Sustained Release Biocompatible Ocular Insert Using Hot Melt Extrusion Technology: Fabrication and in-vivo evaluation
Tài liệu tham khảo
Jaffe, 2006
Horita, 2019, Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys, Pharmacol. Res. Perspect., 7, 10.1002/prp2.545
Irimia, 2018, Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems, Polymers, 10, 1221, 10.3390/polym10111221
Balguri, 2017, Melt-cast noninvasive ocular inserts for posterior segment drug delivery, J. Pharmaceut. Sci., 106, 3515, 10.1016/j.xphs.2017.07.017
Rathod, 2017, A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies, Mater. Sci. Eng. C, 71, 529, 10.1016/j.msec.2016.10.017
Gote, 2019, Ocular drug delivery: present innovations and future challenges, J. Pharmacol. Exp. Therapeut., 370, 602, 10.1124/jpet.119.256933
Natu, 2007, Controlled release gelatin hydrogels and lyophilisates with potential application as ocular inserts, Biomed. Mater., 2, 241, 10.1088/1748-6041/2/4/006
Zhu, 2019, Controlled release of methylene blue from glutaraldehyde-modified Gelatin, J. Food Biochem., 43, 10.1111/jfbc.12977
Campiglio, 2019, Crosslinking strategies for electrospun gelatin scaffolds, Materials, 12, 2476, 10.3390/ma12152476
Khan, 2014, Stabilization of gelatin nanoparticles without crosslinking, Macromol. Biosci., 14, 1627, 10.1002/mabi.201400214
Khayat, 2017, GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration, J. Dent. Res., 96, 192, 10.1177/0022034516682005
Ding, 2019, 3D bioprinted GelMA based models for the study of trophoblast cell invasion, Sci. Rep., 9, 18854, 10.1038/s41598-019-55052-7
Cuq, 1998, Proteins as agricultural polymers for packaging production, Cereal Chem., 75, 1, 10.1094/CCHEM.1998.75.1.1
Shirahama, 2016, Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis, Sci. Rep., 6, 31036, 10.1038/srep31036
Baeyens, 2002, Clinical evaluation of bioadhesive ophthalmic drug inserts (BODI®) for the treatment of external ocular infections in dogs, J. Contr. Release, 85, 163, 10.1016/S0168-3659(02)00284-5
Shell, 1982, Ocular drug delivery systems-a review, J. Toxicol. Cutan. Ocul. Toxicol., 1, 49, 10.3109/15569528209052130
Bancroft, 2008
Schenck, 2019, Achieving a hot melt extrusion design space for the production of solid solutions, Chem. Eng. Pharmaceut. Industr.: Drug Prod. Des., Develop. Model., 469, 10.1002/9781119600800.ch69
Aleksovski, 2016, Comparison of metoprolol tartrate multiple-unit lipid matrix systems produced by different technologies, Eur. J. Pharmaceut. Sci., 88, 233, 10.1016/j.ejps.2016.03.011
Crowley, 2007, Pharmaceutical applications of hot-melt extrusion: part I, Drug Dev. Ind. Pharm., 33, 909, 10.1080/03639040701498759
Pimparade, 2017, Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology, Eur. J. Pharm. Biopharm., 119, 81, 10.1016/j.ejpb.2017.06.004
Yeung, 2015, Hot-melt extrusion of sugar-starch-pellets, Int. J. Pharm., 493, 390, 10.1016/j.ijpharm.2015.07.079
Avgerinos, 2018, Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression, Drug Dev. Ind. Pharm., 44, 338, 10.1080/03639045.2017.1391839
Kempin, 2017, Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants, Eur. J. Pharm. Biopharm., 115, 84, 10.1016/j.ejpb.2017.02.014
Kavoosi, 2013, Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing, J. Food Sci., 78, E244, 10.1111/1750-3841.12015
Verbeek, 2010, Extrusion processing and properties of protein‐based thermoplastics, Macromol. Mater. Eng., 295, 10, 10.1002/mame.200900167
Ma, 2018, Mechanical and structural properties of rabbit skin gelatin films, Int. J. Food Prop., 21, 1203, 10.1080/10942912.2018.1476874
Di Gioia, 1999, Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers, J. Agric. Food Chem., 47, 1254, 10.1021/jf980976j
Gensheimer, 2012, Novel formulation of glycerin 1% artificial tears extends tear film break-up time compared with Systane lubricant eye drops, J. Ocul. Pharmacol. Therapeut., 28, 473, 10.1089/jop.2011.0053
Aguilar, 2018, Efficacy of polyethylene glycol–propylene glycol-based lubricant eye drops in reducing squamous metaplasia in patients with dry eye disease, Clin. Ophthalmol., 12, 1237, 10.2147/OPTH.S164888
Jain, 2011, Development of polyvinyl alcohol–gelatin membranes for antibiotic delivery in the eye, Drug Dev. Ind. Pharm., 37, 167, 10.3109/03639045.2010.502533
Wang, 2019, Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering, Molecules, 24, 1633, 10.3390/molecules24081633
Khalil, 2020, Ciprofloxacin-loaded bioadhesive hydrogels for ocular applications, Biomater. Sci., 8, 5196, 10.1039/D0BM00935K