Maximum-weight stable sets and safe lower bounds for graph coloring

Stephan Held1, William J. Cook2, Edward C. Sewell3
1University of Bonn
2H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA
3Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum independent set problem. In: Proceedings of workshop on experimental algorithms, pp. 220–234 (2008)

Applegate D.L., Cook W., Dash S., Espinoza D.G.: Exact solutions to linear programming problems. Oper. Res. Lett. 35(6), 693–699 (2007)

Babel L.: A fast algorithm for the maximum weight clique problem. Computing 52, 31–38 (1994)

Balas E., Xue J.: Minimum weighted coloring of triangulated graphs with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput. 20(2), 209–221 (1991)

Balas E., Yu C.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986)

Balas, E., Niehaus, W.: A max-flow based procedure for finding heavy cliques in vertex-weighted graphs. Tech. Rep. MSRR No. 612, GSIA, Carnegie-Mellon University (1995)

Brélaz D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

Busygin S.: A new trust region technique for the maximum weight clique problem. Discret. Appl. Math. 154, 2080–2096 (2006)

Leighton F.T.: A graph coloring problem for large scheduling problems. J. Res. Natl. Bureau Stand. 84, 489–505 (1979)

Gualandi S., Malucelli F.: Exact solution of graph coloring problems via constraint programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012)

Hansen P., Labbé M., Schindl D.: Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results. Discret. Optim. 6(2), 135–147 (2009)

Held S., Sewell, E.C., Cook, W.: Exact colors project webpage (2010). http://code.google.com/p/exactcolors/

Lund C., Yannakakis M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960–981 (1994)

Malaguti E., Monaci M., Toth P.: An exact approach for the vertex coloring problem. Discret. Optim. 8(2), 174–190 (2011)

Malaguti E., Toth P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17, 1–34 (2010)

Mehrotra A., Trick M.A.: A column generation approach for graph coloring. INFORMS J. Comput. 8(4), 344–354 (1996)

Mittelmann H.: Benchmarks for optimization software (2011). http://plato.asu.edu/bench.html

Mycielski J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)

Méndez-Díaz I., Zabala P.: A branch-and-cut algorithm for graph coloring. Discret. Appl. Math. 154(5), 826–847 (2006)

Méndez-Díaz I., Zabala P.: A cutting plane algorithm for graph coloring. Discret. Appl. Math. 156(2), 159–179 (2008)

Porumbel D.C., Hao J.K., Kuntz P.: An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Comput. Oper. Res. 37(10), 1822–1832 (2010)

Sewell E.C.: A branch and bound algorithm for the stability number of a sparse graph. INFORMS J. Comput. 10(4), 438–447 (1998)

Steffy, D.E.: Topics in exact precision mathematical programming. Ph.D. thesis, Georgia Institute of Technology (2011)

Titiloye O., Crispin, A.: Graph coloring with a distributed hybrid quantum annealing algorithm. In: Proceedings of the 5th KES international conference on agent and multi-agent systems: technologies and applications, KES-AMSTA’11, Springer, Berlin, pp. 553–562 (2011)

Titiloye O., Crispin A.: Quantum annealing of the graph coloring problem. Discret. Optim. 8(2), 376–384 (2011)

Trick M.: DIMACS graph coloring instances (2002). http://mat.gsia.cmu.edu/COLOR02/

Warren, J., Hicks, I.: Combinatorial branch-and-bound for the maximum weight independent set problem. Technical report, Texas A&M University (2006)

Wu Q., Hao J.K.: Coloring large graphs based on independent set extraction. Comput. Oper. Res. 39(2), 283–290 (2012)

Zuckerman D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)

P.R.J.: A new algorithm for the maximum-weight clique problem. Electron. Notes Discret. Math. 3, 153–156 (1999)

Östergård, P.R.J., Niskanen, S.: Cliquer home page (2010). http://users.tkk.fi/pat/cliquer.html