High Performance Computing in Satellite SAR Interferometry: A Critical Perspective

Remote Sensing - Tập 13 Số 23 - Trang 4756
Pasquale Imperatore1, Antonio Pepe1, E. Sansosti1
1Istituto per il Rilevamento Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (CNR), 80124 Napoli, Italy

Tóm tắt

Synthetic aperture radar (SAR) interferometry has rapidly evolved in the last decade and can be considered today as a mature technology, which incorporates computationally intensive and data-intensive tasks. In this paper, a perspective on the state-of-the-art of high performance computing (HPC) methodologies applied to spaceborne SAR interferometry (InSAR) is presented, and the different parallel algorithms for interferometric processing of SAR data are critically discussed at different levels. Emphasis is placed on the key processing steps, which typically occur in the interferometric techniques, categorized according to their computational relevance. Existing implementations of the different InSAR stages using diverse parallel strategies and architectures are examined and their performance discussed. Furthermore, some InSAR computational schemes selected in the literature are analyzed at the level of the entire processing chain, thus emphasizing their potentialities and limitations. Therefore, the survey focuses on the inherent computational approaches enabling large-scale interferometric SAR processing, thus offering insight into some open issues, and outlining future trends in the field.

Từ khóa


Tài liệu tham khảo

(2021, November 11). Top 500—The November 2020 List. Available online: https://www.top500.org/lists/top500/2020/11/.

Lee, 2011, Recent Developments in High Performance Computing for Remote Sensing: A Review, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 4, 508, 10.1109/JSTARS.2011.2162643

Euillades, 2021, Recent advancements in multi-temporal methods applied to new generation SAR systems and applications in South America, J. S. Am. Earth Sci., 11, 103410, 10.1016/j.jsames.2021.103410

Solaro, G., Imperatore, P., and Pepe, A. (2016). Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis. Geospatial Technology—Environmental and Social Applications, InTech.

Hu, 2014, Resolving three-dimensional surface displacements from InSAR measurements: A review, Earth-Sci. Rev., 133, 1, 10.1016/j.earscirev.2014.02.005

Ho Tong Minh, D., Hanssen, R., and Rocca, F. (2020). Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives. Remote Sens., 12.

Plaza, 2011, High performance computing for hyperspectral remote sensing, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 4, 528, 10.1109/JSTARS.2010.2095495

Zhao, Y. (2010, January 17–18). Remote sensing based soil moisture estimation on high performance PC server. Proceedings of the 2010 International Conference on Environmental Science and Information Application Technology, ESIAT, Wuhan, China.

Wang, Y., Ma, Y., Liu, P., Liu, D., and Xie, J. (2010, January 1–5). An optimized image mosaic algorithm with parallel I/O and dynamic grouped parallel strategy based on minimal spanning tree. Proceedings of the 2010 9th International Conference on Grid and Cooperative Computing, GCC, Nanjing, China.

Xiaorong, X., Lei, G., Hongfu, W., and Fang, X. (2011, January 15–17). A parallel fusion method of remote sensing image based on IHS transformation. Proceedings of the 2011 4th International Congress on Image and Signal Processing, CISP, Shanghai, China.

Kim, T., Choi, M., and Chae, T. (2011, January 7–9). Parallel processing with MPI for inter-band registration in remote sensing. Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, ICPADS, Tainan, Taiwan.

Cui, 2018, SAR Target CFAR Detection Via GPU Parallel Operation, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 4884, 10.1109/JSTARS.2018.2879082

Balz, 2009, Hybrid GPU-Based Single- and Double-Bounce SAR Simulation, IEEE Trans. Geosci. Remote Sens., 47, 3519, 10.1109/TGRS.2009.2022326

Massonnet, 2009, Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys., 36, 441, 10.1029/97RG03139

Bamler, 1998, Synthetic aperture radar interferometry, Inverse Probl., 14, R1, 10.1088/0266-5611/14/4/001

Zebker, 1992, Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Remote Sens., 30, 950, 10.1109/36.175330

Agram, 2015, A noise model for InSAR time series, J. Geophys. Res. Solid Earth, 120, 2752, 10.1002/2014JB011271

Crosetto, 2016, Persistent Scatterer Interferometry: A review, ISPRS J. Photogramm. Remote Sens., 115, 78, 10.1016/j.isprsjprs.2015.10.011

Ferretti, 2000, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sens., 38, 2202, 10.1109/36.868878

Ferretti, 2001, Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8, 10.1109/36.898661

Hooper, 2004, A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophys. Res. Lett., 31, L23611, 10.1029/2004GL021737

Lv, 2014, Joint-Scatterer Processing for Time-Series InSAR, IEEE Trans. Geosci. Remote Sens., 52, 7205, 10.1109/TGRS.2014.2309346

Berardino, 2002, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375, 10.1109/TGRS.2002.803792

Mora, 2003, Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images, IEEE Trans. Geosci. Remote Sens., 41, 2243, 10.1109/TGRS.2003.814657

Ferretti, 2011, A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR, IEEE Trans. Geosci. Remote Sens., 49, 3460, 10.1109/TGRS.2011.2124465

Hetland, 2012, Multiscale InSAR Time Series (MInTS) Analysis of Surface Deformation, J. Geophys. Res. Solid Earth, 117, 8731, 10.1029/2011JB008731

Goel, 2014, A Distributed Scatterer Interferometry Approach for Precision Monitoring of Known Surface Deformation Phenomena, IEEE Trans. Geosci. Remote Sens., 52, 5454, 10.1109/TGRS.2013.2289370

Curlander, J.C., and McDonough, R. (1992). Synthetic Aperture Radar—Systems and Signal Processing, Wiley.

