Mathematical Programming Computation

SCIE-ISI SCOPUS (2009-2023)

  1867-2949

  1867-2957

  Đức

Cơ quản chủ quản:  Springer Verlag , Springer Heidelberg

Lĩnh vực:
SoftwareTheoretical Computer Science

Các bài báo tiêu biểu

Pyomo: modeling and solving mathematical programs in Python
- 2011
William E. Hart, Jean‐Paul Watson, David L. Woodruff
Efficient block-coordinate descent algorithms for the Group Lasso
Tập 5 Số 2 - Trang 143-169 - 2013
Zhiwei Qin, Katya Scheinberg, Donald Goldfarb
Maximum-weight stable sets and safe lower bounds for graph coloring
- 2012
Stephan Held, William J. Cook, Edward C. Sewell
Alternating proximal gradient method for sparse nonnegative Tucker decomposition
Tập 7 Số 1 - Trang 39-70 - 2015
Yangyang Xu
On solving trust-region and other regularised subproblems in optimization
- 2010
Nicholas I. M. Gould, Daniel N. Robinson, HS Thorne
QPLIB: a library of quadratic programming instances
Tập 11 Số 2 - Trang 237-265 - 2019
Fabio Furini, Egidio Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nicholas I. M. Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans D. Mittelmann, Nikolaos V. Sahinidis, Stefan Vigerske, Angelika Wiegele
On fast trust region methods for quadratic models with linear constraints
Tập 7 Số 3 - Trang 237-267 - 2015
M. J. D. Powell
Abstract Quadratic models $$Q_k ( \underline{x}), \underline{x}\in \mathcal{R}^n$$ Q k ( x ̲ ) , x ̲ R n , of the objective function $$F ( \underline{x}), \underline{x}\in \mathcal{R}^n$$ F ( x ̲ ) , x ̲ R n , are used by many successful iterative algorithms for minimization, where k is the iteration number. Given the vector of variables $$\underline{x}_k \in \mathcal{R}^n$$ x ̲ k R n , a new vector $$\underline{x}_{k+1}$$ x ̲ k + 1 may be calculated that satisfies $$Q_k ( \underline{x}_{k+1} ) < Q_k ( \underline{x}_k )$$ Q k ( x ̲ k + 1 ) < Q k ( x ̲ k ) , in the hope that it provides the reduction $$F ( \underline{x}_{k+1} ) < F ( \underline{x}_k )$$ F ( x ̲ k + 1 ) < F ( x ̲ k ) . Trust region methods include a bound of the form $$\Vert \underline{x}_{k+1} - \underline{x}_k \Vert \le \Delta _k$$ x ̲ k + 1 - x ̲ k Δ k . Also we allow general linear constraints on the variables that have to hold at $$\underline{x}_k$$ x ̲ k and at $$\underline{x}_{k+1}$$ x ̲ k + 1 . We consider the construction of $$\underline{x}_{k+1}$$ x ̲ k + 1 , using only of magnitude $$n^2$$ n 2 operations on a typical iteration when n is large. The linear constraints are treated by active sets, which may be updated during an iteration, and which decrease the number of degrees of freedom in the variables temporarily, by restricting $$\underline{x}$$ x ̲ to an affine subset of $$\mathcal{R}^n$$ R n . Conjugate gradient and Krylov subspace methods are addressed for adjusting the reduced variables, but the resultant steps are expressed in terms of the original variables. Termination conditions are given that are intended to combine suitable reductions in $$Q_k ( \cdot )$$ hiện toàn bộ
On optimizing over lift-and-project closures
Tập 4 Số 2 - Trang 151-179 - 2012
Pierre Bonami