On solving trust-region and other regularised subproblems in optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Absil P.-A., Baker C.G., Gallivan K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)
Absil P.-A., Mahony R., Sepulchre R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Amestoy P., Duff I.S., Pralet S., Voemel C.: Adapting a parallel sparse direct solver to SMP architectures. Parallel Comput. 29(11–12), 1645–1668 (2003)
Apostol T.M.: Mathematical Analysis. 2nd edn. Addison-Wesley, Reading (1974)
Berkes P., Wiskott L.: Analysis and interpretation of quadratic models of receptive fields. Nat. Protoc. 2(2), 400–407 (2007)
Busygin S., Ag C., Butenko S., Pardalos P.M.: A heuristic for the maximum independent set problem based on optimization of a quadratic over a sphere. J. Comb. Optim. 6(3), 287–297 (2002)
Cartis, C., Gould, N.I.M., Toint, Ph.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 51 pages (2009) doi: 10.1007/s10107-009-0286-5
Cartis C., Gould N.I.M., Toint Ph.L.: Trust-region and other regularisations of linear least-squares problems. BIT 49(1), 21–53 (2009)
Chabrillac Y., Crouzeix J.-P.: Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra Appl. 63, 283–292 (1984)
Cline A.K., Moler C.B., Stewart G.W., Wilkinson J.H.: An estimate for the condition number of a matrix. SIAM J. Numer. Anal. 16(2), 368–375 (1979)
Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Dollar, H.S.: On Taylor series approximations for trust-region and regularized subproblems in optimization. Internal Technical Report Internal-2009-1, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England (2009)
Dollar, H.S., Gould, N.I.M., Robinson, D.P.: On solving trust-region and other regularised subproblems in optimization. Technical Report RAL-TR-2009-003, Rutherford Appleton Laboratory (2009)
Duff I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30(2), 118–144 (2004)
Duff I.S., Reid J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)
Erway J.B., Gill P.E.: A subspace minimization method for the trust-region step. SIAM J. Optim. 20(3), 1439–1461 (2009)
Erway J.B., Gill P.E., Griffin J.D.: Iterative methods for finding a trust-region step. SIAM J. Optim. 20(2), 1110–1131 (2009)
Gander W.: On the Linear Least Squares Problem with a Quadratic Constraint. Technical Report STAN-CS-78-697. Computer Science Department, Stanford University, California (1978)
Gay D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2(2), 186–197 (1981)
Gertz E.M., Gill P.E.: A primal-dual trust region algorithm for nonlinear optimization. Math. Program. Ser. B 100(1), 49–94 (2004)
Gould N.I.M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic-programming problem. Math. Program. 32(1), 90–99 (1985)
Gould, N.I.M., Hu, Y., Scott, J.A.: A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 32(2), Article 10 (2007)
Gould N.I.M., Lucidi S., Roma M., Toint Ph.L.: Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)
Gould N.I.M., Orban D., Toint Ph.L.: CUTEr (and SifDec), a Constrained and Unconstrained Testing Environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)
Gould N.I.M., Orban D., Toint Ph.L.: GALAHAD—a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)
Gould N.I.M., Scott J.A.: A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations. ACM Trans. Math. Softw. 30(3), 300–325 (2004)
Griewank A.: The Modification of Newton’s Method for Unconstrained Optimization by Bounding Cubic Terms. Technical Report DAMTP/NA12. Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge (1981)
Hebden M.D.: An Algorithm for Minimization Using Exact Second Derivatives. Technical Report T.P. 515. AERE, Harwell Laboratory, Harwell (1973)
Higham N.J.: Fortran codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Trans. Math. Softw. 14(4), 381–396 (1988)
Hogg J.D.: A DAG-Based Parallel Cholesky Factorization for Multicore Systems. Technical Report RAL-TR-2008-029. Rutherford Appleton Laboratory, Chilton (2008)
Hogg J.D., Reid J.K., Scott J.A.: A DAG-Based Sparse Cholesky Solver for Multicore Architectures. Technical Report RAL-TR-2009-004. Rutherford Appleton Laboratory, Chilton (2009)
Montero A.: Study of SU(3) vortex-like configurations with a new maximal center gauge fixing method. Phys. Lett. B467, 106–111 (1999)
Moré J.J.: Recent developments in algorithms and software for trust region methods. In: Bachem, A., Grötschel, M., Korte, B. (eds) Mathematical Programming: The State of the Art, pp. 258–287. Springer, Heidelberg (1983)
Moré J.J., Sorensen D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)
Nesterov Yu., Polyak B.T.: Cubic regularization of Newton method and its global performance. Math. Program. 108(1), 177–205 (2006)
Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1980. Reprinted as Classics in Applied Mathematics 20, SIAM, Philadelphia, USA (1998)
Poljack S., Wolkowicz H.: Convex relaxations of (0,1)–quadratic programming. Math. Oper. Res. 20(3), 550–561 (1995)
Reid J.K., Scott J.A.: An Out-of-Core Sparse Cholesky Solver. Technical Report RAL-TR-2006-013. Rutherford Appleton Laboratory, Chilton (2006)
Schenk O., Christen M., Burkhart H.: Algorithmic performance studies on graphics processing units. J. Parallel Distrib. Comput. 68, 1360–1369 (2008)
Steihaug T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20(3), 626–637 (1983)
Toint Ph.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff, I.S. (eds) Sparse Matrices and Their Uses, pp. 57–88. Academic Press, London (1981)
Traub J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)