On fast trust region methods for quadratic models with linear constraints
Tóm tắt
Từ khóa
Tài liệu tham khảo
Broyden, C.G., Dennis, J.E., Moré, J.J.: On the local and superlinear convergence of quasi-Newton methods. J. Inst. Math. Appl. 12, 223–245 (1973)
Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. MPS/SIAM Series on Optimization, SIAM (Philadelphia) (2000)
Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)
Gill, P.E., Murray, W.: Numerical Methods for Constrained Optimization. Academic Press, London (1974)
Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly quadratic programs. Math. Program. 27, 1–33 (1983)
Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)
Powell, M.J.D.: A tolerant algorithm for linearly constrained optimization calculations. Math. Program. B 45, 547–566 (1989)
Powell, M.J.D.: On trust region methods for unconstrained minimization without derivatives. Math. Program. B 97, 605–623 (2003)
Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Program. B 100, 183–215 (2004)
Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Optimization, pp. 255–297. Springer, New York (2006)
Powell, M.J.D.: Beyond symmetric Broyden for updating quadratic models in minimization without derivatives. Math. Program. B 138, 475–500 (2013)
Powell, M.J.D.: LINCOA. http://en.wikipedia.org/wiki/LINCOA (2013). Accessed 22 May 2015