A review on recent drug delivery systems for posterior segment of eye

Biomedicine & Pharmacotherapy - Tập 107 - Trang 1564-1582 - 2018
Kritika Nayak1, Manju Misra1
1Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Opposite AirForce station, Palaj Basan Road, Village Palaj (Gandhinagar), Gujarat, 382355, India

Tài liệu tham khảo

Barar, 2016, Advanced drug delivery and targeting technologies for the ocular diseases, BioImpacts, 6, 49, 10.15171/bi.2016.07 Pascolini, 2010, 2010 Zhang, 2012, Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma, Nat. Rev. Drug Discov., 11, 541, 10.1038/nrd3745 Yasukawa, 2011, Recent advances in intraocular drug delivery systems, Recent Pat. Drug Deliv. Formul., 5, 1, 10.2174/187221111794109529 Ameeduzzafar, 2014, Colloidal drug delivery system: amplify the ocular delivery, Drug Deliv., 23, 710 Zafar, 2016, Progress of controlled drug delivery systems in topical ophthalmology: focus on nano and micro drug carriers, 131 Millar, 2015, The real reason for having a meibomian lipid layer covering the outer surface of the tear film - a review, Exp. Eye Res., 137, 125, 10.1016/j.exer.2015.05.002 Wang, 2003, Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography, Investig. Ophthalmol. Vis. Sci., 44, 2524, 10.1167/iovs.02-0731 Prausnitz, 1998, Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye, J. Pharm. Sci., 87, 1479, 10.1021/js9802594 Kuno, 2011, Recent advances in ocular drug delivery systems, Polymers (Basel), 3, 193, 10.3390/polym3010193 Malhotra, 2001, Permeation through cornea, Indian J. Exp. Biol., 39, 11 Boddu, 2014, Drug delivery to the back of the eye following topical administration: an update on research and patenting activity, recent pat, Drug Deliv. Formul., 8, 27, 10.2174/1872211308666140130093301 Yu-Wai-Man, 2016, Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis, Sci. Rep., 6, 1, 10.1038/srep21881 Jun, 2011, An antiviral small-interfering RNA simultaneously effective against the most prevalent enteroviruses causing acute hemorrhagic conjunctivitis, Investig. Ophthalmol. Vis. Sci., 52, 58, 10.1167/iovs.09-5051 A.I. Jimenez, C. Paneda, T. Martinez, siRNa and their use in methods and compositions for inhibiting the expression of the ORAI1 gene, US 2016/0304880 A1, 2016. Nie, 2009, The potential therapeutic of siRNA eye drops in ocular diseases, Biosci. Hypotheses, 2, 223, 10.1016/j.bihy.2009.04.003 Hosoya, 2005, Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation, Eur. J. Pharm. Biopharm., 60, 227, 10.1016/j.ejpb.2004.12.007 Resende, 2017, Ex vivo permeation of erythropoietin through porcine conjunctiva, cornea, and sclera, Drug Deliv. Transl. Res., 7, 625, 10.1007/s13346-017-0399-y Chen, 2016, Anti-angiogenesis through noninvasive to minimally invasive intraocular delivery of the peptide CC12 identified by in vivo-directed evaluation, Biomaterials, 9 Xu, 2017, An inhibitor peptide of toll-like receptor 2 shows therapeutic potential for allergic conjunctivitis, Int. Immunopharmacol., 46, 9, 10.1016/j.intimp.2017.02.024 Sasaki, 2000, Modification of ocular permeability of peptide drugs by absorption promoters, Biol. Pharm. Bull., 23, 1524, 10.1248/bpb.23.1524 Gukasyan, 2008, The conjunctival barrier in ocular drug delivery Gaudana, 2010, Ocular drug delivery, AAPS J., 12, 348, 10.1208/s12248-010-9183-3 Yellepeddi, 2015, Recent advances in topical ocular drug delivery, J. Ocul. Pharmacol. Ther., 32, 67, 10.1089/jop.2015.0047 Chen, 2017, Anatomy and physiology of the crystalline lens, Pediatr. Lens Dis., 21, 10.1007/978-981-10-2627-0_3 Molokhia, 2010, The capsule drug device: Novel approach for drug delivery to the eye, Vision Res., 50, 680, 10.1016/j.visres.2009.10.013 Edelhauser, 2010, Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications, Investig. Opthalmol. Vis. Sci., 51, 5403, 10.1167/iovs.10-5392 Gupta, 2015, Retinal anatomy and pathology, Dev. Ophthalmol., 55, 7, 10.1159/000431128 Kim, 2009, Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina, Pharm. Res., 26, 329, 10.1007/s11095-008-9745-6 Djebli, 2016, Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits, Eur. J. Drug Metab. Pharmacokinet., 1 Agrahari, 2016, A