Loop neutrino masses from d = 7 operator
Tóm tắt
We discuss the generation of small neutrino masses from d = 7 1-loop diagrams. We first systematically analyze all possible d = 7 1-loop topologies. There is a total of 48 topologies, but only 8 of these can lead to “genuine” d = 7 neutrino masses. Here, we define genuine models to be models in which neither d = 5 nor d = 7 tree-level masses nor ad = 51-loop mass appear, such that the d = 71-loop is the leading order contribution to the neutrino masses. All genuine models can then be organized w.r.t. their particle content. We find there is only one diagram with no representation larger than triplet, while there are 22 diagrams with quadruplets. We briefly discuss three minimal example models of this kind.
Tài liệu tham khảo
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
H.K. Dreiner, An introduction to explicit R-parity violation, hep-ph/9707435 [INSPIRE].
M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao and J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: A theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D 65 (2002) 119901] [hep-ph/0004115] [INSPIRE].
R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].
F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].
D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP 03 (2015) 040 [arXiv:1411.7038] [INSPIRE].
Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and Ingredients for Neutrino Mass at Loop Level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].
K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, JHEP 06 (2012) 146 [arXiv:1204.5986] [INSPIRE].
J.C. Helo, M. Hirsch and T. Ota, Long-range contributions to double beta decay revisited, JHEP 06 (2016) 006 [arXiv:1602.03362] [INSPIRE].
F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge Trimming of Neutrino Masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [INSPIRE].
S. Kanemura and T. Ota, Neutrino Masses from Loop-induced d ≥ 7 Operators, Phys. Lett. B 694 (2011) 233 [arXiv:1009.3845] [INSPIRE].
M.B. Krauss, T. Ota, W. Porod and W. Winter, Neutrino mass from higher than D = 5 effective operators in SUSY and its test at the LHC, Phys. Rev. D 84 (2011) 115023 [arXiv:1109.4636] [INSPIRE].
M.B. Krauss, D. Meloni, W. Porod and W. Winter, Neutrino Mass from a D = 7 Effective Operator in an SU(5) SUSY-GUT Framework, JHEP 05 (2013) 121 [arXiv:1301.4221] [INSPIRE].
I. Gogoladze, N. Okada and Q. Shafi, NMSSM and Seesaw Physics at LHC, Phys. Lett. B 672 (2009) 235 [arXiv:0809.0703] [INSPIRE].
P.-H. Gu, H.-J. He, U. Sarkar and X.-m. Zhang, Double Type-II Seesaw, Baryon Asymmetry and Dark Matter for Cosmic e ± Excesses, Phys. Rev. D 80 (2009) 053004 [arXiv:0906.0442] [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].
K.S. Babu, S. Nandi and Z. Tavartkiladze, New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].
Y. Liao, G.-Z. Ning and L. Ren, Flavor Violating Transitions of Charged Leptons from a Seesaw Mechanism of Dimension Seven, Phys. Rev. D 82 (2010) 113003 [arXiv:1008.0117] [INSPIRE].
S. Fraser, C. Kownacki, E. Ma and O. Popov, Type II Radiative Seesaw Model of Neutrino Mass with Dark Matter, Phys. Rev. D 93 (2016) 013021 [arXiv:1511.06375] [INSPIRE].