Cumming, I.G., and Wong, F.H. (2005). Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House.

Cumming, I., and Bennett, J. (1979, January 2–4). Digital processing of Seasat SAR data. Proceedings of the ICASSP ‘79. IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, DC, USA.

Raney, 1994, Precision SAR processing using chirp scaling, IEEE Trans. Geosci. Remote Sens., 32, 786, 10.1109/36.298008

An, 2012, Extended Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Data Focusing, IEEE Trans. Geosci. Remote Sens., 50, 3595, 10.1109/TGRS.2012.2183606

Cumming, 2003, InterpretationsoftheOmega-K algorithm and comparisons with other algorithms, Proc. IEEE Int. Geosci. Remote Sens. Symp., 3, III–1455

Lanari, 1995, A new method for the compensation of the SAR range cell migration based on the chirp z-transform, IEEE Trans. Geosci. Remote Sens., 33, 1296, 10.1109/36.469496

Guarnieri, 2006, TOPSAR: Terrain Observation by Progressive Scans, IEEE Trans. Geosci. Remote Sens., 44, 2352, 10.1109/TGRS.2006.873853

Potin, P., Rosich, B., Roeder, J., and Bargellini, P. (2014, January 13–18). Sentinel-1 Mission operations concept. Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada.

Prats, 2010, Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling, IEEE Trans. Geosci. Remote Sens., 48, 770, 10.1109/TGRS.2009.2027701

Xu, 2011, TOPSAR data focusing based on azimuth scaling preprocessing, Adv. Space Res., 48, 270, 10.1016/j.asr.2011.03.024

Huang, 2013, An efficient imaging approach for TOPS SAR data focusing based on scaled Fourier transform, Prog. Electromagn. Res., 47, 297, 10.2528/PIERB12081804

Sun, 2011, Sliding Spotlight and TOPS SAR Data Processing without Subaperture, IEEE Geosci. Remote Sens. Lett., 8, 1036, 10.1109/LGRS.2011.2151174

Xu, 2014, TOPS-Mode Raw Data Processing Using Chirp Scaling Algorithm, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 235, 10.1109/JSTARS.2013.2260134

Yang, W., Chen, J., Zeng, H.C., Wang, P.B., and Liu, W. (2016). A Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform. Sensors, 16.

Yang, 2017, A Modified Three-Step Algorithm for TOPS and Sliding Spotlight SAR Data Processing, IEEE Trans. Geosci. Remote Sens., 55, 6910, 10.1109/TGRS.2017.2735993

Engen, 2011, Efficient Full Aperture Processing of TOPS Mode Data Using the Moving Band Chirp Z-Transform, IEEE Trans. Geosci. Remote Sens., 49, 3688, 10.1109/TGRS.2011.2145384

Fusco, A., Pepe, A., Berardino, P., De Luca, C., Buonanno, S., and Lanari, R. (2019). A Phase-Preserving Focusing Technique for TOPS Mode SAR Raw Data Based on Conventional Processing Methods. Sensors, 19.

Liao, 2004, Automatic Registration of INSAR Data Based on Least-Square Matching and Multi-Step Strategy, Photogramm. Eng. Remote Sens., 70, 1139, 10.14358/PERS.70.10.1139

Liu, 2008, Analytic Search Method for Interferometric SAR Image Registration, IEEE Geosci. Remote Sens. Lett., 5, 294, 10.1109/LGRS.2008.915929

Sansosti, 2006, Geometrical SAR image registration, IEEE Trans. Geosci. Remote Sens., 44, 2861, 10.1109/TGRS.2006.875787

Imperatore, P., and Sansosti, E. (2021). Multithreading Based Parallel Processing for Image Geometric Coregistration in SAR Interferometry. Remote Sens., 13.

Scheiber, 2000, Coregistration of interferometric SAR images using spectral diversity, IEEE Trans. Geosci. Remote Sens., 38, 2179, 10.1109/36.868876

Scheiber, 2012, TOPS interferometry with TerraSAR-X, IEEE Trans. Geosci. Remote Sens., 50, 3179, 10.1109/TGRS.2011.2178247

Goldstein, 1998, Radar interferogram filtering for geophysical applications, Geophys. Res. Lett., 25, 4035, 10.1029/1998GL900033

Sun, 2013, Improved Goldstein filter for InSAR noise reduction based on local SNR, J. Cent. South Univ., 20, 1896, 10.1007/s11771-013-1688-3

Sica, F., Cozzolino, D., Verdoliva, L., and Poggi, G. (2018). The Offset-Compensated Nonlocal Filtering of Interferometric Phase. Remote Sens., 10.