comprehensive insight on ocular pharmacokinetics, Drug Deliv. Transl. Res., 6, 735, 10.1007/s13346-016-0339-2 Durairaj, 2016, Ocular pharmacokinetics, 251, 10.1007/164_2016_32 Bansal, 2016, Posterior segment drug delivery devices: current and novel therapies in development, J. Ocul. Pharmacol. Ther., 32, 135, 10.1089/jop.2015.0133 Lakhani, 2018, Recent advances in topical nano drug-delivery systems for the anterior ocular segment, Ther. Deliv., 9, 137, 10.4155/tde-2017-0088 Abdelkader, 2012, Controlled and continuous release ocular drug delivery systems: pros and cons, Curr. Drug Deliv., 9, 421, 10.2174/156720112801323125 Srirangam, 2012, Evaluation of the intravenous and topical routes for ocular delivery of Hesperidin and hesperetin, J. Ocul. Pharmacol. Ther., 28, 618, 10.1089/jop.2012.0040 Kang-Mieler, 2014, Advances in ocular drug delivery: emphasis on the posterior segment, Expert Opin. Drug Deliv., 11, 1, 10.1517/17425247.2014.935338 Ranta, 2010, Barrier analysis of periocular drug delivery to the posterior segment, J. Control. Release, 148, 42, 10.1016/j.jconrel.2010.08.028 Swarbrick, 2010 Kadam, 2013, Suprachoroidal delivery in a rabbit ex vivo eye model: influence of drug properties, regional differences in delivery, and comparison with intravitreal and intracameral routes, Mol. Vis., 19, 1198 Stein, 2017, FDA-approved oligonucleotide therapies in 2017, Mol. Ther., 25, 1069, 10.1016/j.ymthe.2017.03.023 Lanzetta, 2017, Fundamental principles of an anti-VEGF treatment regimen: optimal application of intravitreal anti–vascular endothelial growth factor therapy of macular diseases, Graefe’s Arch, Graefes Arch. Clin. Exp. Ophthalmol., 255, 1259, 10.1007/s00417-017-3647-4 Nuzzi, 2013, Local and systemic complications after intravitreal administration of anti-vascular endothelial growth factor agents in the treatment of different ocular diseases: a five-year retrospective study, Semin. Ophthalmol., 1 Falavarjani, 2013, Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature, Eye, 27, 787, 10.1038/eye.2013.107 Fangueiro, 2014, Current nanotechnology approaches for the treatment and management of diabetic retinopathy, Eur. J. Pharm. Biopharm., 1 Dhillon, 1998, Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS, Int. J. STD AIDS, 9, 227, 10.1258/0956462981922098 Christoforidis, 2012, Intravitreal devices for the treatment of vitreous inflammation, Mediators Inflamm., 2012, 1 Chirila, 2016 Haghjou, 2011, Sustained release intraocular drug delivery devices for treatment of uveitis, J. Ophthalmic Vis. Res., 6, 317 Jaffe, 2006, Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis. Thirty-four-week results of a multicenter randomized clinical study, Ophthalmology, 113, 1020, 10.1016/j.ophtha.2006.02.021 Freitas-Neto, 2015, Outcome of multiple implants and dissociation of fluocinolone acetonide intravitreal implant (Retisert) in a series of 187 consecutive implants, Ocul. Immunol. Inflamm., 23, 425, 10.3109/09273948.2014.986583 Kane, 2008, Iluvien: a new sustained delivery technology for posterior eye disease, Expert Opin. Drug Deliv., 5, 1039, 10.1517/17425247.5.9.1039 Schmit-Eilenberger, 2015, A novel intravitreal fluocinolone acetonide implant (Iluvien®) in the treatment of patients with chronic diabetic macular edema that is insufficiently responsive to other medical treatment options: a case series, Clin. Ophthalmol., 9, 801, 10.2147/OPTH.S79785 Salazar-Méndez, 2016, Moving forward in uveitis therapy: preclinical to phase II clinical trial drug development, Expert Opin. Investig. Drugs, 25, 195, 10.1517/13543784.2016.1128893 Nirmal, 2016, Drug, delivery and devices for diabetic retinopathy (3Ds in DR), Expert Opin. Drug Deliv., 13, 1625, 10.1080/17425247.2016.1188800 a Cardillo, 2006, Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema, Arch. Soc. Esp. Oftalmol., 81, 679 Rivers, 2015 Mann, 2018, Ocular translational science: a review of development steps and paths, Adv. Drug Deliv. Rev., 1 He, 2006, Therapeutic and toxicological evaluations of cyclosporine a microspheres as a treatment vehicle for uveitis in rabbits, J. Ocul. Pharmacol. Ther., 22, 121, 10.1089/jop.2006.22.121 Gilger, 