorophyll-a concentration. This study aims to develop a remote sensing method suitable for estimating chlorophyll-a concentrations in tropical coastal waters with abundant phytoplankton using Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra imagery and to improve the spatial resolution of MODIS/Terra-based estimation from 1 km to 100 m by geostatistics. A model based on the ratio of green and blue band reflectance (rGBr) is proposed considering the bio-optical property of chlorophyll-a. Tien Yen Bay in northern Vietnam, a typical phytoplankton-rich coastal area, was selected as a case study site. The superiority of rGBr over two existing representative models, based on the blue-green band ratio and the red-near infrared band ratio, was demonstrated by a high correlation of the estimated chlorophyll-a concentrations at 40 sites with values measured in situ. Ordinary kriging was then shown to be highly capable of predicting the concentration for regions of the image covered by clouds and, thus, without sea surface data. Resultant space-time maps of concentrations over a year clarified that Tien Yen Bay is characterized by natural eutrophic waters, because the average of chlorophyll-a concentrations exceeded 10 mg/m3 in the summer. The temporal changes of chlorophyll-a concentrations were consistent with average monthly air temperatures and precipitation. Consequently, a combination of rGBr and ordinary kriging can effectively monitor water quality in tropical shallow waters.
High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM) which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan) ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI). Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.
Remote Sensing - Tập 7 Số 9 - Trang 12336-12355
Estimating Growing Season Evapotranspiration and Transpiration of Major Crops over a Large Irrigation District from HJ-1A/1B Data Using a Remote Sensing-Based Dual Source Evapotranspiration Model Crop evapotranspiration (ET) is the largest water consumer of agriculture water in an irrigation district. Remote sensing (RS) technique has provided an effective way to map regional ET using various RS-based ET models over the past several decades. To map growing season ET of different crops and partition ET into evaporation (E) and transpiration (T) at regional scale, appropriate ET models should be further integrated with crop distribution maps in different years and crop growing seasons determined for each crop pixel. In this study, a hybrid dual-source scheme and trapezoid framework-based ET Model (HTEM) fed with HJ-1A/1B data was applied in Hetao Irrigation District (HID) of China from 2009 to 2015 to map crop growing season ET and T at 30 m resolution. The HTEM model with HJ-1A/1B data performed well in estimating ET in HID, and the finer spatial resolution of model input data can improve the estimation accuracy of ET. Combined with the annual crop planting map identified in previous study, and crop growing seasons determined from fitted Normalized Difference Vegetation Index (NDVI) curves for crop pixels, the spatial and temporal variations of growing season ET and T of major crops (maize and sunflower) were examined. The results indicate that ET and T of maize and sunflower reach their minimum values in the southwest HID with smaller crop planting density, and reach their maximum values in northwest HID with higher crop planting density. Over the study period with a decreasing trend of available irrigation water, ET and T in maize and sunflower growing seasons show decreasing trends, while ratios of T/ET show increasing trends, which implies that the adverse effect of decreased irrigation water diversion on crop growth is diminished due to the favorable portioning of E and T in cropland of HID. In addition, the calculation results of crop coefficients show that there is water stress to crop growth in the study area. The present results are helpful to better understand the spatial pattern of crop water consumption and water stress of different crops during crop growing season, and provide the basis for optimizing the spatial distribution of crop planting with less water consumption and more crop yield.
Remote Sensing - Tập 12 Số 5 - Trang 865
Managing Agricultural Water Considering Water Allocation Priority Based on Remote Sensing Data To fairly distribute limited irrigation water resources in arid regions, a water allocation priority evaluation method based on remote sensing data was proposed and integrated with an optimization model. First, the water supply response unit was divided according to canal system conditions. Then, a spatialization method was used for generating spatial agricultural output value (income from planting industry) and grain yield (yield of food crops) with the help of NDVI and the potential yield of farmland. Third, the AHP-TOPSIS method was employed to calculate the water allocation priority based on the above information. Finally, the evaluation results were integrated with a nonlinear multiobjective model to optimally allocate agricultural land and water resources, considering the combined objective of minimum envy and proportional fairness. The method was applied to Hetao irrigation area, an arid agriculture-dominant region in Northwest China. After solving the model, optimization alternatives were obtained, which indicate that: (1) the spatial method of agricultural output value can improve the accuracy by around 16% compared with the traditional method, and the spatial method of grain yield also have good accuracy (MAPE = 14.66%); (2) the rank of water allocation priority can reflect more spatial information, and provide practical decision support for the distribution of water resources; (3) the envy index can better improve the efficiency of an allocation system compared to the Gini coefficient method.
Remote Sensing - Tập 13 Số 8 - Trang 1536
Tổng số: 210
- 1
- 2
- 3
- 4
- 5
- 6
- 10