Lepton number violating operators with standard model gauge fields: a survey of neutrino masses from 3-loops and their link to dark matter

Journal of High Energy Physics - Tập 2020 - Trang 1-38 - 2020
Michael Gustafsson1, José Miguel No2, Maximiliano A. Rivera3
1Institute for theoretical Physics — Faculty of Physics, Georg-August University Göttingen, Göttingen, Germany
2Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain
3Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile

Tóm tắt

We investigate neutrino mass generation scenarios where the lepton number breaking new physics does not interact with Standard Model (SM) quarks and couples only to the SM right-handed charged lepton chirality. The lowest-order lepton number violating effective operator which describes this framework is a unique dimension nine operator involving SM gauge fields, $$ {\mathcal{O}}_9 $$ . We find that there are two possible classes of new physics scenarios giving rise to this $$ {\mathcal{O}}_9 $$ operator. In these scenarios neutrino masses are induced radiatively via dark matter interactions, linking the dark matter to a natural explanation for the smallness of neutrino masses compared to the electroweak scale. We discuss the phenomenology and existing constraints in the different neutrino mass models within each class. In particular, we analyze the important interplay between neutrino mixing and neutrinoless double β-decay in order to predict characteristic signatures and disfavour certain scenarios.

Tài liệu tham khảo

K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE]. A. de Gouvâa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE]. F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic decomposition of the neutrinoless double beta decay operator, JHEP 03 (2013) 055 [Erratum ibid. 04 (2014) 090] [arXiv:1212.3045] [INSPIRE]. F.F. Deppisch, L. Graf, J. Harz and W.-C. Huang, Neutrinoless double beta decay and the baryon asymmetry of the universe, Phys. Rev. D 98 (2018) 055029 [arXiv:1711.10432] [INSPIRE]. C.-S. Chen, C.Q. Geng and J.N. Ng, Unconventional neutrino mass generation, neutrinoless double beta decays, and collider phenomenology, Phys. Rev. D 75 (2007) 053004 [hep-ph/0610118] [INSPIRE]. F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, A realistic model of neutrino masses with a large neutrinoless double beta decay rate, JHEP 05 (2012) 133 [arXiv:1111.6960] [INSPIRE]. F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, JHEP 06 (2012) 146 [arXiv:1204.5986] [INSPIRE]. M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [Erratum ibid. 112 (2014) 259902] [arXiv:1212.4806] [INSPIRE]. J. Alcaide, D. Das and A. Santamaria, A model of neutrino mass and dark matter with large neutrinoless double beta decay, JHEP 04 (2017) 049 [arXiv:1701.01402] [INSPIRE]. P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ∆L = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE]. Y. Cai, J. Herrero-García, M.A. Schmidt, A. Vicente and R.R. Volkas, From the trees to the forest: a review of radiative neutrino mass models, Front. in Phys. 5 (2017) 63 [arXiv:1706.08524] [INSPIRE]. K.S. Babu, P.S.B. Dev, S. Jana and A. Thapa, Non-standard interactions in radiative neutrino mass models, JHEP 03 (2020) 006 [arXiv:1907.09498] [INSPIRE]. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE]. M. Gustafsson, J.M. No and M.A. Rivera, Radiative neutrino mass generation linked to neutrino mixing and 0νββ-decay predictions, Phys. Rev. D 90 (2014) 013012 [arXiv:1402.0515] [INSPIRE]. R. Cepedello, R.M. Fonseca and M. Hirsch, Systematic classification of three-loop realizations of the Weinberg operator, JHEP 10 (2018) 197 [Erratum ibid. 06 (2019) 034] [arXiv:1807.00629] [INSPIRE]. S.F. King, A. Merle and L. Panizzi, Effective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC, JHEP 11 (2014) 124 [arXiv:1406.4137] [INSPIRE]. T. Geib, S.F. King, A. Merle, J.M. No and L. Panizzi, Probing the origin of neutrino masses and mixings via doubly charged scalars: complementarity of the intensity and the energy frontiers, Phys. Rev. D 93 (2016) 073007 [arXiv:1512.04391] [INSPIRE]. L.-G. Jin, R. Tang and F. Zhang, A three-loop radiative neutrino mass model with dark matter, Phys. Lett. B 741 (2015) 163 [arXiv:1501.02020] [INSPIRE]. W. Chao, G.