The singly-charged scalar singlet as the origin of neutrino masses

Journal of High Energy Physics - Tập 2021 - Trang 1-39 - 2021
Tobias Felkl1, Juan Herrero-García2, Michael A. Schmidt1
1School of Physics, The University of New South Wales, Sydney Consortium for Particle Physics and Cosmology, Sydney, Australia
2Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, Paterna, Spain

Tóm tắt

We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.

Tài liệu tham khảo

M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].

J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. 95 (1980) 461] [INSPIRE].

T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

E. Ma, Neutrino Mass: Mechanisms and Models, arXiv:0905.0221 [INSPIRE].

S.S.C. Law and K.L. McDonald, A Class of Inert N-tuplet Models with Radiative Neutrino Mass and Dark Matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].

F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than d = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].

M.B. Krauss, D. Meloni, W. Porod and W. Winter, Neutrino Mass from a d = 7 Effective Operator in an SU(5) SUSY-GUT Framework, JHEP 05 (2013) 121 [arXiv:1301.4221] [INSPIRE].

A. de Gouvêa, J. Herrero-Garcia and A. Kobach, Neutrino Masses, Grand Unification, and Baryon Number Violation, Phys. Rev. D 90 (2014) 016011 [arXiv:1404.4057] [INSPIRE].

P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ∆L = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE].

Y. Cai, J.D. Clarke, M.A. Schmidt and R.R. Volkas, Testing Radiative Neutrino Mass Models at the LHC, JHEP 02 (2015) 161 [arXiv:1410.0689] [INSPIRE].

T. Matsui, T. Nomura and K. Yagyu, Flavor Dependent U(1) Symmetric Zee Model with a Vector-like Lepton, arXiv:2102.09247 [INSPIRE].

K.L. McDonald and B.H.J. McKellar, Evaluating the two loop diagram responsible for neutrino mass in Babu’s model, hep-ph/0309270 [INSPIRE].

Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

A. Freitas, TASI 2020 Lectures on Precision Tests of the Standard Model, arXiv:2012.11642 [INSPIRE].

Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

Mu3e collaboration, Technical design of the phase I Mu3e experiment, arXiv:2009.11690 [INSPIRE].

K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ+τ− pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].

M.S. Bilenky and A. Santamaria, One loop effective Lagrangian for a standard model with a heavy charged scalar singlet, Nucl. Phys. B 420 (1994) 47 [hep-ph/9310302] [INSPIRE].

A.K. Alok, A. Dighe, S. Gangal and J. Kumar, The role of non-universal Z couplings in explaining the Vus anomaly, arXiv:2010.12009 [INSPIRE].

B. Capdevila, A. Crivellin, C.A. Manzari and M. Montull, Explaining b → sℓ+ℓ− and the Cabibbo angle anomaly with a vector triplet, Phys. Rev. D 103 (2021) 015032 [arXiv:2005.13542] [INSPIRE].

A. Crivellin and M. Hoferichter, β Decays as Sensitive Probes of Lepton Flavor Universality, Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184] [INSPIRE].

Flavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].

C.Y. Seng, M. Gorchtein and M.J. Ramsey-Musolf, Dispersive evaluation of the inner radiative correction in neutron and nuclear β decay, Phys. Rev. D 100 (2019) 013001 [arXiv:1812.03352] [INSPIRE].

A. Pich, Challenges for tau physics at the TeraZ, arXiv:2012.07099 [INSPIRE].

FCC collaboration, FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474 [INSPIRE].

Q. Luo, W. Gao, J. Lan, W. Li and D. Xu, Progress of Conceptual Study for the Accelerators of a 2–7 GeV Super Tau Charm Facility at China, in 10th International Particle Accelerator Conference, p. MOPRB031 (2019) [DOI].

CEPC Study Group collaboration, CEPC Conceptual Design Report: Volume 2 — Physics & Detector, arXiv:1811.10545 [INSPIRE].

Y. Farzan and M. Tortola, Neutrino oscillations and Non-Standard Interactions, Front. in Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].

B. Dev, NSI and Neutrino Mass Models at DUNE, https://indico.fnal.gov/event/18430/contributions/47239/attachments/29448/36310/dev_pondd.pdf (2018).

S.T. Petcov, Remarks on the Zee model of neutrino mixing (μ → e + γ, νH → νL + γ, etc.), Phys. Lett. B 115 (1982) 401 [INSPIRE].

Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].

SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,e and implications for a large muon EDM, Phys. Rev. D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].

COMET collaboration, COMET/PRISM muon to electron conversion at J-PARC, AIP Conf. Proc. 1182 (2009) 694 [INSPIRE].

Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

I. Bigaran and R.R. Volkas, Getting chirality right: Single scalar leptoquark solutions to the (g − 2)e,μ puzzle, Phys. Rev. D 102 (2020) 075037 [arXiv:2002.12544] [INSPIRE].

R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191 [arXiv:1812.04130] [INSPIRE].

T. Nomura and H. Okada, Zee-Babu type model with \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) gauge symmetry, Phys. Rev. D 97 (2018) 095023 [arXiv:1803.04795] [INSPIRE].

M.H. et al, python-ternary: Ternary plots in python, 10.5281/zenodo.594435.