Three dimensional modeling of complex heterogeneous materials via statistical microstructural descriptors
Tóm tắt
Heterogeneous materials have been widely used in many engineering applications. Achieving optimal material performance requires a quantitative knowledge of the complex material microstructure and structural evolution under external stimuli. Here, we present a framework to model material microstructure via statistical morphological descriptors, i.e., certain lower-order correlation functions associated with the material’s phases. This allows one to reduce the large data sets for a complete specification of all of the local states in a microstructure to a handful of simple scalar functions that statistically capture the salient structural features of the material. Stochastic reconstruction techniques can then be employed to investigate the information content of the correlation functions, suggest superior and sensitive structural descriptors as well as generate realistic virtual 3D microstructures from the given limited structural information. The framework is employed to successfully model a variety of materials systems including an anisotropic aluminium alloy, a polycrystalline tin solder, the structural evolution in a binary lead-tin alloy when aged, and a model structure of hard-sphere packing. Our framework also has ramifications in the development of integrated computational material design schemes and 4D materials modeling techniques.
Từ khóa
Tài liệu tham khảo
Christensen RM: Mechanics of Composite Materials. New York: Wiley; 1979. 1979 1979
Nemat-Nasser SM, Hori M: Micromechanics: Overall Properties of Heterogeneous Solids. Amsterdam: Elsevier Science Publishers; 1999.
Torquato S: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer; 2002.
Sahimi M: Heterogeneous Materials I: Linear Transport and Optical Properties, and II: Nonlinear and Breakdown Properties and Atomistic Modeling. New York: Springer; 2003.
Haymes RC: Introduction to Space Science. New York, NY: John Wiley and Sons Inc; 1971. 1971 1971
Thornton K, Poulsen HF: Three-dimensional materials science: an intersection of three-dimensional reconstructions and simulations. MRS Bull 2008, 33: 587. 10.1557/mrs2008.123
Brandon D, Kaplan WD: Microstructural Characterization of Materials. New York: John Wiley & Sons; 1999.
Baruchel J, Bleuet P, Bravin A, Coan P, Lima E, Madsen A, Ludwig W, Pernot P, Susini J: Advances in synchrotron hard x-ray based imaging. C R Physique 2008, 9: 624. 10.1016/j.crhy.2007.08.003
Kinney JH, Nichols MC: X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu Rev Mater Sci 1992, 22: 121. 10.1146/annurev.ms.22.080192.001005
Kak A, Slaney M: Principles of Computerized Tomographic Imaging. New York: IEEE Press; 1988.
Babout L, Maire E, Buffière JY, Fougères R: Characterisation by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater 2001, 49: 2055. 10.1016/S1359-6454(01)00104-5
Borbély A, Csikor FF, Zabler S, Cloetens P, Biermann H: Three-dimensional characterization of the microstructure of a metal-matrix composite by holotomography. Mater Sci Engng A 2004, 367: 40. 10.1016/j.msea.2003.09.068
Kenesei P, Biermann H, Borbély A: Structure–property relationship in particle reinforced metal-matrix composites based on holotomography. Scr Mater 2005, 53: 787. 10.1016/j.scriptamat.2005.06.015
Weck A, Wilkinson DS, Maire E, Toda H: Visualization by x-ray tomography of void growth and coalescence leading to fracture in model materials. Acta Mater 2008, 56: 2919. 10.1016/j.actamat.2008.02.027
Toda H, Yamamoto S, Kobayashi M, Uesugi K, Zhang H: Direct measurement procedure for three-dimensional local crack driving force using synchrotron X-ray microtomography. Acta Mater 2008, 56: 6027. 10.1016/j.actamat.2008.08.022
Williams JJ, Flom Z, Amell AA, Chawla N, Xiao X, De Carlo F: Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater 2010, 58: 6194. 10.1016/j.actamat.2010.07.039
Williams JJ, Yazzie KE, Phillips NC, Chawla N, Xiao X, De Carlo F, Iyyer N, Kittur M: On the correlation between fatigue striation spacing and crack crowth rate: a three-dimensional (3-D) X-ray synchrotron tomography study. Metall Mater Trans 2011, 42: 3845. 10.1007/s11661-011-0963-x
Williams JJ, Yazzie KE, Phillips NC, Chawla N, Xiao X, De Carlo F: Understanding fatigue crack growth in aluminum alloys by in situ x-ray synchrotron tomography. Int J Fatigue in press in press
Groeber M, Ghosh S, Uchic MD, Dimiduk DM: A framework for automated analysis and simulation of 3D polycrystalline microstructures. I: statistical characterization. Acta Mater 2008, 56: 1257. 10.1016/j.actamat.2007.11.041
Groeber M, Ghosh S, Uchic MD, Dimiduk D: A framework for automated analysis and simulation of 3D polycrystalline microstructures. II: synthetic structure generation. Acta Mater 2008, 56: 1274. 10.1016/j.actamat.2007.11.040
Jiao Y, Stillinger FH, Torquato S: Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys Rev E 2007, 76: 031110.
