Mediators of Inflammation
0962-9351
1466-1861
Mỹ
Cơ quản chủ quản: Hindawi Publishing Corporation , HINDAWI LTD
Lĩnh vực:
ImmunologyCell Biology
Các bài báo tiêu biểu
Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
Tập 2015 Số 1 - 2015
LOX-1, OxLDL, and Atherosclerosis Oxidized low-density lipoprotein (OxLDL) contributes to the atherosclerotic plaque formation and progression by several mechanisms, including the induction of endothelial cell activation and dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation. Vascular wall cells express on their surface several scavenger receptors that mediate the cellular effects of OxLDL. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main OxLDL receptor of endothelial cells, and it is expressed also in macrophages and smooth muscle cells. LOX-1 is almost undetectable under physiological conditions, but it is upregulated following the exposure to several proinflammatory and proatherogenic stimuli and can be detected in animal and human atherosclerotic lesions. The key contribution of LOX-1 to the atherogenic process has been confirmed in animal models; LOX-1 knockout mice exhibit reduced intima thickness and inflammation and increased expression of protective factors; on the contrary, LOX-1 overexpressing mice present an accelerated atherosclerotic lesion formation which is associated with increased inflammation. In humans, LOX-1 gene polymorphisms were associated with increased susceptibility to myocardial infarction. Inhibition of the LOX-1 receptor with chemicals or antisense nucleotides is currently being investigated and represents an emerging approach for controlling OxLDL-LOX-1 mediated proatherogenic effects.
Tập 2013 - Trang 1-12 - 2013
Role of Reactive Oxygen Species in the Progression of Type 2 Diabetes and Atherosclerosis Type 2 diabetes is the most prevalent and serious metabolic disease all over the world, and its hallmarks are pancreatic -cell dysfunction and insulin resistance. Under diabetic conditions, chronic hyperglycemia and subsequent augmentation of reactive oxygen species (ROS) deteriorate -cell function and increase insulin resistance which leads to the aggravation of type 2 diabetes. In addition, chronic hyperglycemia and ROS are also involved in the development of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that ROS play an important role in the development of type 2 diabetes and atherosclerosis.
Tập 2010 - Trang 1-11 - 2010
Apocynin: Molecular Aptitudes Apocynin is a naturally occurring methoxy‐substituted catechol, experimentally used as an inhibitor of NADPH‐oxidase. It can decrease the production of superoxide () from activated neutrophils and macrophages while the ability of phagocytosis remains unaffected. The anti‐inflammatory activity of apocynin has been demonstrated in a variety of cell and animal models of inflammation. Apocynin, after metabolic conversion, inhibits the assembly of NADPH‐oxidase that is responsible for reactive oxygen species (ROS) production. It is, therefore, extensively used to reveal the role of this enzyme in cell and experimental models. Although some of the ROS serve as signaling molecules in the cells, excessive production is damaging and has been implicated to play an important role in the progression of many disease processes. This is why in many studies apocynin presents a promising potential treatment for some disorders; however, its utility with inflammatory diseases remains to be determined. Since its mode of action is not well defined, we tried to get a more precise insight into the mechanisms by which apocynin exerts its activity. Considering the anti‐inflammatory activities of apocynin, we may conclude that this compound definitely deserves further study.
Tập 2008 Số 1 - 2008
Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes In previous studies, abdominal obesity has been related to total low-grade inflammation and in some cases has resulted in insulin resistance and other metabolism related disorders such as diabetes. Quercetin is a polyphenol, which is a derivative of plants, and has been shownin vitro as well as in a few animal models to have several potential anti-inflammatory as well as anticarcinogenic applications. The substance has also been shown to aid in the attenuation of lipid peroxidation, platelet aggregation, and capillary permeability. However, further research is called for to gain a better understanding of how quercetin is able to provide these beneficial effects. This manuscript reviewed quercetin’s anti-inflammatory properties in relation to obesity and type 2 diabetes.
Tập 2016 - Trang 1-5 - 2016
Scorpion Venom and the Inflammatory Response Scorpion venoms consist of a complex of several toxins that exhibit a wide range of biological properties and actions, as well as chemical compositions, toxicity, and pharmacokinetic and pharmacodynamic characteristics. These venoms are associated with high morbility and mortality, especially among children. Victims of envenoming by a scorpion suffer a variety of pathologies, involving mainly both sympathetic and parasympathetic stimulation as well as central manifestations such as irritability, hyperthermia, vomiting, profuse salivation, tremor, and convulsion. The clinical signs and symptoms observed in humans and experimental animals are related with an excessive systemic host inflammatory response to stings and stings, respectively. Although the pathophysiology of envenomation is complex and not yet fully understood, venom and immune responses are known to trigger the release of inflammatory mediators that are largely mediated by cytokines. In models of severe systemic inflammation produced by injection of high doses of venom or venoms products, the increase in production of proinflammatory cytokines significantly contributes to immunological imbalance, multiple organ dysfunction and death. The cytokines initiate a cascade of events that lead to illness behaviors such as fever, anorexia, and also physiological events in the host such as activation of vasodilatation, hypotension, and increased of vessel permeability.