Baier, 2018, A Nonlocal InSAR Filter for High-Resolution DEM Generation from TanDEM-X Interferograms, IEEE Trans. Geosci. Remote Sens., 56, 6469, 10.1109/TGRS.2018.2839027

Pu, L.M., Zhang, X.L., and Zhou, Y.Y. (2020). A Phase Filtering Method with Scale Recurrent Networks for InSAR. Remote Sens., 12.

Khaki, 2020, A Sequential Monte Carlo Framework for Noise Filtering in InSAR Time Series, IEEE Trans. Geosci. Remote Sens., 58, 1904, 10.1109/TGRS.2019.2950353

Pepe, A. (2019). Theory and Statistical Description of the Enhanced Multi-Temporal InSAR (E-MTInSAR) Noise-Filtering Algorithm. Remote Sens., 11.

Lee, 1998, A New Technique for Noise Filtering of SAR Interferometric Phase Images, IEEE Trans. Geosci. Remote Sens., 36, 1456, 10.1109/36.718849

Just, 1994, Phase statistics of interferograms with applications to synthetic aperture radar, Appl. Opt., 33, 4361, 10.1364/AO.33.004361

Pottier, 2007, On the Extension of Multidimensional Speckle Noise Model from Single-Look to Multilook SAR Imagery, IEEE Trans. Geosci. Remote Sens., 45, 305, 10.1109/TGRS.2006.887012

Baran, 2003, A modification to the Goldstein radar interferogram filter, IEEE Trans. Geosci. Remote Sens., 41, 2114, 10.1109/TGRS.2003.817212

Meng, 2007, A Novel Technique for Noise Reduction in InSAR Images, IEEE Geosci. Remote Sens. Lett., 4, 226, 10.1109/LGRS.2006.888845

Lee, 1994, Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery, IEEE Trans. Geosci. Remote Sens., 32, 1017, 10.1109/36.312890

Buades, A., Coll, B., and Morel, J.-M. (2005, January 20–25). A non-local algorithm for image denoising. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR, San Diego, CA, USA.

Iodice, 2016, Scattering-Based Nonlocal Means SAR Despeckling, IEEE Trans. Geosci. Remote Sens., 54, 3574, 10.1109/TGRS.2016.2520309

Deledalle, 2010, NL-InSAR: Nonlocal Interferogram Estimation, IEEE Trans. Geosci. Remote Sens., 49, 1441, 10.1109/TGRS.2010.2076376

Chen, 2010, Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach, IEEE Trans. Geosci. Remote Sens., 49, 1744, 10.1109/TGRS.2010.2087763

Sica, 2015, Nonlocal Adaptive Multilooking in SAR Multi- pass Differential Interferometry, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 1727, 10.1109/JSTARS.2015.2421554

Fornaro, 1997, Global and local phase-unwrapping techniques: A comparison, J. Opt. Soc. Am. A, 14, 2702, 10.1364/JOSAA.14.002702

Goldstein, 1988, Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Sci., 23, 713, 10.1029/RS023i004p00713

Zebker, 1997, Phase Unwrapping Algorithms for Radar Interferometry: Residue-Cut, Least Squares, and Synthesis Algorithms, JOSA-A, 15, 586, 10.1364/JOSAA.15.000586

Su, 2004, Reliability-guided phase unwrapping algorithm: A review, Opt. Lasers Eng., 42, 245, 10.1016/j.optlaseng.2003.11.002

Ghiglia, 1994, Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A, 11, 107, 10.1364/JOSAA.11.000107

Fornaro, 1999, A two-dimensional region growing least squares phase unwrapping algorithm for interferometric SAR processing, IEEE Trans. Geosci. Remote Sens., 37, 2215, 10.1109/36.789618

Pritt, 1996, Phase unwrapping by means of multigrid techniques for interferometric SAR, IEEE Trans. Geosci. Remote Sens., 34, 728, 10.1109/36.499752

Flynn, 1997, Two-dimensional phase unwrapping with minimum weighted discontinuity, J. Opt. Soc. Am. A, 14, 2692, 10.1364/JOSAA.14.002692

Costantini, 1998, A novel phase unwrapping method based on network programming, IEEE Trans. Geosci. Remote Sens., 36, 813, 10.1109/36.673674

Pritt, 1994, Least-squares two-dimensional phase unwrapping using FFT’s, IEEE Trans. Geosci. Remote Sens., 32, 706, 10.1109/36.297989

Costantini, M., Falco, S., Malvarosa, F., Minati, F., Trillo, F., and Vecchioli, F. (2009, January 4). A general formulation for robust integration of finite differences and phase unwrapping on sparse multidimensional domains. Proceedings of the Fringe 2019 workshop, Frascati, Italy.