-J. Ding, X.-G. He and M. Ramsey-Musolf, Scalar electroweak multiplet dark matter, JHEP 08 (2019) 058 [arXiv:1812.07829] [INSPIRE]. T.A. Chowdhury and S. Nasri, Gamma rays from Dark Matter Annihilation in Three-loop Radiative Neutrino Mass Generation Models, Phys. Lett. B 782 (2018) 215 [arXiv:1802.05971] [INSPIRE]. T.A. Chowdhury, S. Hassan, J. Hossain, S. Nasri and M.A. Shamim, Probing the Dark Matter of Three-loop Radiative Neutrino Mass Generation Model with the Cherenkov Telescope Array, arXiv:2008.06602 [INSPIRE]. C.-S. Chen, K.L. McDonald and S. Nasri, A Class of Three-Loop Models with Neutrino Mass and Dark Matter, Phys. Lett. B 734 (2014) 388 [arXiv:1404.6033] [INSPIRE]. J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, The Zee-Babu model revisited in the light of new data, Nucl. Phys. B 885 (2014) 542 [arXiv:1402.4491] [INSPIRE]. A. Crivellin, M. Ghezzi, L. Panizzi, G.M. Pruna and A. Signer, Low- and high-energy phenomenology of a doubly charged scalar, Phys. Rev. D 99 (2019) 035004 [arXiv:1807.10224] [INSPIRE]. R. Cepedello, M. Hirsch, P. Rocha-Morán and A. Vicente, Minimal 3-loop neutrino mass models and charged lepton flavor violation, JHEP 08 (2020) 067 [arXiv:2005.00015] [INSPIRE]. MEG collaboration, Search for the lepton flavour violating decay μ+ → e+ γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE]. HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE]. BaBar collaboration, Limits on τ lepton-flavor violating decays in three charged leptons, Phys. Rev. D 81 (2010) 111101 [arXiv:1002.4550] [INSPIRE]. K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ + τ − pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE]. SINDRUM collaboration, Search for the decay μ+ → e+ e+ e−, Nucl. Phys. B 299 (1988) 1 [INSPIRE]. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE]. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE]. W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE]. F. del Aguila, M. Chala, A. Santamaria and J. Wudka, Discriminating between lepton number violating scalars using events with four and three charged leptons at the LHC, Phys. Lett. B 725 (2013) 310 [arXiv:1305.3904] [INSPIRE]. F. del Águila and M. Chala, LHC bounds on lepton number violation mediated by doubly and singly-charged scalars, JHEP 03 (2014) 027 [arXiv:1311.1510] [INSPIRE]. S. Kanemura, K. Yagyu and H. Yokoya, First constraint on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario at the LHC, Phys. Lett. B 726 (2013) 316 [arXiv:1305.2383] [INSPIRE]. S. Kanemura, M. Kikuchi, K. Yagyu and H. Yokoya, Bounds on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario, Phys. Rev. D 90 (2014) 115018 [arXiv:1407.6547] [INSPIRE]. J. Alcaide, M. Chala and A. Santamaria, LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model, Phys. Lett. B 779 (2018) 107 [arXiv:1710.05885] [INSPIRE]. ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE]. ATLAS collaboration, Search for doubly-charged Higgs bosons in same-charge electron pair final states using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2016-051 (2016). K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE]. M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu model at the CERN LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013 [arXiv:0711.0483] [INSPIRE]. D. Schmidt, T. Schwetz and H. Zhang, Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524 [arXiv:1402.2251] [INSPIRE]. K.S. Babu and C. Macesanu, Two loop neutrino mass generation and its experimental consequences, Phys. Rev. D 67 (2003) 073010 [hep-ph/0212058] [INSPIRE]. C.-Q. Geng, D. Huang and L.-H. Tsai, Loop-induced neutrino masses: a case study, Phys. Rev. D 90 (2014) 113005 [arXiv:1410.7606] [INSPIRE]. A. Belyaev, G. Cacciapaglia, I.P. Ivanov, F. Rojas-Abatte and M. Thomas, Anatomy of the inert two Higgs doublet model in the light of the LHC and non-LHC dark matter searches, Phys. Rev. D 97 (2018) 035011 [arXiv:1612.00511] [INSPIRE]. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE]. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE]. