Extracting Knowledge from DFT: Experimental Band Gap Predictions Through Ensemble Learning

Integrating Materials and Manufacturing Innovation - Tập 9 Số 3 - Trang 213-220 - 2020
Steven K. Kauwe1, Taylor Welker2, Taylor D. Sparks1
1Materials Science and Engineering Department, University of Utah, Salt Lake City, UT 84112, USA
2School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G et al (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. Apl Mater 1:011002

Jain A, Persson KA, Ceder G (2016) Research update: the materials genome initiative: data sharing and the impact of collaborative ab initio databases. APL Mater 4:053102

Seshadri R, Sparks TD (2016) Perspective: interactive material property databases through aggregation of literature data. APL Mater 4:053206

Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994

Hautier G, Fischer CC, Jain A, Mueller T, Ceder G (2010) Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem Mater 22:3762–3767

Chen W, Pöhls J-H, Hautier G, Broberg D, Bajaj S, Aydemir U, Gibbs ZM, Zhu H, Asta M, Snyder GJ et al (2016) Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. J Mater Chem C 4:4414–4426

Hautier G, Jain A, Ong SP (2012) From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci 47:7317–7340

Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191

Isaacs EB, Wolverton C (2018) Inverse band structure design via materials database screening: application to square planar thermoelectrics. Chem Mater 30:1540–1546

Meredig B, Agrawal A, Kirklin S, Saal JE, Doak JW, Thompson A, Zhang K, Choudhary A, Wolverton C (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89:094104

Schütt KT, Glawe H, Brockherde F, Sanna A, Müller KR, Gross EKU (2014) How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys Rev B 89:205118

Citrine (2018). https://citrination.com. Accessed 20 Dec 2019

Curtarolo S et al (2012) AFLOW: an automatic framework for high-throughput materials discovery. Comp Mater Sci 58:218–226

Kauwe SK, Graser J, Vazquez A, Sparks TD (2018) Machine learning prediction of heat capacity for solid inorganics. Integr Mater Manuf Innov 7:1–9

Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater 2:16028

Kauwe SK (2019) “kaaiian/ensemble_band_gap_prediction: Supplementary code for” Extracting knowledge from DFT: experimental band gap predictions through ensemble learning. https://doi.org/10.5281/zenodo.2656669

Oliynyk AO, Mar A (2017) Discovery of intermetallic compounds from traditional to machine-learning approaches. Acc Chem Res 51:59–68

Oliynyk AO, Adutwum LA, Rudyk BW, Pisavadia H, Lotfi S, Hlukhyy V, Harynuk JJ, Mar A, Brgoch J (2017) Disentangling structural confusion through machine learning: structure prediction and polymorphism of equiatomic ternary phases ABC. J Am Chem Soc 139:17870–17881

Carrete J, Li W, Mingo N, Wang S, Curtarolo S (2014) Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys Rev X 4:011019

Mansouri Tehrani A, Oliynyk AO, Parry M, Rizvi Z, Couper S, Lin F, Miyagi L, Sparks TD, Brgoch J (2018) Machine learning directed search for ultraincompressible, superhard materials. J Am Chem Soc 140:9844–9853

Graser J, Kauwe SK, Sparks TD (2018) Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons. Chem Mater 30:3601–3612

Huo H, Rupp M (2017) Unified representation of molecules and crystals for machine learning. arXiv:1704.06439

Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 8:15679

Faber F, Lindmaa A, Lilienfeld OA, Armiento R (2015) Crystal structure representations for machine learning models of formation energies. Int J Quantum Chem 115:1094–1101

Faber FA, Christensen AS, Huang B, Lilienfeld OA (2018) Alchemical and structural distribution based representation for universal quantum machine learning. J Chem Phys 148:241717

Jha D, Ward L, Paul A, Liao W-K, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: deep learning the chemistry of materials from only elemental composition. Sci Rep 8:17593

Lee J, Seko A, Shitara K, Nakayama K, Tanaka I (2016) Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys Rev B 93:115104

Seko A, Maekawa T, Tsuda K, Tanaka I (2014) Machine learning with systematic density-functional theory calculations: application to melting temperatures of single-and binary-component solids. Phys Rev B 89:054303

Hutchinson ML, Antono E, Gibbons BM, Paradiso S, Ling J, Meredig B (2017) Overcoming data scarcity with transfer learning. arXiv:1711.05099

Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA (2015) Big data meets quantum chemistry approximations: the Δ-machine learning approach. J Chem Theory Comput 11:2087–2096

Zaspel P, Huang B, Harbrecht H, Lilienfeld OA (2018) Boosting quantum machine learning models with multi-level combination technique: pople diagrams revisited. J Chem Theory Comput 15(3):1546–1559

Pilania G, Gubernatis JE, Lookman T (2017) Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput Mater Sci 129:156–163

Zhuo Y, Mansouri Tehrani A, Brgoch J (2018) Predicting the band gaps of inorganic solids by machine learning. J Phys Chem Lett 9:1668–1673

DeCost BL, Francis T, Holm EA (2017) Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater 133:30–40

Kauwe SK (2019) Ensemble band gap data. https://figshare.com/articles/Ensemble_Band_Gap_Data/8295503. Accessed 1 Feb 2020

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830