Hooper, 2007, Phase unwrapping in three dimensions with application to InSAR time series, J. Opt. Soc. Am. A, 24, 2737, 10.1364/JOSAA.24.002737

Pepe, 2006, On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 44, 2374, 10.1109/TGRS.2006.873207

Li, 2019, A Triangle-Oriented Spatial–Temporal Phase Unwrapping Algorithm Based on Irrotational Constraints for Time-Series InSAR, IEEE Trans. Geosci. Remote Sens., 57, 10263, 10.1109/TGRS.2019.2933024

Benoit, 2020, CorPhU: An algorithm based on phase closure for the correction of unwrapping errors in SAR interferometry, Geophys. J. Int., 221, 1959, 10.1093/gji/ggaa120

Yu, 2013, A Fast Phase Unwrapping Method for Large-Scale Interferograms, IEEE Trans. Geosci. Remote Sens., 51, 4240, 10.1109/TGRS.2012.2229284

Gao, 2019, Phase unwrapping method based on parallel local minimum reliability dual expanding for large-scale data, J. Appl. Remote Sens., 13, 038506, 10.1117/1.JRS.13.038506

Golub, 1970, Singular value decomposition and least squares solutions, Numer. Math., 14, 403, 10.1007/BF02163027

Akbari, 2012, Improved Ground Subsidence Monitoring Using Small Baseline SAR Interferograms and a Weighted Least Squares Inversion Algorithm, IEEE Geosci. Remote Sens. Lett., 9, 437, 10.1109/LGRS.2011.2170952

Hu, 2013, Spatial-temporal surface deformation of Los Angeles over 2003–2007 from weighted least squares DInSAR, Int. J. Appl. Earth Obs. Geoinf., 21, 484

Ansari, 2018, Efficient Phase Estimation for Interferogram Stacks, IEEE Trans. Geosci. Remote Sens., 56, 4109, 10.1109/TGRS.2018.2826045

Pepe, 2015, Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms, IEEE Trans. Geosci. Remote Sens., 53, 4394, 10.1109/TGRS.2015.2396875

Ansari, 2021, Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 59, 1285, 10.1109/TGRS.2020.3003421

Michel, 1999, Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake, Geophys. Res. Lett., 26, 875, 10.1029/1999GL900138

Bechor, N.B.D., and Zebker, H.A. (2006). Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett., 33.

Dalaison, 2020, A Kalman Filter Time Series Analysis Method for InSAR, J. Geophys. Res. Solid Earth, 125, 7, 10.1029/2019JB019150

Mitchell, T. (1997). Machine Learning, McGraw Hill. OCLC 36417892.

Gaddes, 2018, Blind signal separation methods for InSAR: The potential to automatically detect and monitor signals of volcanic deformation, J. Geophys. Res. Solid Earth, 123, 10226, 10.1029/2018JB016210

Cigna, 2012, Semi-automated extraction of Deviation Indexes (DI) from satellite Persistent Scatterers time series: Tests on sedimentary volcanism and tectonically-induced motions, Nonlinear Process. Geophys., 19, 643, 10.5194/npg-19-643-2012

Biggs, 2020, How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade, Nat. Commun., 11, 3863, 10.1038/s41467-020-17587-6

Lacassin, 2020, Rapid collaborative knowledge building via Twitter after significant geohazard events, Geosci. Commun., 3, 129, 10.5194/gc-3-129-2020

Torres, 2012, GMES Sentinel-1 mission, Remote Sens. Environ., 120, 9, 10.1016/j.rse.2011.05.028

Li, 2020, Time-Series Analysis of Subsidence in Nanning, China, Based on Sentinel-1A Data by the SBAS InSAR Method, PFG-J. Photogramm. Remote Sens. Geoinf. Sci., 88, 291

Dai, 2016, Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry, Remote Sens. Environ., 186, 501, 10.1016/j.rse.2016.09.009

Grandin, 2016, Three-dimensional displacement field of the 2015 M(w)8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry, Geophys. Res. Lett., 43, 2552, 10.1002/2016GL067954

Zeni, 2011, Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy, J. Geophys. Eng., 8, S1, 10.1088/1742-2132/8/3/S01

Werninghaus, 2009, The TerraSAR-X Mission and System Design, IEEE Trans. Geosci. Remote Sens., 48, 606, 10.1109/TGRS.2009.2031062

Caltagirone, F. (October, January 30). Status, results and perspectives of the Italian Earth Observation SAR COSMO–SkyMed. Proceedings of the 2009 European Radar Conference (EuRAD), Rome, Italy.

González, A.S., Labriola, M., Soteras, J.C., and Palma, J.S. (2011, January 26–30). PAZ instrument design and performance. Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea.

Serva, S., Fiorentino, C., and Covello, F. (2015, January 26–31). The COSMO-SkyMed Seconda Generazione key improvements to respond to the user community needs. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.

Lacoste, H. (2003, January 8–12). SAOCOM-1 Argentina L Band SAR Mission Overview. Proceedings of the 2nd Workshop on Coastal and Marine Applications of SAR, Svalbard, Norway. Available online: https://earth.esa.int/workshops/cmasar_2003/papers/E27gira.pdf.