2010, Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis, Vet. Ophthalmol., 13, 294, 10.1111/j.1463-5224.2010.00807.x Kuno, 2012, Ocular drug delivery systems for the posterior segment : a review, Retin. Today, 54 Tan, 2001, Randomized clinical trial of surodex steroid drug delivery system for cataract surgery anterior versus posterior placement of two surodex in the eye, Ophthalmology, 108, 2172, 10.1016/S0161-6420(01)00839-9 Seah, 2005, Use of surodex in phacotrabeculectomy surgery, Am. J. Ophthalmol., 139, 927, 10.1016/j.ajo.2004.10.052 Querques, 2013, Repeated intravitreal dexamethasone implant (Ozurdex®) for retinal vein occlusion, Ophthalmologica, 229, 21, 10.1159/000342160 Chan, 2011, Critical appraisal of the clinical utility of the dexamethasone intravitreal implant (Ozurdex®) for the treatment of macular edema related to branch retinal vein occlusion or central retinal vein occlusion, Clin. Ophthalmol., 5, 1043 Pacella, 2013, Preliminary results of an intravitreal dexamethasone implant (Ozurdex(R)) in patients with persistent diabetic macular edema, Clin. Ophthalmol., 7, 1423, 10.2147/OPTH.S48364 Haller, 2010, Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion, Ophthalmology, 117, 1134, 10.1016/j.ophtha.2010.03.032 Bezatis, 2013, Functional and anatomical results after a single intravitreal Ozurdex injection in retinal vein occlusion: a 6-month follow-up - The SOLO study, Acta Ophthalmol., 91, 340, 10.1111/aos.12020 Kuno, 2010, Biodegradable intraocular therapies for retinal disorders: progress to date, Drugs Aging, 27, 117, 10.2165/11530970-000000000-00000 Birch, 2016, Long-term follow-up of patients with retinitis pigmentosa receiving intraocular ciliary neurotrophic factor implants, Am. J. Ophthalmol., 170, 10, 10.1016/j.ajo.2016.07.013 Chen, 2015, Recent developments in ocular drug delivery, J. Drug Target, 23, 597, 10.3109/1061186X.2015.1052073 Gutierrez-Hernandez, 2014, One-year feasibility study of replenish MicroPump for intravitreal drug delivery: a pilot study, Transl. Vis. Sci. Technol., 3, 1, 10.1167/tvst.3.4.1 Saati, 2010, Mini drug pump for ophthalmic use, Curr. Eye Res., 35, 192, 10.3109/02713680903521936 Patel, 2012, Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye, Investig. Opthalmol. Vis. Sci., 53, 4433, 10.1167/iovs.12-9872 Chiang, 2016, Distribution of particles, small molecules and polymeric formulation excipients in the suprachoroidal space after microneedle injection, Exp. Eye Res., 153, 101, 10.1016/j.exer.2016.10.011 Patel, 2011, Suprachoroidal drug delivery to the back of the eye using hollow microneedles, Pharm. Res., 28, 166, 10.1007/s11095-010-0271-y Hartman, 2018, Intravitreal, subretinal, and suprachoroidal injections: evolution of microneedles for drug delivery, J. Ocul. Pharmacol., 34, 1, 10.1089/jop.2017.0121 Gupta, 2013, Updates on drug bioavailability and delivery to posterior segment of eye, J. Pharm. Bioallied Sci., 5, 173, 10.4103/0975-7406.116792 Thrimawithana, 2011, Drug delivery to the posterior segment of the eye, Drug Discov. Today, 16, 270, 10.1016/j.drudis.2010.12.004 Rowe-Rendleman, 2014, Drug and gene delivery to the back of the eye: from bench to bedside, Investig. Opthalmol. Vis. Sci., 55, 2714, 10.1167/iovs.13-13707 Heller, 2005, Ocular delivery using poly(ortho esters), Adv. Drug Deliv. Rev., 57, 2053, 10.1016/j.addr.2005.09.007 Gower, 2016, Drug discovery in ophthalmology: past success, present challenges, and future opportunities, BMC Ophthalmol., 16, 1, 10.1186/s12886-016-0188-2 Radhika, 2014, Pharmacokinetics of intravitreal antibiotics in endophthalmitis, J. Ophthalmic Inflamm. Infect., 4, 1, 10.1186/s12348-014-0022-z Gratieri, 2017, Basic principles and current status of transcorneal and transscleral iontophoresis, Expert Opin. Drug Deliv., 14, 1091, 10.1080/17425247.2017.1266334 Eljarrat-Binstock, 2010, New techniques for drug delivery to the posterior eye segment, Pharm. Res., 27, 530, 10.1007/s11095-009-0042-9 Schopf, 2015, Topical ocular drug delivery to the back of the eye by mucus-penetrating particles, Transl. Vis. Sci. Technol., 4, 1, 10.1167/tvst.4.3.11 Popov, 2016, Mucus-penetrating nanoparticles made