A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees

Frank E. Curtis1, Xiaocun Que1
1Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18018, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anstreicher, K.M., Lee, J.: A masked spectral bound for maximum-entropy sampling. In: MODA 7—Advances in Model-Oriented Design and Analysis, Berlin, pp. 1–10 (2004)

Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program. Ser. B 92(3), 453–480 (2002)

Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Nashua (2009)

Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects. Springer, Berlin (2006)

Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 6(1), 76–90 (1970)

Burke, J.V., Lewis, A.S., Overton, M.L.: Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 27(3), 567–584 (2002)

Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15(3), 751–779 (2005)

Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

Chartrand, R.: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data. In: IEEE International Symposium on Biomedical Imaging (ISBI’09), pp. 262–265 (2009)

Chen, X.: Smoothing methods for nonsmooth, nonconvex optimization. Math. Program. Ser. B 134(1), 71–99 (2012)

Chen, X., Niu, L., Yuan, Y.: Optimality conditions and a smoothing trust region newton method for non-Lipschitz optimization. SIAM J. Optim. 23(3), 1528–1552 (2013)

Clarke, F.H.: Optimization and nonsmooth analysis. In: Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1983)

Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim. 22(2), 474–500 (2012)

Curtis, F.E., Que, X.: An Adaptive gradient sampling algorithm for nonsmooth optimization. Optim. Methods Softw. (2012). doi: 10.1080/10556788.2012.714781

Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)

Goldfarb, D.: A family of variable metric updates derived by variational means. Math. Comput. 24(109), 23–26 (1970)

Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13(1), 14–22 (1977)

Greif, C., Varah, J.: Minimizing the condition number for small rank modifications. SIAM J. Matrix Anal. Appl. 29(1), 82–97 (2006)

Guenter, S., Sempf, M., Merkel, P., Strumberger, E., Tichmann, C.: Robust control of resistive wall modes using pseudospectra. New J. Phys. 11(053015), 1–40 (2009)

Gumussoy, S., Henrion, D., Millstone, M., Overton, ML.: Multiobjective robust control with HIFOO 2.0. In: Proceedings of the IFAC Symposium on Robust Control Design, Haifa (2009)

Haarala, M.: Large-scale nonsmooth optimization: variable metric bundle method with limited memory. PhD thesis, University of Jyväskylä (2004)

Haarala, M., Miettinen, K., Mäkelä, M.M.: New limited memory bundle method for large-scale nonsmooth optimization. Optim. Methods Softw. 19(6), 673–692 (2004)

Hare, W., Macklem, M.: Derivative-free optimization methods for finite minimax problems. Optim. Methods Softw. 28(2), 300–312 (2013)

Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax problems. Comput. Optim. Appl. 56(1), 1–38 (2013)

Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms II. In: A Series of Comprehensive Studies in Mathematics. Springer, New York (1993)

Karmitsa, N.: Limited memory bundle method (2014). http://napsu.karmitsa.fi/lmbm/ . Accessed 12 May 2014

Kiwiel, K.C.: Methods of descent for nondifferentiable optimization. In: Lecture Notes in Mathematics. Springer, New York (1985)

Kiwiel, K.C.: A method for solving certain quadratic programming problems arising in nonsmooth optimization. IMA J. Numer. Anal. 6(2), 137–152 (1986)

Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 18(2), 379–388 (2007)

Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20(4), 1983–1994 (2010)

Lemaréchal, C.: A view of line-searches. In: Optimization and Optimal Control: Proceedings of a Conference Held at Oberwolfach, March 16–22, 1980, Berlin, pp. 59–78 (1981)

Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–2), 135–163 (2013)

Lukšan, L., Tůma, M., Šiška, M., Vlček, J., Ramešová, N.: UFO 2002: Interactive System for Universal Functional Optimization. Tech. Rep. 883, Institute of Computer Science, Academy of Sciences of the Czech Republic (2002)

Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2(2), 191–207 (1977)

Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)

Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

Overton, M.L.: HANSO: hybrid algorithm for non-smooth optimization (2014). http://www.cs.nyu.edu/faculty/overton/software/hanso/ . Accessed 12 May 2014

Rockafellar, R.T.: Nonsmooth optimization. In: Birge, J.R., Murty, K.G. (eds.) Mathematical Programming: The State of the Art 1994, pp. 248–258. University of Michigan Press, Ann Arbor (1994)

Sanderson, C., Curtin, R.: Armadillo C $$++$$ + + linear algebra library (2014). http://arma.sourceforge.net/ . Accessed 12 May 2014

Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24(111), 647–656 (1970)

Skajaa, A.: Limited memory BFGS for nonsmooth optimization. Master’s thesis, New York University, New York (2010)

Vanbiervliet, J., Verheyden, K., Michiels, W., Vandewalle, S.: A nonsmooth optimisation approach for the stabilisation of time-delay systems. ESAIM Control Optim. Calc. Var. 14(3), 478–493 (2008)

Vanbiervliet, J., Vandereycken, B., Michiels, W., Vandewalle, S., Diehl, M.: The smoothed spectral abscissa for robust stability optimization. SIAM J. Optim. 20(1), 156–171 (2009)

Watson, G.A.: Data fitting problems with bounded uncertainties in the data. SIAM J. Matrix Anal. Appl. 22(4), 1274–1293 (2001)

Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions. Math. Program. Stud. 3, 145–173 (1975)