Caltagirone, 2014, The COSMO-SkyMed Dual Use Earth Observation Program: Development, Qualification, and Results of the Commissioning of the Overall Constellation, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 2754, 10.1109/JSTARS.2014.2317287

Rosen, P.A., and Kim, Y. (2014, January 3–5). An L- and S-band SAR Mission Concept for Earth Science and Applications. Proceedings of the EUSAR 2014, 10th European Conference on Synthetic Aperture Radar, Berlin, Germany.

Sun, J., Yu, W., and Deng, Y. (2017). The SAR Payload Design and Performance for the GF-3 Mission. Sensors, 17.

Fujiwara, 2020, Detection of triggered shallow slips caused by large earthquakes using L-band SAR interferometry, Earth Planets Space, 72, 119, 10.1186/s40623-020-01239-6

Wang, 2015, Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data, Geophys. Res. Lett., 42, 7452, 10.1002/2015GL065201

Rousset, 2016, An aseismic slip transient on the North Anatolian Fault, Geophys. Res. Lett., 43, 3254, 10.1002/2016GL068250

Cheloni, 2017, Aseismic transient during the 2010-2014 seismic swarm: Evidence for longer recurrence of M ≥ 6.5 earthquakes in the Pollino gap (Southern Italy)?, Sci. Rep., 7, 576, 10.1038/s41598-017-00649-z

Zheng, 2020, Aseismic deformation during the 2014 Mw 5.2 Karonga earthquake, Malawi, from satellite interferometry and earthquake source mechanisms, Geophys. Res. Lett., 47, e2020GL090930, 10.1029/2020GL090930

De Novellis, V., Reale, D., Adinolfi, G.M., Sansosti, E., and Convertito, V. (2021). Geodetic Model of the March 2021 Thessaly Seismic Sequence Inferred from Seismological and InSAR Data. Remote Sens., 13.

Bato, 2021, The 2020 eruption and large lateral dike emplacement at Taal volcano, Philippines: Insights from satellite radar data, Geophys. Res. Lett., 48, e2021GL092803, 10.1029/2021GL092803

Pagli, 2012, Shallow axial magma chamber at the slow-spreading Erta Ale Ridge, Nat. Geosci., 5, 284, 10.1038/ngeo1414

Rivera, 2017, Ground deformation before the 2015 eruptions of Cotopaxi volcano detected by InSAR, Geophys. Res. Lett., 44, 6607, 10.1002/2017GL073720

Hamlyn, 2018, What causes subsidence following the 2011 eruption at Nabro (Eritrea)?, Prog. Earth Planet. Sci., 5, 31, 10.1186/s40645-018-0186-5

Ruch, 2013, Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability?, J. Geophys. Res. Solid Earth, 118, 4398, 10.1002/jgrb.50281

Wauthier, 2020, Unraveling long-term volcano flank instability at Pacaya Volcano, Guatemala, using satellite geodesy, J. Volcanol. Geotherm. Res., 410, 107147

Tofani, 2013, Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring, Remote Sens., 5, 1045, 10.3390/rs5031045

Cascini, 2010, Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales, Eng. Geol., 112, 29, 10.1016/j.enggeo.2010.01.003

Rott, 1999, Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria, Geophys. Res. Lett., 26, 1629, 10.1029/1999GL900262

Strozzi, 2006, Analysis of the Terrain Displacement Along a Funicular by SAR Interferometry, IEEE Geosci. Remote Sens. Lett., 3, 15, 10.1109/LGRS.2005.855072

Rignot, 1996, Mapping of glacial motion and surface topography of Hielo Patag’onico Norte, Chile, using satellite SAR L-band interferometry data, Ann. Glaciol., 23, 209, 10.3189/S026030550001346X

Michel, 1999, Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: Comparison of the phase correlation method with radar interferometry, J. Glaciol., 45, 93, 10.3189/S0022143000003075

Colesanti, 2006, Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry, Eng. Geol., 88, 173, 10.1016/j.enggeo.2006.09.013

Herrera, 2013, Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees), Remote Sens. Environ., 128, 31, 10.1016/j.rse.2012.09.020

Riedel, 2008, InSAR processing for the recognition of landslides, Adv. Geosci., 14, 189, 10.5194/adgeo-14-189-2008

Hilley, 2004, Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis, Science, 304, 1952, 10.1126/science.1098821

Yin, 2010, Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China, Landslides, 7, 359, 10.1007/s10346-010-0225-9

Bovenga, 2006, Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas, Eng. Geol., 88, 218, 10.1016/j.enggeo.2006.09.015

Cascini, 2009, Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas, ISPRS J. Photogramm. Remote Sens., 64, 598, 10.1016/j.isprsjprs.2009.05.003

Greif, 2011, Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia, Environ. Earth Sci., 66, 1585, 10.1007/s12665-011-0951-x