Tập 2010 - Trang 1-16 - 2010
Leptin Enhances Synthesis of Proinflammatory Mediators in Human Osteoarthritic Cartilage—Mediator Role of NO in Leptin-Induced<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>PGE</mml:mtext><mml:mn mathvariant="bold">2</mml:mn></mml:msub></mml:math>, IL-6, and IL-8 Production Obesity is an important risk factor for osteoarthritis (OA) in weight-bearing joints, but also in hand joints, pointing to an obesity-related metabolic factor that influences on the pathogenesis of OA. Leptin is an adipokine regulating energy balance, and it has recently been related also to arthritis and inflammation as a proinflammatory factor. In the present paper, the effects of leptin on human OA cartilage were studied. Leptin alone or in combination with IL-1 enhanced the expression of iNOS and COX-2, and production of NO,PGE 2 , IL-6, and IL-8. The results suggest that the effects of leptin are mediated through activation of transcription factor nuclear factorκ B (NF-κ B) and mitogen-activated protein kinase (MAPK) pathway c-JunNH 2 -terminal kinase (JNK). Interestingly, inhibition of leptin-induced NO production with a selective iNOS inhibitor 1400 W inhibited also the production of IL-6, IL-8, andPGE 2 , and this was reversed by exogenously added NO-donor SNAP, suggesting that the effects of leptin on IL-6, IL-8, andPGE 2 production are dependent on NO. These findings support the idea of leptin as a factor enhancing the production of proinflammatory factors in OA cartilage and as an agent contributing to the obesity-associated increased risk for osteoarthritis.
Tập 2009 - Trang 1-10 - 2009
Cellular and Molecular Connections between Autophagy and Inflammation Autophagy is an intracellular catabolic pathway essential for the recycling of proteins and larger substrates such as aggregates, apoptotic corpses, or long‐lived and superfluous organelles whose accumulation could be toxic for cells. Because of its unique feature to engulf part of cytoplasm in double‐membrane cup‐shaped structures, which further fuses with lysosomes, autophagy is also involved in the elimination of host cell invaders and takes an active part of the innate and adaptive immune response. Its pivotal role in maintenance of the inflammatory balance makes dysfunctions of the autophagy process having important pathological consequences. Indeed, defects in autophagy are associated with a wide range of human diseases including metabolic disorders (diabetes and obesity), inflammatory bowel disease (IBD), and cancer. In this review, we will focus on interrelations that exist between inflammation and autophagy. We will discuss in particular how mediators of inflammation can regulate autophagy activity and, conversely, how autophagy shapes the inflammatory response. Impact of genetic polymorphisms in autophagy‐related gene on inflammatory bowel disease will be also discussed.
Tập 2015 Số 1 - 2015
Relationship between Periodontitis and Rheumatoid Arthritis: Review of the Literature Periodontitis (PD) and rheumatoid arthritis (RA) are immunoinflammatory diseases where leukocyte infiltration and inflammatory mediators induce alveolar bone loss, synovitis, and joint destruction, respectively. Thus, we reviewed the relationship between both diseases considering epidemiological aspects, mechanical periodontal treatment, inflammatory mediators, oral microbiota, and antibodies, using the keywords “periodontitis” and “rheumatoid arthritis” in PubMed database between January 2012 and March 2015, resulting in 162 articles. After critical reading based on titles and abstracts and following the inclusion and exclusion criteria, 26 articles were included. In the articles, women over 40 years old, smokers and nonsmokers, mainly constituted the analyzed groups. Eight studies broached the epidemiological relationship with PD and RA. Four trials demonstrated that the periodontal treatment influenced the severity of RA and periodontal clinical parameters. Nine studies were related with bacteria influence in the pathogenesis of RA and the presence of citrullinated proteins, autoantibodies, or rheumatoid factor in patients with PD and RA. Five studies investigated the presence of mediators of inflammation in PD and RA. In summary, the majority of the articles have confirmed that there is a correlation between PD and RA, since both disorders have characteristics in common and result from an imbalance in the immunoinflammatory response.
Tập 2015 Số 1 - 2015
Quercetin Protects against Obesity-Induced Skeletal Muscle Inflammation and Atrophy Skeletal muscle inflammation and atrophy are closely associated with metabolic impairment such as insulin resistance. Quercetin, a natural polyphenol flavonoid, is known to elicit anti-inflammatory and antioxidant activities. In this study, we investigated its effect on obesity-induced skeletal muscle inflammation and atrophy in mice. Male C57BL/6 mice were fed a regular diet, a high-fat diet (HFD), and an HFD supplemented with quercetin for nine weeks. Quercetin reduced levels of inflammatory cytokines and macrophage accumulation in the skeletal muscle of the HFD-fed obese mice. It also reduced transcript and protein levels of the specific atrophic factors, Atrogin-1 and MuRF1, in the skeletal muscle of the HFD-fed obese mice, and protected against the reduction of muscle mass and muscle fiber size. In vitro, quercetin markedly diminished transcript levels of inflammatory receptors and activation of their signaling molecules (ERK, p38 MAPK, and NF-κ B) in cocultured myotubes/macrophages, and this was accompanied by reduced expression of the atrophic factors. Together, these findings suggest that quercetin reduces obesity-induced skeletal muscle atrophy by inhibiting inflammatory receptors and their signaling pathway. Quercetin may be useful for preventing obesity-induced muscle inflammation and sarcopenia.
Tập 2014 - Trang 1-10 - 2014