Cảm Biến Từ Xa UAV Để Phân Địa Thực Vật Đô Thị Sử Dụng Phương Pháp Rừng Ngẫu Nhiên và Phân Tích Kết Cấu
Tóm tắt
Cảm biến từ xa không người lái (UAV) có tiềm năng lớn trong việc lập bản đồ thực vật ở các cảnh quan đô thị phức tạp nhờ vào hình ảnh phân giải cực cao được thu thập ở độ cao thấp. Do hạn chế về khả năng tải trọng, các máy ảnh kỹ thuật số sẵn có thường được sử dụng trên UAV cỡ vừa và nhỏ. Hạn chế về độ phân giải phổ thấp trong các máy ảnh kỹ thuật số để lập bản đồ thực vật có thể được giảm thiểu bằng cách kết hợp các đặc trưng kết cấu và các bộ phân loại mạnh mẽ. Rừng Ngẫu Nhiên đã được sử dụng rộng rãi trong các ứng dụng cảm biến từ xa vệ tinh, nhưng việc sử dụng nó trong phân loại hình ảnh UAV chưa được tài liệu ghi chép đầy đủ. Mục tiêu của bài báo này là đề xuất một phương pháp lai sử dụng Rừng Ngẫu Nhiên và phân tích kết cấu để phân biệt chính xác các lớp đất che phủ của các khu vực thực vật đô thị, và phân tích cách độ chính xác phân loại thay đổi với kích thước cửa sổ kết cấu. Sáu phép đo kết cấu bậc hai có tương quan thấp nhất đã được tính toán ở chín kích thước cửa sổ khác nhau và được thêm vào các hình ảnh RGB (Đỏ-Xanh lá-Xanh dương) gốc như dữ liệu bổ sung. Một bộ phân loại Rừng Ngẫu Nhiên bao gồm 200 cây quyết định đã được sử dụng để phân loại trong không gian tính năng phổ-kết cấu. Kết quả cho thấy như sau: (1) Rừng Ngẫu Nhiên vượt trội hơn bộ phân loại xác suất cực đại truyền thống và cho thấy hiệu suất tương tự như phân tích hình ảnh dựa trên đối tượng trong phân loại thực vật đô thị; (2) việc đưa vào các đặc trưng kết cấu đã cải thiện đáng kể độ chính xác phân loại; (3) độ chính xác phân loại có mối quan hệ hình chữ U đảo ngược với kích thước cửa sổ kết cấu. Các kết quả chứng minh rằng UAV cung cấp một nền tảng hiệu quả và lý tưởng cho việc lập bản đồ thực vật đô thị. Phương pháp lai được đề xuất trong bài báo này cho thấy hiệu suất tốt trong việc phân biệt bản đồ thực vật đô thị. Những nhược điểm của các máy ảnh kỹ thuật số sẵn có có thể được giảm thiểu bằng cách áp dụng Rừng Ngẫu Nhiên và phân tích kết cấu cùng một lúc.
Từ khóa
Tài liệu tham khảo
Nichol, 2005, Urban vegetation monitoring in Hong Kong using high resolution multispectral images, Int. J. Remote Sens., 26, 903, 10.1080/01431160412331291198
Small, 2001, Estimation of urban vegetation abundance by spectral mixture analysis, Int. J. Remote Sens., 22, 1305, 10.1080/01431160151144369
Zhang, 2010, Object-oriented method for urban vegetation mapping using IKONOS imagery, Int. J. Remote Sens., 31, 177, 10.1080/01431160902882603
Tigges, 2013, Urban vegetation classification: Benefits of multitemporal RapidEye satellite data, Remote Sens. Environ., 136, 66, 10.1016/j.rse.2013.05.001
Alonzo, 2014, Urban tree species mapping using hyperspectral and LiDAR data fusion, Remote Sens. Environ., 148, 70, 10.1016/j.rse.2014.03.018
Tooke, 2009, Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications, Remote Sens. Environ., 113, 398, 10.1016/j.rse.2008.10.005
Li, 2013, Object-based urban vegetation mapping with high-resolution aerial photography as a single data source, Int. J. Remote Sens., 34, 771, 10.1080/01431161.2012.714508
Johansen, 2007, Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification, Remote Sens. Environ., 110, 29, 10.1016/j.rse.2007.02.014
Hollaus, 2012, Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data, ISPRS J. Photogramm. Remote Sens., 67, 134, 10.1016/j.isprsjprs.2011.12.003
Powell, 2007, Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil, Remote Sens. Environ., 106, 253, 10.1016/j.rse.2006.09.005
Rosa, 2013, Land cover and impervious surface extraction using parametric and non-parametric algorithms from the open-source software R: An application to sustainable urban planning in Sicily, GISci. Remote Sens., 50, 231, 10.1080/15481603.2013.795307
Laliberte, 2009, Texture and scale in object-based analysis of subdecimeter resolution Unmanned Aerial Vehicle (UAV) imagery, IEEE Trans. Geosci. Remote Sens., 47, 761, 10.1109/TGRS.2008.2009355