Fialko, 2000, Deformation and seismicity in the Coso geothermal area, Inyo County, California: Observations and modeling using satellite radar interferometry, J. Geophys. Res., 105, 21781, 10.1029/2000JB900169

Zhong, 2019, Experimental Study on the Effects of Unloading Normal Stress on Shear Mechanical Behaviour of Sandstone Containing a Parallel Fissure Pair, Rock Mech. Rock Eng., 53, 1647, 10.1007/s00603-019-01997-0

Wu, 2021, Detecting the Deformation Anomalies Induced by Underground Construction Using Multiplatform MT-InSAR: A Case Study in To Kwa Wan Station, Hong Kong, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 9803, 10.1109/JSTARS.2021.3113672

Staniewicz, 2020, InSAR Reveals Complex Surface Deformation Patterns Over an 80,000 km2 Oil—Producing Region in the Permian Basin, Geophys. Res. Lett., 47, e2020GL090151, 10.1029/2020GL090151

Pritchard, 2018, Towards coordinated regional multi-satellite InSAR volcano observations: Results from the Latin America pilot project, J. Appl. Volcanol., 7, 5, 10.1186/s13617-018-0074-0

Brancato, 2018, Separating the Influence of Vegetation Changes in Polarimetric Differential SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 56, 6871, 10.1109/TGRS.2018.2845368

Mohammadimanesh, 2018, Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands, ISPRS J. Photogramm. Remote Sens., 142, 78, 10.1016/j.isprsjprs.2018.05.009

Blaes, 2015, Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images, Remote Sens. Environ., 88, 374, 10.1016/j.rse.2003.08.008

Kim, 2013, Interferometric Coherence Analysis of the Everglades Wetlands, South Florida, IEEE Trans. Geosci. Remote Sens., 51, 5210, 10.1109/TGRS.2012.2231418

Jung, 2016, Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection, IEEE Trans. Geosci. Remote Sens., 54, 5765, 10.1109/TGRS.2016.2572166

2009, Potentials of polarimetric SAR interferometry for agriculture monitoring, Radio Sci., 44, 1

Gama, 2020, Evaluation of polarimetry and interferometry of sentinel-1A SAR data for land use and land cover of the Brazilian Amazon Region, Geocarto Int., 1, 1

Gomba, 2018, Vegetation and soil moisture inversion from SAR closure phases: First experiments and results, Remote Sens. Environ., 217, 562, 10.1016/j.rse.2018.08.034

Parizzi, 2013, A SAR Interferometric Model for Soil Moisture, IEEE Trans. Geosci. Remote Sens., 52, 418

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison-Wesley.

Dongarra, J.J., Foster, I., and Fox, G.C. (2003). Sourcebook of Parallel Computing, Morgan Kaufman Publishers.

Mattson, T.G., and Sanders, B.A. (2005). Patterns for Parallel Programming, Addison-Wesley.

(2021, October 30). Top 500—The List. Available online: https://www.top500.org.

El-Rewini, H., and Abd-El-Barr, M. (2005). Advanced Computer Architecture and Parallel Processing, John Wiley & Sons, Inc.

Gebali, F. (2011). Algorithms and Parallel Computing, John Wiley & Sons, Inc.

Chapman, B., Jost, G., and van der Pas, R. (2007). Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press.

(2011). NVIDIA CUDA C Programming Guide, Nvidia Corporation.

William, G. (1999). Using MPI: Portable Parallel Programming with the Message-Passing Interface, MIT Press.

Reed, 2015, Exascale computing and big data, Commun. ACM, 58, 56, 10.1145/2699414

Akl, S.G. (1989). The Design and Analysis of Parallel Algorithms, Prentice Hall.

Hager, G., and Wellein, G. (2010). Introduction to High Performance Computing for Scientists and Engineers, CRC Press.

Basili, 2008, Understanding the high-performance-computing community: A software engineer’s perspective, IEEE Softw., 25, 29, 10.1109/MS.2008.103

Abuelgasim, 2020, A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing, Remote Sens. Appl. Soc. Environ., 1, 100358

Arabas, 2014, Formula Translation in Blitz++, NumPy and Modern Fortran: A Case Study of the Language Choice Tradeoffs, Sci. Program., 22, 201

Amani, 2020, Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 5326, 10.1109/JSTARS.2020.3021052

(2021, October 30). Magellan: A Cloud Computing Testbed, Available online: https://www.nersc.gov/research-and-development/archive/magellan/.

Yelick, K., Coghlan, S., Draney, B., and Canon, R.S. (2011). The Magellan Report on Cloud Computing for Science, US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR).

Sadooghi, 2015, Understanding the performance and potential of cloud computing for scientific applications, IEEE Trans. Cloud Comput., 5, 358, 10.1109/TCC.2015.2404821

Taboada, 2013, Performance analysis of HPC applications in the cloud, Futur. Gener. Comput. Syst., 29, 218, 10.1016/j.future.2012.06.009

Gupta, A., Kale, L.V., Gioachin, F., March, V., Suen, C.H., Lee, B.S., and Milojicic, D. (2013, January 2–5). The who, what, why, and how of high performance computing in the cloud. Proceedings of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, Bristol, UK.