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE]. M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE]. A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE]. A. Ilnicka, M. Krawczyk and T. Robens, Inert doublet model in light of LHC Run I and astrophysical data, Phys. Rev. D 93 (2016) 055026 [arXiv:1508.01671] [INSPIRE]. C. Garcia-Cely, M. Gustafsson and A. Ibarra, Probing the inert doublet dark matter model with Cherenkov telescopes, JCAP 02 (2016) 043 [arXiv:1512.02801] [INSPIRE]. B. Eiteneuer, A. Goudelis and J. Heisig, The inert doublet model in the light of Fermi-LAT gamma-ray data: a global fit analysis, Eur. Phys. J. C 77 (2017) 624 [arXiv:1705.01458] [INSPIRE]. E. Lundstrom, M. Gustafsson and J. Edsjo, The inert doublet model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE]. G. Bélanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Dilepton constraints in the inert doublet model from Run 1 of the LHC, Phys. Rev. D 91 (2015) 115011 [arXiv:1503.07367] [INSPIRE]. J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Zarnecki, Benchmarking the inert doublet model for e+ e− colliders, JHEP 12 (2018) 081 [arXiv:1809.07712] [INSPIRE]. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE]. M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant gamma lines from inert Higgs dark matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [INSPIRE]. B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector boson fusion in the inert doublet model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE]. A. Belyaev et al., Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal, Phys. Rev. D 99 (2019) 015011 [arXiv:1809.00933] [INSPIRE]. A. Arhrib, R. Benbrik and N. Gaur, H → γγ in inert higgs doublet model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE]. M. Krawczyk, D. Sokołowska, P. Swaczyna and B. Świeżewska, Higgs → γγ, Zγ in the inert doublet model, Acta Phys. Polon. B 44 (2013) 2163 [arXiv:1309.7880] [INSPIRE]. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE]. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE]. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE]. L. Feng, S. Profumo and L. Ubaldi, Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines, JHEP 03 (2015) 045 [arXiv:1412.1105] [INSPIRE]. GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE]. M. Klasen, C.E. Yaguna and J.D. Ruiz-Alvarez, Electroweak corrections to the direct detection cross section of inert Higgs dark matter, Phys. Rev. D 87 (2013) 075025 [arXiv:1302.1657] [INSPIRE]. O. Fischer and J.J. van der Bij, The scalar singlet-triplet dark matter model, JCAP 01 (2014) 032 [arXiv:1311.1077] [INSPIRE]. C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE]. M. Baumgart, I.Z. Rothstein and V. Vaidya, Constraints on galactic wino densities from gamma ray lines, JHEP 04 (2015) 106 [arXiv:1412.8698] [INSPIRE]. M. Aoki, T. Toma and A. Vicente, Non-thermal production of minimal dark matter via right-handed neutrino decay, JCAP 09 (2015) 063 [arXiv:1507.01591] [INSPIRE]. M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of minimal dark matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE]. C. Garcia-Cely, A. Ibarra, A.S. Lamperstorfer and M.H.G. Tytgat, Gamma-rays from heavy minimal dark matter, JCAP 10 (2015) 058 [arXiv:1507.05536] [INSPIRE]. C. Garcia-Cely and A. Rivera, General calculation of the cross section for dark matter annihilations into two photons, JCAP 03 (2017) 054 [arXiv:1611.08029] [INSPIRE]. D. Dercks and T. Robens, Constraining the inert doublet model using vector boson fusion, Eur. Phys. J. C 79 (2019) 924 [arXiv:1812.07913] [INSPIRE]. J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A.F. Zarnecki, The inert doublet model at current and future colliders, J. Phys. Conf. Ser. 1586 (2020) 012023 [arXiv:1903.04456] [INSPIRE]. L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE]. A. Ahriche and S. Nasri, Dark matter and strong electroweak phase transition in a radiative neutrino mass model, JCAP 07 (2013) 035 [arXiv:1304.2055] [INSPIRE]. C. Guella, D. Cherigui, A. Ahriche, S. Nasri and R. Soualah, Probing radiative neutrino mass models with dilepton events at the LHC, Phys. Rev. D 93 (2016) 095022 [arXiv:1601.04342] [INSPIRE]. D. Cherigui, C. Guella, A. Ahriche and S. Nasri, Probing radiative neutrino mass models using trilepton channel at the LHC, Phys. Lett. B 762 (2016) 225 [arXiv:1605.03640] [INSPIRE]. C.