Szantoi, 2013, Analyzing fine-scale wetland composition using high resolution imagery and texture features, Int. J. Appl. Earth Obs., 23, 204
Aguera, 2008, Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses, ISPRS J. Photogramm. Remote Sens., 63, 635, 10.1016/j.isprsjprs.2008.03.003
Haralick, 1973, Textural features for image classification, IEEE Trans. Syst. Man Cybern., 3, 610, 10.1109/TSMC.1973.4309314
Cleve, 2008, Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography, Comput. Environ. Urban Syst., 32, 317, 10.1016/j.compenvurbsys.2007.10.001
Yu, 2006, Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery, Photogramm. Eng. Remote Sens., 72, 799, 10.14358/PERS.72.7.799
Laliberte, 2011, Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments, Remote Sens., 3, 2529, 10.3390/rs3112529
Qin, 2014, An object-based hierarchical method for change detection using unmanned aerial vehicle images, Remote Sens., 6, 7911, 10.3390/rs6097911
Honkavaara, 2013, Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture, Remote Sens., 5, 5006, 10.3390/rs5105006
Wallace, 2012, Development of a UAV-LiDAR system with application to forest inventory, Remote Sens., 4, 1519, 10.3390/rs4061519
Hunt, 2010, Acquisition of NIR-Green-Blue digital photographs from unmanned aircraft for crop monitoring, Remote Sens., 2, 290, 10.3390/rs2010290
Rango, 2009, Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management, J. Appl. Remote Sens., 3, 1
Gong, 2012, Impacts of the Wenchuan Earthquake on the Chaping River upstream channel change, Int. J. Remote Sens., 33, 3907, 10.1080/01431161.2011.636767
Colomina, 2014, Unmanned aerial systems for photogrammetry and remote sensing: A review, ISPRS J. Photogramm. Remote Sens., 92, 79, 10.1016/j.isprsjprs.2014.02.013
Pix4D. Available online:http://pix4d.com.
Anys, 1995, Evaluation of textural and multipolarization radar features for crop classification, IEEE Trans. Geosci. Remote Sens., 33, 1170, 10.1109/36.469481
Lu, 2010, Land cover classification in a complex urban-rural landscape with QuickBird imagery, Photogramm. Eng. Remote Sens., 76, 1159, 10.14358/PERS.76.10.1159
Lu, 2007, A survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens., 28, 823, 10.1080/01431160600746456
Chen, 2002, The effect of training strategies on supervised classification at different spatial resolutions, Photogramm. Eng. Remote Sens., 68, 1155
Atkinson, 2012, Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture, Remote Sens. Environ., 121, 93, 10.1016/j.rse.2011.12.003
Ghosh, 2014, Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion, Appl. Geol., 48, 31
Puissant, 2014, Object-oriented mapping of urban trees using random forest classifiers, Int. J. Appl. Earth Obs., 26, 235
Mishra, 2014, Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with random forest, Int. J. Remote Sens., 35, 1175, 10.1080/01431161.2013.876120
Hayes, 2014, High-resolution land cover classification using random forest, Remote Sens. Lett., 5, 112, 10.1080/2150704X.2014.882526
Ghimire, 2012, An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67, 93, 10.1016/j.isprsjprs.2011.11.002
Xu, 2014, A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery, Remote Sens. Environ., 141, 14, 10.1016/j.rse.2013.10.012
Immitzer, 2012, Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data, Remote Sens., 4, 2661, 10.3390/rs4092661
Paola, 1995, A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification, IEEE Trans. Geosci. Remote Sens., 33, 981, 10.1109/36.406684
Amini, 2010, A method for generating floodplain maps using IKONOS images and DEMs, Int. J. Remote Sens., 31, 2441, 10.1080/01431160902929230
EXELIS. Available online:http://www.exelisvis.com/ProductsServices/ENVIProducts.aspx.
Feature Extraction with Example-Based Classification Tutorial. Available online:http://www.exelisvis.com/docs/FXExampleBasedTutorial.html.