Is Domain Knowledge Necessary for Machine Learning Materials Properties?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater 2(1):1–7
Meredig B, Antono E, Church C, Hutchinson M, Ling J, Paradiso S, Blaiszik B, Foster I, Gibbons B, Hattrick-Simpers J, Mehta A, Ward L (2018) Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Mol Syst Des Eng 3:819–825
Cao Z, Dan Y, Xiong Z, Niu C, Li X, Qian S, Hu J (2019) Convolutional neural networks for crystal material property prediction using hybrid orbital-field matrix and magpie descriptors. Crystals 9(4):191
Li X, Dan Y, Dong R, Cao Z, Niu C, Song Y, Li S, Hu J (2019) Computational screening of new perovskite materials using transfer learning and deep learning. Appl Sci 9(24):5510
Meredig B, Agrawal A, Kirklin S, Saal JE, Doak J, Thompson A, Zhang K, Choudhary A, Wolverton C (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89(9):094104
Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. NPJ Comput Mater 3(1):1–13
Gaultois MW, Oliynyk AO, Mar A, Sparks TD, Mulholland GJ, Meredig B (2016) Perspective: web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater 4(5):053213
Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120:145301
Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z, Kononova O, Persson KA, Ceder G, Jain A (2019) Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571:95–98
Schütt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Müller K-R (2019) Schnetpack: a deep learning toolbox for atomistic systems. J Chem Theory Comput 15(1):448–455
Jha D, Ward L, Paul A, Liao W-K, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):1–13
Meredig B (2019) Five high-impact research areas in machine learning for materials science. Chem Mater 31(23):9579–9581
Wagner N, Rondinelli JM (2016) Theory-guided machine learning in materials science. Front Mater 3:28
Ward L, Wolverton C (2017) Atomistic calculations and materials informatics: a review. Curr Opin Solid State Mater Sci 21(3):167–176
Choudhary K, DeCost B, Tavazza F (2018) Machine learning with force-field-inspired descriptors for materials: fast screening and mapping energy landscape. Phys Rev Mater 2:083801
Zhou Q, Tang P, Liu S, Pan J, Yan Q, Zhang S-C (2018) Learning atoms for materials discovery. Proc Natl Acad Sci 115(28):E6411–E6417
Oliynyk AO, Antono E, Sparks TD, Ghadbeigi L, Gaultois MW, Meredig B, Mar A (2016) High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem Mater 28(20):7324–7331
AFLOW (2018) AFLOW–automatic-flow for materials discovery. Accessed 14 July 2019
Bartel CJ, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G (2020) A critical examination of compound stability predictions from machine-learned formation energies
Murdock RJ, Kauwe SK (2020) Online GitHub repository for Is domain knowledge necessary for machine learning material properties. https://github.com/rynmurdock/domain_knowledge
Kauwe SK, Graser J, Murdock R, Sparks TD (2020) Can machine learning find extraordinary materials? Comput Mater Sci 174:109498
Wang A, Kauwe S, Murdock R, Sparks T (2020) Compositionally-restricted attention-based network for materials property prediction. https://chemrxiv.org/articles/preprint/Compositionally-Restricted_Attention-Based_Network_for_Materials_Property_Prediction/11869026
Belviso F, Claerbout VEP, Comas-Vives A, Dalal NS, Fan FR, Filippetti A, Fiorentini V, Foppa L, Franchini C, Geisler B et al (2019) Viewpoint: atomic-scale design protocols toward energy, electronic, catalysis, and sensing applications. Inorg Chem 58(22):14939–14980
Clement CL, Kauwe SK, Sparks TD (2020) Benchmark AFLOW data sets for machine learning. Integr Mater Manuf Innov. https://doi.org/10.1007/s40192-020-00174-4
Dunn A, Wang Q, Ganose A, Dopp D, Jain A (2020) Benchmarking materials property prediction methods: the Matbench test set and automatminer reference algorithm. Accessed 5 May 2020
Ward L, Dunn A, Faghaninia A, Zimmermann N, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K, Snyder G, Foster I, Jain A (2018) Matminer: an open source toolkit for materials data mining. Comput Mater Sci 152:60–69
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980