Jiao Y, Stillinger FH, Torquato S: Modeling heterogeneous materials via two-point correlation functions: II. Algorithmic details and applications. Phys Rev E 2008, 77: 031135.
Jiao Y, Stillinger FH, Torquato S: A superior descriptor of random textures and its predictive capacity. Proc Natl Acad Sci 2009, 106: 17634. 10.1073/pnas.0905919106
Yeong CLY, Torquato S: Reconstructing random media. Phys Rev E 1998, 57: 495. 10.1103/PhysRevE.57.495
Yeong CLY, Torquato S: Reconstructing random media: II. Three-dimensional reconstruction from two-dimensional cuts. Phys Rev E 1998, 58: 224. 10.1103/PhysRevE.58.224
Liu Y, Greene MS, Chen W, Dikin DA, Liu WK: Computational microstructure characterization and reconstruction for stochastic multiscale material design. Computer-Aided Design 2013, 45: 65. 10.1016/j.cad.2012.03.007
Mikdam A, Belouettar R, Fiorelli D, Hu H, Makradi A: A tool for design of heterogeneous materials with desired physical properties using statistical continuum theory mater. Sci Eng A 2013, 564: 493.
Jiao Y, Pallia E, Chawla N: Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction. Acta Mater 2013, 61: 3370. 10.1016/j.actamat.2013.02.026
Roberts AP: Statistical reconstruction of three-dimensional porous media from two- dimensional images Phys. Rev E 1997, 56: 3203–12.
Niezgoda SR, Kanjaria RK, Kalidindi SR: Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Inter Mater Manu Innov 2013, 2: 3. 10.1186/2193-9772-2-3
Niezgoda SR, Fullwood DT, Kalidindi SR: Delineation of the space of 2-point correlations in a composite material system. Acta Mater 2008, 56: 5285–92. 10.1016/j.actamat.2008.07.005
Lu B, Torquato S: Lineal path function for random heterogeneous materials. Phys Rev A 1992, 45: 922. 10.1103/PhysRevA.45.922
Lu B, Torquato S: Lineal path function for random heterogeneous materials II. Effect of polydispersivity. Phys Rev A 1992, 45: 7292. 10.1103/PhysRevA.45.7292
Torquato S, Beasley JD, Chiew YC: Two-point cluster function for continuum percolation. J Chem Phys 1988, 88: 6540. 10.1063/1.454440
Cinlar E, Torquato S: Exact determination of the two-point cluster function for one-dimensional continuum percolation. J Stat Phys 1995, 78: 827. 10.1007/BF02183690
Torquato S: Interfacial surface statistics arising in diffusion and flow problems in porous media. J Chem Phys 1986, 85: 4622. 10.1063/1.451783
Torquato S, Avellaneda M: Diffusion and reaction in heterogeneous media: pore-size distribution, relaxation rimes, and mean survival time. J Chem Phys 1991, 95: 6477. 10.1063/1.461519
Fullwood DT, Niezgoda SR, Kalidindi SR: Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater 2008, 56: 942–48. 10.1016/j.actamat.2007.10.044
Hajizadeh A, Safekordi A, Farhadpour FA: A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images. Advances in Water Resources 2011, 34: 1256–1267. 10.1016/j.advwatres.2011.06.003
Tahmasebi P, Sahimi M: Cross-correlation function for accurate reconstruction of heterogeneous media Phys. Rev Lett 2013, 110: 078002.
Sheehan N, Torquato S: Generating microstructures with specified correlation functions. J Appl Phys 2001, 89: 53. 10.1063/1.1327609
Rozman MG, Utz M: Uniqueness of reconstruction of multiphase morphologies from two-point correlation functions. Phys Rev Lett 2002, 89: 135501.
Kirkpatrick S, Gelatt CD, Vecchi MP: Optimization by simulated annealing. Science 1983, 220: 671–80. 10.1126/science.220.4598.671
Singh SS, Williams JJ, Jiao Y, Chawla N: Modeling anisotropic multiphase heterogeneous materials via directional correlation functions: simulations and experimental verification metall. Mater Trans 2012, 4A: 4470–4474.
Debye P, Anderson HR, Brumberger H: Scattering by an inhomogeneous solid. II. The correlation function and its applications. J Appl Phys 1957, 28: 679–83. 10.1063/1.1722830
Manko HH: Solders and Soldering: Materials, Design, Production, and Analysis for Reliable Bonding. New York: McGraw-Hill; 2001.
Porter DA, Easterling KE: Phase Transformations in Metals and Alloys. London: Taylor & Francis; 2004.