Anesthesiology
1528-1175
0003-3022
Mỹ
Cơ quản chủ quản: Lippincott Williams and Wilkins Ltd. , LIPPINCOTT WILLIAMS & WILKINS
Các bài báo tiêu biểu
Supplemental Digital Content is available in the text.
Recently, two centers have independently developed a risk score for predicting postoperative nausea and vomiting (PONV). This study investigated (1) whether risk scores are valid across centers and (2) whether risk scores based on logistic regression coefficients can be simplified without loss of discriminating power.
Adult patients from two centers (Oulu, Finland: n = 520, and Wuerzburg, Germany: n = 2202) received inhalational anesthesia (without antiemetic prophylaxis) for various types of surgery. PONV was defined as nausea or vomiting within 24 h of surgery. Risk scores to estimate the probability of PONV were obtained by fitting logistic regression models. Simplified risk scores were constructed based on the number of risk factors that were found significant in the logistic regression analyses. Original and simplified scores were cross-validated. A combined data set was created to estimate a potential center effect and to construct a final risk score. The discriminating power of each score was assessed using the area under the receiver operating characteristic curves.
Risk scores derived from one center were able to predict PONV from the other center (area under the curve = 0.65-0.75). Simplification did not essentially weaken the discriminating power (area under the curve = 0.63-0.73). No center effect could be detected in a combined data set (odds ratio = 1.06, 95% confidence interval = 0.71-1.59). The final score consisted of four predictors: female gender, history of motion sickness (MS) or PONV, nonsmoking, and the use of postoperative opioids. If none, one, two, three, or four of these risk factors were present, the incidences of PONV were 10%, 21%, 39%, 61% and 79%.
The risk scores derived from one center proved valid in the other and could be simplified without significant loss of discriminating power. Therefore, it appears that this risk score has broad applicability in predicting PONV in adult patients undergoing inhalational anesthesia for various types of surgery. For patients with at least two out of these four identified predictors a prophylactic antiemetic strategy should be considered.
This study determined the responses to increasing plasma concentrations of dexmedetomidine in humans.
Ten healthy men (20-27 yr) provided informed consent and were monitored (underwent electrocardiography, measured arterial, central venous [CVP] and pulmonary artery [PAP] pressures, cardiac output, oxygen saturation, end-tidal carbon dioxide [ETCO2], respiration, blood gas, and catecholamines). Hemodynamic measurements, blood sampling, and psychometric, cold pressor, and baroreflex tests were performed at rest and during sequential 40-min intravenous target infusions of dexmedetomidine (0.5, 0.8, 1.2, 2.0, 3.2, 5.0, and 8.0 ng/ml; baroreflex testing only at 0.5 and 0.8 ng/ml).
The initial dose of dexmedetomidine decreased catecholamines 45-76% and eliminated the norepinephrine increase that was seen during the cold pressor test. Catecholamine suppression persisted in subsequent infusions. The first two doses of dexmedetomidine increased sedation 38 and 65%, and lowered mean arterial pressure by 13%, but did not change central venous pressure or pulmonary artery pressure. Subsequent higher doses increased sedation, all pressures, and calculated vascular resistance, and resulted in significant decreases in heart rate, cardiac output, and stroke volume. Recall and recognition decreased at a dose of more than 0.7 ng/ml. The pain rating and mean arterial pressure increase to cold pressor test progressively diminished as the dexmedetomidine dose increased. The baroreflex heart rate slowing as a result of phenylephrine challenge was potentiated at both doses of dexmedetomidine. Respiratory variables were minimally changed during infusions, whereas acid-base was unchanged.
Increasing concentrations of dexmedetomidine in humans resulted in progressive increases in sedation and analgesia, decreases in heart rate, cardiac output, and memory. A biphasic (low, then high) dose-response relation for mean arterial pressure, pulmonary arterial pressure, and vascular resistances, and an attenuation of the cold pressor response also were observed.
Severe pain after surgery remains a major problem, occurring in 20–40% of patients. Despite numerous published studies, the degree of pain following many types of surgery in everyday clinical practice is unknown. To improve postoperative pain therapy and develop procedure-specific, optimized pain-treatment protocols, types of surgery that may result in severe postoperative pain in everyday practice must first be identified.
This study considered 115,775 patients from 578 surgical wards in 105 German hospitals. A total of 70,764 patients met the inclusion criteria. On the first postoperative day, patients were asked to rate their worst pain intensity since surgery (numeric rating scale, 0–10). All surgical procedures were assigned to 529 well-defined groups. When a group contained fewer than 20 patients, the data were excluded from analysis. Finally, 50,523 patients from 179 surgical groups were compared.
The 40 procedures with the highest pain scores (median numeric rating scale, 6–7) included 22 orthopedic/trauma procedures on the extremities. Patients reported high pain scores after many “minor” surgical procedures, including appendectomy, cholecystectomy, hemorrhoidectomy, and tonsillectomy, which ranked among the 25 procedures with highest pain intensities. A number of “major” abdominal surgeries resulted in comparatively low pain scores, often because of sufficient epidural analgesia.
Several common minor- to medium-level surgical procedures, including some with laparoscopic approaches, resulted in unexpectedly high levels of postoperative pain. To reduce the number of patients suffering from severe pain, patients undergoing so-called minor surgery should be monitored more closely, and postsurgical pain treatment needs to comply with existing procedure-specific pain-treatment recommendations.