
Integrating Materials and Manufacturing Innovation
SCOPUS (2012-2023)SCIE-ISI
2193-9772
2193-9764
Cơ quản chủ quản: Springer International Publishing AG , Springer Heidelberg
Các bài báo tiêu biểu
Bài báo này xem xét sự phát triển kết cấu tinh thể trong thép carbon thấp 1008. Sự phát triển kết cấu dọc theo các trạng thái ứng suất đơn trục, ứng suất phẳng và ứng suất đối xứng bội đã được đo. Đối với thử nghiệm đơn trục, các hạt có xu hướng xoay sao cho các hướng trượt
Heterogeneous materials have been widely used in many engineering applications. Achieving optimal material performance requires a quantitative knowledge of the complex material microstructure and structural evolution under external stimuli. Here, we present a framework to model material microstructure via statistical morphological descriptors, i.e., certain lower-order correlation functions associated with the material’s phases. This allows one to reduce the large data sets for a complete specification of all of the local states in a microstructure to a handful of simple scalar functions that statistically capture the salient structural features of the material. Stochastic reconstruction techniques can then be employed to investigate the information content of the correlation functions, suggest superior and sensitive structural descriptors as well as generate realistic virtual 3D microstructures from the given limited structural information. The framework is employed to successfully model a variety of materials systems including an anisotropic aluminium alloy, a polycrystalline tin solder, the structural evolution in a binary lead-tin alloy when aged, and a model structure of hard-sphere packing. Our framework also has ramifications in the development of integrated computational material design schemes and 4D materials modeling techniques.
Machining is a severe plastic deformation process, wherein the workpiece material is subjected to high deformation rates and temperatures. During metal machining, the dynamic recrystallization mechanism causes grain refinement into the sub-micron range. In this study, we investigate the microstructure evolution of oxygen-free high conductivity copper (OFHC Cu) subject to a machining process where the cutting speed and rake angle are controlled to manipulate the process strain, strain rate, and temperatures. Microstructures of the deformed chips are quantified using orientation imaging microscopy and novel statistical descriptors that capture the morphology and local lattice misorientations generated during the several mechanistic stages of the dynamic recrystallization process. Mechanical properties of the resulting chips are quantified using spherical nanoindentation protocols. A multiple output Gaussian process regression model is used to simultaneously model the structure-property evolution, which differs from more common approaches that establish such relationships sequentially. This modeling strategy is particularly attractive since it can flexibly provide both structure and property uncertainty estimates. In addition, the statistical modeling framework allows for the inclusion of multi-fidelity data. The statistical metrics utilized serve as efficient microstructure descriptors, which retain the physics of the observed structures without having to introduce ad hoc microstructure feature definitions.