Is Domain Knowledge Necessary for Machine Learning Materials Properties?

Integrating Materials and Manufacturing Innovation - Tập 9 Số 3 - Trang 221-227 - 2020
Ryan Murdock1, Steven K. Kauwe2, Anthony Wang3, Taylor D. Sparks2
1Materials Science & Engineering Department, University of Utah, Salt Lake City, USA
2Materials Science and Engineering Department, University of Utah, Salt Lake City, USA
3Technische Universität Berlin, Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater 2(1):1–7

Meredig B, Antono E, Church C, Hutchinson M, Ling J, Paradiso S, Blaiszik B, Foster I, Gibbons B, Hattrick-Simpers J, Mehta A, Ward L (2018) Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Mol Syst Des Eng 3:819–825

Cao Z, Dan Y, Xiong Z, Niu C, Li X, Qian S, Hu J (2019) Convolutional neural networks for crystal material property prediction using hybrid orbital-field matrix and magpie descriptors. Crystals 9(4):191

Li X, Dan Y, Dong R, Cao Z, Niu C, Song Y, Li S, Hu J (2019) Computational screening of new perovskite materials using transfer learning and deep learning. Appl Sci 9(24):5510

Meredig B, Agrawal A, Kirklin S, Saal JE, Doak J, Thompson A, Zhang K, Choudhary A, Wolverton C (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89(9):094104

Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. NPJ Comput Mater 3(1):1–13

Gaultois MW, Oliynyk AO, Mar A, Sparks TD, Mulholland GJ, Meredig B (2016) Perspective: web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater 4(5):053213

Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120:145301

Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z, Kononova O, Persson KA, Ceder G, Jain A (2019) Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571:95–98

Schütt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Müller K-R (2019) Schnetpack: a deep learning toolbox for atomistic systems. J Chem Theory Comput 15(1):448–455

Jha D, Ward L, Paul A, Liao W-K, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):1–13

Meredig B (2019) Five high-impact research areas in machine learning for materials science. Chem Mater 31(23):9579–9581

Wagner N, Rondinelli JM (2016) Theory-guided machine learning in materials science. Front Mater 3:28

Ward L, Wolverton C (2017) Atomistic calculations and materials informatics: a review. Curr Opin Solid State Mater Sci 21(3):167–176

Choudhary K, DeCost B, Tavazza F (2018) Machine learning with force-field-inspired descriptors for materials: fast screening and mapping energy landscape. Phys Rev Mater 2:083801

Zhou Q, Tang P, Liu S, Pan J, Yan Q, Zhang S-C (2018) Learning atoms for materials discovery. Proc Natl Acad Sci 115(28):E6411–E6417

Oliynyk AO, Antono E, Sparks TD, Ghadbeigi L, Gaultois MW, Meredig B, Mar A (2016) High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem Mater 28(20):7324–7331

AFLOW (2018) AFLOW–automatic-flow for materials discovery. Accessed 14 July 2019

Bartel CJ, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G (2020) A critical examination of compound stability predictions from machine-learned formation energies

Murdock RJ, Kauwe SK (2020) Online GitHub repository for Is domain knowledge necessary for machine learning material properties. https://github.com/rynmurdock/domain_knowledge

Kauwe SK, Graser J, Murdock R, Sparks TD (2020) Can machine learning find extraordinary materials? Comput Mater Sci 174:109498

Wang A, Kauwe S, Murdock R, Sparks T (2020) Compositionally-restricted attention-based network for materials property prediction. https://chemrxiv.org/articles/preprint/Compositionally-Restricted_Attention-Based_Network_for_Materials_Property_Prediction/11869026

Belviso F, Claerbout VEP, Comas-Vives A, Dalal NS, Fan FR, Filippetti A, Fiorentini V, Foppa L, Franchini C, Geisler B et al (2019) Viewpoint: atomic-scale design protocols toward energy, electronic, catalysis, and sensing applications. Inorg Chem 58(22):14939–14980

Clement CL, Kauwe SK, Sparks TD (2020) Benchmark AFLOW data sets for machine learning. Integr Mater Manuf Innov. https://doi.org/10.1007/s40192-020-00174-4

Dunn A, Wang Q, Ganose A, Dopp D, Jain A (2020) Benchmarking materials property prediction methods: the Matbench test set and automatminer reference algorithm. Accessed 5 May 2020

Ward L, Dunn A, Faghaninia A, Zimmermann N, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K, Snyder G, Foster I, Jain A (2018) Matminer: an open source toolkit for materials data mining. Comput Mater Sci 152:60–69

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980