Shaowen, 2010, A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis, Ann. Assoc. Am. Geogr., 100, 535, 10.1080/00045601003791243

Emeras, J., Varrette, S., and Bouvry, P. (July, January 27). Amazon Elastic Compute Cloud (EC2) vs. In-House HPC Platform: A Cost Analysis. Proceedings of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA.

Kehrer, S., and Blochinger, W. (2019, January 17–23). A Survey on Cloud Migration Strategies for High Performance. Proceedings of the 13th Advanced Summer School on Service-, Crete, Greece.

Kehrer, 2019, Elastic Parallel Systems for High Performance Cloud Computing: State-of-the-Art and Future Directions, Parallel Process. Lett., 29, 1950006, 10.1142/S0129626419500063

Li, G., Woo, J., and Lim, S.B. (2021). HPC Cloud Architecture to Reduce HPC Workflow Complexity in Containerized Environments. Appl. Sci., 11.

Guilherme, 2016, An analysis of public clouds elasticity in the execution of scientific applications: A survey, J. Grid Comput., 14.2, 193

Imperatore, P., Pepe, A., Berardino, P., and Lanari, R. (2015, January 26–31). A segmented block processing approach to focus synthetic aperture radar data on multicore processors. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.

Imperatore, 2016, Spaceborne Synthetic Aperture Radar Data Focusing on Multicore-Based Architectures, IEEE Trans. Geosci. Remote Sens., 54, 4712, 10.1109/TGRS.2016.2550201

Peternier, 2017, Near-real-time focusing of ENVISAT ASAR Stripmap and Sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology, Remote Sens. Environ., 202, 45, 10.1016/j.rse.2017.04.006

Peternier, A. Performance analysis of GPU-based SAR and interferometric SAR image processing. Proceedings of the Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

Romano, 2020, Designing a GPU-parallel algorithm for raw SAR data compression: A focus on parallel performance estimation, Futur. Gener. Comput. Syst., 112, 695, 10.1016/j.future.2020.06.027

Zhang, F., Li, G., Li, W., Hu, W., and Hu, Y. (2016). Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative computing. Sensors, 16.

Denham, 2015, Synthetic aperture radar signal processing in parallel using GPGPU, J. Supercomput., 72, 451, 10.1007/s11227-015-1572-z

Frey, O., Werner, C.L., and Wegmuller, U. (2014, January 13–18). GPU-based parallelized time-domain back-projection processing for Agile SAR platforms. Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada.

Wijayasiri, 2018, Dynamic Data-Driven SAR Image Reconstruction Using Multiple GPUs, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 4326, 10.1109/JSTARS.2018.2873198

Giancaspro, A., Candela, L., Lopint, E., Loré, V., and Milillo, G. (2002, January 24–28). SAR images co-registration parallel implementation. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada.

Passerone, C., Sansoé, C., Maggiora, R., Avolio, C., Zavagli, M., Minati, F., and Costantini, M. (2014, January 1–8). Highly parallel image co-registration techniques using GPUs. Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, Montana.

Liu, 2020, Accelerating SAR Image Registration Using Swarm-Intelligent GPU Parallelization, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 5694, 10.1109/JSTARS.2020.3024899

Shi, Y., Zhu, X., and Bamler, R. (2015, January 8–10). Optimized parallelization of non-local means filter for image noise reduction of InSAR image. Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China.

Zimmer, 2016, CUDA Optimization of Non-local Means Extended to Wrapped Gaussian Distributions for Interferometric Phase Denoising, Procedia Comput. Sci., 80, 166, 10.1016/j.procs.2016.05.307

Mukherjee, 2020, An Unsupervised Generative Neural Approach for InSAR Phase Filtering and Coherence Estimation, IEEE Geosci. Remote Sens. Lett., 18, 1971, 10.1109/LGRS.2020.3010504

Imperatore, 2015, Multichannel Phase Unwrapping: Problem Topology and Dual-Level Parallel Computational Model, IEEE Trans. Geosci. Remote Sens., 53, 5774, 10.1109/TGRS.2015.2430619

Imperatore, P., Pepe, A., and Lanari, R. (2015, January 26–31). High-performance parallel computation of the multichannel phase unwrapping problem. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.

Huang, 2015, Parallel Branch-Cut Algorithm Based on Simulated Annealing for Large-Scale Phase Unwrapping, IEEE Trans. Geosci. Remote Sens., 53, 3833, 10.1109/TGRS.2014.2385482

Zhong, H., Tian, Z., Huang, P., and Wu, H. (2015, January 14–16). A combined phase unwrapping algorithm for InSAR interferogram in shared memory environment. Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP), Shenyang, China.

Zhenhua, W., Ma, W., Long, G., and Li, Y. (2014, January 20–22). High performance two-dimensional phase unwrapping on GPUs. Proceedings of the 11th ACM Conference on Computing Frontiers, Cagliari, Italy.

