Can GNSS-R Detect Abrupt Water Level Changes?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jin, S., Cardellach, E., and Xie, F. (2014). GNSS Remote Sensing: Theory, Methods and Applications, Springer. Remote Sensing and Digital Image Processing.
Anderson, 2000, Determination of Water Level and Tides Using Interferometric Observations of GPS Signals, J. Atmos. Ocean. Technol., 17, 1118, 10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2
Geremia-Nievinski, F., Makrakis, M., and Tabibi, S. (2020). Inventory of published GNSS-R stations, with focus on ocean as target and SNR as observable. Zenodo.
Larson, 2016, A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver versus a Conventional Tide Gauge, J. Atmos. Ocean. Technol., 34, 295, 10.1175/JTECH-D-16-0101.1
Strandberg, 2016, Improving GNSS-R sea level determination through inverse modeling of SNR data, Radio Sci., 51, 1286, 10.1002/2016RS006057
Tabibi, 2020, Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland, Remote Sens. Environ., 248, 111959, 10.1016/j.rse.2020.111959
Hobiger, 2020, SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign, J. Geod., 94, 70, 10.1007/s00190-020-01387-3
Larson, 2016, GPS interferometric reflectometry: Applications to surface soil moisture, snow depth, and vegetation water content in the western United States, Wires Water, 3, 775, 10.1002/wat2.1167
Nievinski, 2014, Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation, IEEE Trans. Geosci. Remote Sens., 52, 6564, 10.1109/TGRS.2013.2297688
Small, 2016, Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 4759, 10.1109/JSTARS.2015.2504527
Tabibi, 2015, Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications, Adv. Space Res., 55, 1104, 10.1016/j.asr.2014.11.019
Tabibi, 2017, Statistical Comparison and Combination of GPS, GLONASS, and Multi-GNSS Multipath Reflectometry Applied to Snow Depth Retrieval, IEEE Trans. Geosci. Remote Sens., 55, 3773, 10.1109/TGRS.2017.2679899
Marcos, 2016, Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, 64, 10.1002/2015RG000502
Soulat, F., Caparrini, M., Germain, O., Lopez-Dekker, P., Taani, M., and Ruffini, G. (2004). Sea state monitoring using coastal GNSS-R. Geophys. Res. Lett., 31.
Löfgren, J.S., Haas, R., Scherneck, H.-G., and Bos, M.S. (2011). Three months of local sea level derived from reflected GNSS signals. Radio Sci., 46.
Larson, 2013, The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska, IEEE Geosci. Remote Sens. Lett., 10, 1200, 10.1109/LGRS.2012.2236075
Haas, 2014, Sea level measurements using multi-frequency GPS and GLONASS observations, EURASIP J. Adv. Signal Process., 2014, 50, 10.1186/1687-6180-2014-50
Roussel, 2015, Sea level monitoring and sea state estimate using a single geodetic receiver, Remote Sens. Environ., 171, 261, 10.1016/j.rse.2015.10.011
Williams, 2017, Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites, J. Geophys. Res. Solid Earth, 122, 2310, 10.1002/2016JB013612
(2020, May 25). Société Electrique de l’Our. Available online: http://www.seo.lu/.
Rittmeyer, A.G. (2020, June 24). MPW2Q High-Precision Pressure Gauge. Available online: https://rittmeyer.com/en/instrumentation/applications/overview/.
Nievinski, 2014, Forward Modeling of GPS Multipath for Near-surface Reflectometry and Positioning Applications, GPS Solut., 18, 309, 10.1007/s10291-013-0331-y
Nievinski, 2014, Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part I: Formulation and Simulations, IEEE Trans. Geosci. Remote Sens., 52, 6555, 10.1109/TGRS.2013.2297681
Nikolaidou, 2020, Raytracing atmospheric delays in ground-based GNSS reflectometry, J. Geod., 94, 68, 10.1007/s00190-020-01390-8
Landskron, 2018, VMF3/GPT3: Refined discrete and empirical troposphere mapping functions, J Geod, 92, 349, 10.1007/s00190-017-1066-2