A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation

Sahar Tahernejad1, Ted K. Ralphs1, Scott DeNegre2
1Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA, USA
2Hospital for Special Surgery, New York, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers (1998)

Computational Infrastructure for Operations Research. https://www.coin-or.org (2018)

Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19(2), 905–912 (2004)

Bienstock, D., Verma, A.: The NK problem in power grids: new models, formulations, and numerical experiments. SIAM J. Optim. 20(5), 2352–2380 (2010)

Zhang, Y., Snyder, L., Ralphs, T., Xue, Z.: The competitive facility location problem under disruption risks. Transp. Res. Part E Logist. Transp. Rev. 93, 453–473 (2016). https://doi.org/10.1016/j.tre.2016.07.002

Gao, J., You, F.: Design and optimization of shale gas energy systems: overview, research challenges, and future directions. Comput. Chem. Eng. 106, 699–718 (2017)

Loridan, P., Morgan, J.: Weak via strong stackelberg problem: new results. J. Glob. Optim. 8(3), 263–287 (1996)

Vicente, L., Savard, G., Júdice, J.: Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89(3), 597–614 (1996)

Israeli, E.: System interdiction and defense. Ph.D. thesis, Naval Postgraduate School (1999)

DeNegre, S.: Interdiction and Discrete Bilevel Linear Programming. Ph.D. Lehigh University (2011). http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf

Jeroslow, R.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32, 146–164 (1985)

Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990)

Von Stackelberg, H.: Marktform und Gleichgewicht. Julius Springer, Berlin (1934)

Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973)

Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)

Bard, J.F., Moore, J.T.: An algorithm for the discrete bilevel programming problem. Nav. Res. Logist. 39(3), 419–435 (1992)

Wen, U.P., Huang, A.: A simple tabu search method to solve the mixed-integer linear bilevel programming problem. Eur. J. Oper. Res. 88, 563–571 (1996)

Faísca, N.P., Dua, V., Rustem, B., Saraiva, P.M., Pistikopoulos, E.N.: Parametric global optimisation for bilevel programming. J. Glob. Optim. 38, 609–623 (2007)

DeNegre, S., Ralphs, T.: A branch-and-cut algorithm for bilevel integer programming. In: Proceedings of the Eleventh INFORMS Computing Society Meeting, pp. 65–78 (2009). https://doi.org/10.1007/978-0-387-88843-9_4. http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf

Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)

Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition. Tech. rep., University of South Florida (2014). http://www.optimization-online.org/DB_FILE/2014/07/4455.pdf

Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear problems. Optim. Lett. 9(7), 1447–1468 (2015)

Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with interdiction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

Hemmati, M., Smith, J.C.: A mixed-integer bilevel programming approach for a competitive prioritized set covering problem. Discrete Optim. 20, 105–134 (2016)

Wang, L., Xu, P.: The watermelon algorithm for the bilevel integer linear programming problem. SIAM J. Optim. 27(3), 1403–1430 (2017)

Lozano, L., Smith, J.C.: A value-function-based exact approach for the bilevel mixed-integer programming problem. Oper. Res. 65(3), 768–786 (2017)

Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization. Math. Program. 172, 77–103 (2018)

Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

Mitsos, A.: Global solution of nonlinear mixed integer bilevel programs. J. Glob. Optim. 47, 557–582 (2010)

Kleniati, P.M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: theoretical development. J. Glob. Optim. 60, 425–458 (2014)

Kleniati, P.M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part II: convergence analysis and numerical results. J. Glob. Optim. 60, 459–481 (2014)

Padberg, M., Rinaldi, G.: Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Oper. Res. Lett. 6(1), 1–7 (1987)

Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. Econometrica 28, 497–520 (1960)

Achterberg, T.: Constraint integer programming. Ph.D. thesis. https://doi.org/10.14279/depositonce-1634 (2007)

Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

Marchand, H., Martin, A., Weismantel, R., Wolsey, L.: Cutting planes in integer and mixed integer programming. Discrete Appl. Math. 123(1), 397–446 (2002)

Wolter, K.: Implementation of Cutting Plane Separators for Mixed Integer Programs. Master’s thesis, Technische Universität Berlin (2006)

Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)

Balas, E.: Intersection cuts-a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971)

Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Ehrgott, M., Figueira, J., Greco, S. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 667–722. Springer, Berlin (2005)

Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

DeNegre, S., Ralphs, T., Tahernejad, S.: version 1.1.2 (2017). https://doi.org/10.5281/zenodo.1439384. https://github.com/coin-or/MibS

Xu, Y., Ralphs, T., Ladányi, L., Saltzman, M.: Computational experience with a software framework for parallel integer programming. INFORMS J. Comput. 21, 383–397 (2009). https://doi.org/10.1287/ijoc.1090.0347

Ralphs, T., Ladányi, L., Saltzman, M.: A library hierarchy for implementing scalable parallel search algorithms. J. Supercomput. 28, 215–234 (2004). https://doi.org/10.1023/B:SUPE.0000020179.55383.ad

Xu, Y., Ralphs, T.: ALPS version 1.5.6 (2019). https://doi.org/10.5281/zenodo.245971. https://github.com/coin-or/CHiPPS-ALPS

Xu, Y., Ralphs, T., Ladányi, L., Saltzman, M.: ALPS: a framework for implementing parallel tree search algorithms. In: The Proceedings of the Ninth INFORMS Computing Society Conference, vol. 29, pp. 319–334 (2005). https://doi.org/10.1007/0-387-23529-9_21

Xu, Y., Ralphs, T.: BiCEPs version 0.94.4 (2017). https://doi.org/10.5281/zenodo.245652. https://github.com/coin-or/CHiPPS-BiCePS

Xu, Y., Ralphs, T.: BLIS version 0.94.5 (2017). https://doi.org/10.5281/zenodo.246079. https://github.com/coin-or/CHiPPS-BLIS

Forrest, J.J.: Clp version 1. 16 (2017). https://github.com/coin-or/Clp

Ralphs, T., Güzelsoy, M., Mahajan, A.: SYMPHONY version 5.6.16 (2017). https://doi.org/10.5281/zenodo.248734

Ralphs, T., Güzelsoy, M.: The SYMPHONY callable library for mixed integer programming. In: Proceedings of the Ninth INFORMS Computing Society Conference, pp. 61–76 (2005). https://doi.org/10.1007/0-387-23529-9_5. http://coral.ie.lehigh.edu/~ted/files/papers/SYMPHONY04.pdf

Cgl version 0.59 (2017). https://github.com/coin-or/Cgl

Osi version 0.107 (2017). https://github.com/coin-or/Osi

Hassanzadeh, A., Ralphs, T.: A Generalized Benders’ Algorithm for Two-Stage Stochastic Program with Mixed Integer Recourse. Tech. rep., COR@L Laboratory Report 14T-005, Lehigh University (2014). http://coral.ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf

Ralphs, T., Güzelsoy, M.: Duality and warm starting in integer programming. In: The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference (2006). http://coral.ie.lehigh.edu/~ted/files/papers/DMII06.pdf

Ibm ILOG CPLEX Optimizer. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/ (2017)

Forrest, J.J.: Cbc version 2.9 (2017). https://projects.coin-or.org/Cbc

Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.: An updated mixed integer programming library: Miplib 3.0. Tech. rep. (1998)