Popov, 2017, Improved phase unwrapping algorithm based on NVIDIA CUDA, Program. Comput. Softw., 43, 24, 10.1134/S0361768817010054

Marinkovic, P.S., Hanssen, R.F., and Kampes, B.M. (2004, January 6–10). Utilization of parallelization algorithms in InSAR/PS-InSAR processing. Proceedings of the 2004 Envisat & ERS Symposium, Salzburg, Austria.

Costantini, 2017, Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data, Remote Sens. Environ., 202, 250, 10.1016/j.rse.2017.07.017

Casu, 2014, SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 3285, 10.1109/JSTARS.2014.2322671

Imperatore, P. (2014, January 3–18). Scalable performance analysis of the parallel SBAS-DInSAR algorithm. Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada.

Zhang, W., You, H., Tang, Y., Wang, C., and Zhang, H. (2021, January 22–24). High Performance Computing for CS-InSAR Data Processing. Proceedings of the 2021 SAR in Big Data Era (BIGSARDATA), Nanjing China.

Tang, Y., Wang, C., Zhang, H., You, H., Zhang, W., Duan, W., Wang, J., and Dong, L. (2021, January 11–16). Parallel CS-InSAR for Mapping Nationwide Deformation in China. Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium.

Duan, W., Zhang, H., Wang, C., and Tang, Y. (April, January 29). A parallel multi-temporal InSAR method for Sentinel-1 large scale deformation monitoring. Proceedings of the EUSAR 2021, 13th European Conference on Synthetic Aperture Radar, Online.

David, 2019, OSARIS, the “open source SAR investigation system” for automatized parallel InSAR processing of sentinel-1 time series data with special emphasis on cryosphere applications, Front. Earth Sci., 7, 172, 10.3389/feart.2019.00172

Guerriero, A., Anelli, V.W., Pagliara, A., Nutricato, R., and Nitti, D.O. (2015, January 26–31). Efficient implementation of InSAR time-consuming algorithm kernels on GPU environment. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.

Reza, 2017, Accelerating Persistent Scatterer Pixel Selection for InSAR Processing, IEEE Trans. Parallel Distrib. Syst., 29, 16, 10.1109/TPDS.2017.2706291

Yu, 2019, GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data, Comput. Geosci., 129, 12, 10.1016/j.cageo.2019.04.010

Costantini, M., Minati, F., Ciminelli, M.G., Ferretti, A., and Costabile, S. (2015, January 26–31). Nationwide ground deformation monitoring by persistent scatterer interferometry. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.

Motagh, 2017, Sentinel-1 InSAR over Germany: Large-scale interferometry, atmospheric effects, and ground deformation mapping, ZV: Z. Geodäsie Geoinf. Landmanag., 4, 245

Duan, W., Zhang, H., Wang, C., and Tang, Y. (2020). Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Mapping. Remote Sens., 12.

Alain, D., Robert, Y., and Vivien, F. (2012). Scheduling and Automatic Parallelization, Springer Science & Business Media.

Galve, J.P., Pérez-Peña, J.V., Azañón, J.M., Closson, D., Caló, F., Reyes-Carmona, C., Jabaloy, A., Ruano, P., Mateos, R.M., and Notti, D. (2017). Evaluation of the SBAS InSAR service of the European space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens., 9.

Bru, G., Ezquerro, P., Guardiola-Albert, C., Béjar-Pizarro, M., Herrera, G., Tomás, R., Navarro-Hernández, M.I., López-Sanchez, J.M., Ören, A.H., and Çaylak, B. (2021, January 18–21). Land Subsidence Analysis Caused by Aquifer Overexploitation using GEP Tools: A-DInSAR on the Cloud. Proceedings of the 3rd Congress in Geomatics Engineering, Valencia, Spain.

Crosetto, M., Solari, L., Mróz, M., Balasis-Levinsen, J., Casagli, N., Frei, M., Oyen, A., Moldestad, D.A., Bateson, L., and Guerrieri, L. (2020). The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens., 12.

(2021, October 30). InSAR Norway WebGIS. Available online: https://insar.ngu.no/.

(2021, October 30). Available online: https://bodenbewegungsdienst.bgr.de/.

Thollard, F., Clesse, D., Doin, M.-P., Donadieu, J., Durand, P., Grandin, R., Lasserre, C., Laurent, C., Deschamps-Ostanciaux, E., and Pathier, E. (2021). FLATSIM: The ForM@Ter LArge-Scale Multi-Temporal Sentinel-1 InterferoMetry Service. Remote Sens., 13.

Papadopoulos, 2019, Methodological Principles for Reproducible Performance Evaluation in Cloud Computing, IEEE Trans. Softw. Eng., 47, 1528, 10.1109/TSE.2019.2927908

Asch, 2018, Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry, Int. J. High Perform. Comput. Appl., 32, 435, 10.1177/1094342018778123

Chen, 2018, Post-exascale supercomputing: Research opportunities abound, Front. Inf. Technol. Electron. Eng., 19.10, 1203, 10.1631/FITEE.1830000