-Q. Geng, D. Huang and L.-H. Tsai, Comment on “A three-loop radiative neutrino mass model with dark matter” [Phys. Lett. B 741 (2015) 163], Phys. Lett. B 745 (2015) 56 [arXiv:1504.05468] [INSPIRE]. M. Gustafsson and M. Rivera, to appear. Particle Data Group collaboration, Review of particle physics, Prog. Theor. Exp. Phys. (2020) 083C01. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE]. A. Freitas and S. Westhoff, Leptophilic dark matter in lepton interactions at LEP and ILC, JHEP 10 (2014) 116 [arXiv:1408.1959] [INSPIRE]. K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter model, Phys. Rev. D 69 (2004) 113009 [hep-ph/0403003] [INSPIRE]. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE]. A. Dedes and D. Karamitros, Doublet-triplet fermionic dark matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE]. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE]. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE]. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE]. H. Pas, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A superformula for neutrinoless double beta decay. 2. The Short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE]. J. Bergstrom, A. Merle and T. Ohlsson, Constraining new physics with a positive or negative signal of neutrino-less double beta decay, JHEP 05 (2011) 122 [arXiv:1103.3015] [INSPIRE]. M. Horoi and A. Neacsu, Towards an effective field theory approach to the neutrinoless double-beta decay, arXiv:1706.05391 [INSPIRE]. M.J. Dolinski, A.W.P. Poon and W. Rodejohann, Neutrinoless double-beta decay: status and prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219 [arXiv:1902.04097] [INSPIRE]. GERDA collaboration, Improved limit on neutrinoless double-β decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE]. LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), AIP Conf. Proc. 1894 (2017) 020027 [arXiv:1709.01980] [INSPIRE]. KamLAND-Zen collaboration, Search for Majorana Neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [Addendum ibid. 117 (2016) 109903] [arXiv:1605.02889] [INSPIRE]. W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti and G. Zhou, Sterile neutrinos and neutrinoless double beta decay in effective field theory, JHEP 06 (2020) 097 [arXiv:2002.07182] [INSPIRE]. nEXO collaboration, Sensitivity and discovery potential of nEXO to neutrinoless double beta decay, Phys. Rev. C 97 (2018) 065503 [arXiv:1710.05075] [INSPIRE]. CUORE collaboration, First results from CUORE: a search for lepton number violation via 0νββ decay of 130 Te, Phys. Rev. Lett. 120 (2018) 132501 [arXiv:1710.07988] [INSPIRE]. D.R. Artusa et al., Enriched TeO2 bolometers with active particle discrimination: towards the CUPID experiment, Phys. Lett. B 767 (2017) 321 [arXiv:1610.03513] [INSPIRE]. CUPID collaboration, CUPID pre-CDR, arXiv:1907.09376 [INSPIRE]. A. Neacsu and M. Horoi, An effective method to accurately calculate the phase space factors for β− β− decay, Adv. High Energy Phys. 2016 (2016) 7486712 [arXiv:1510.00882] [INSPIRE]. J. Suhonen and O. Civitarese, Weak-interaction and nuclear-structure aspects of nuclear double beta decay, Phys. Rept. 300 (1998) 123 [INSPIRE]. D. Stefanik, R. Dvornicky, F. Simkovic and P. Vogel, Reexamining the light neutrino exchange mechanism of the 0νββ decay with left- and right-handed leptonic and hadronic currents, Phys. Rev. C 92 (2015) 055502 [arXiv:1506.07145] [INSPIRE]. J.J. Gomez-Cadenas et al., Sense and sensitivity of double beta decay experiments, JCAP 06 (2011) 007 [arXiv:1010.5112] [INSPIRE]. F.F. Deppisch, M. Hirsch and H. Pas, Neutrinoless double beta decay and physics beyond the standard model, J. Phys. G 39 (2012) 124007 [arXiv:1208.0727] [INSPIRE]. I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE]. G. Passarino and M.J.G. Veltman, One loop corrections for e+ e− annihilation into μ+ μ− in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE]. J. Romao, Modern techniques for one-loop calculations, https://porthos.tecnico.ulisboa.pt/public/textos/one-loop.pdf. G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 [INSPIRE].