with “mucoadhesive” poly(vinyl alcohol), Nanomed. Nanotechnol. Biol. Med., 12, 1863, 10.1016/j.nano.2016.04.006 Cloutier, 2012, Antiangiogenic activity of aganirsen in nonhuman primate and rodent models of retinal neovascular disease after topical administration, Investig. Ophthalmol. Vis. Sci., 53, 1195, 10.1167/iovs.11-9064 Olsen, 2006, Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment, Am. J. Ophthalmol., 142, 777, 10.1016/j.ajo.2006.05.045 Pirmoradi, 2011, On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device, Lab Chip, 11, 2744, 10.1039/c1lc20134d Kompella, 2013, Nanomedicines for back of the eye drug delivery, gene delivery, and imaging, Prog. Retin. Eye Res., 36, 172, 10.1016/j.preteyeres.2013.04.001 Al-Halafi, 2014, Nanocarriers of nanotechnology in retinal diseases, Saudi J. Ophthalmol., 28, 304, 10.1016/j.sjopt.2014.02.009 Wang, 2015, Lipid nanoparticles for ocular gene delivery, J. Funct. Biomater., 6, 379, 10.3390/jfb6020379 Araujo, 2011, Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye, Colloids Surf. B Biointerfaces, 88, 150, 10.1016/j.colsurfb.2011.06.025 Fujisawa, 2012, Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes, Int. J. Pharm., 436, 564, 10.1016/j.ijpharm.2012.07.024 Huu, 2015, Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye, J. Control. Release, 200, 71, 10.1016/j.jconrel.2015.01.001 Ying, 2013, Drug delivery to the ocular posterior segment using lipid emulsion via eye drop administration: effect of emulsion formulations and surface modification, Int. J. Pharm., 453, 329, 10.1016/j.ijpharm.2013.06.024 Weng, 2017, Nanotechnology-based strategies for treatment of ocular disease, Acta Pharm. Sin. B, 7, 281, 10.1016/j.apsb.2016.09.001 Borrelli, 2018, Cell penetrating peptides as molecular carriers for anti-cancer agents, Molecules, 23, 1, 10.3390/molecules23020295 Kristensen, 2016, Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos, Int. J. Mol. Sci., 17, 1, 10.3390/ijms17020185 Liu, 2016, Emerging landscape of cell penetrating peptide in reprogramming and gene editing, J. Control. Release, 226, 124, 10.1016/j.jconrel.2016.02.002 Sun, 2015, A promising future for peptides in ophthalmology: work effectively and smartly, Curr. Med. Chem., 22, 1030, 10.2174/0929867322666150114163308 Vasconcelos, 2015, Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery, Int. J. Nanomedicine, 10, 609 Mitra, 2013, Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells, Mol. Vis., 19, 1029 Hironaka, 2009, Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye, J. Control. Release, 136, 247, 10.1016/j.jconrel.2009.02.020 Davis, 2014, Topical delivery of avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes, Small, 10, 1575, 10.1002/smll.201303433 Amrite, 2005, Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration, J. Pharm. Pharmacol., 57, 1555, 10.1211/jpp.57.12.0005 Sharma, 2014, Nanostructure-based platforms-current prospective in ophthalmic drug delivery, Indian J. Ophthalmol., 62, 768, 10.4103/0301-4738.138301 Kaur, 2014, Nanotherapy for posterior eye diseases, J. Control. Release, 193, 100, 10.1016/j.jconrel.2014.05.031 Hazirolan, 2013, Think global - act local: intravitreal drug delivery systems in chronic noninfectious uveitis, Ophthalmic Res., 49, 59, 10.1159/000345477 Srirangam, 2012, Transscleral drug delivery to the posterior segment of the eye : particulate and colloidal formulations and biopharmaceutical considerations, 33 Olsen, 2011, Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of Bevacizumab in a porcine model, Investig. Opthalmol. Vis. Sci., 52, 4749, 10.1167/iovs.10-6291 Pavesio, 2010, Evaluation of an intravitreal fluocinolone acetonide implant versus standard systemic therapy in noninfectious posterior uveitis, Ophthalmology, 117, 567, 10.1016/j.ophtha.2009.11.027 Wu, 2016, Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model, Int. J. Pharm., 513, 238, 10.1016/j.ijpharm.2016.09.013 Cholkar, 2014, Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery, AAPS PharmSciTech, 16, 610, 10.1208/s12249-014-0244-2 Cholkar, 2018, Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery, Transl. Vis. Sci. Technol., 4, 1, 10.1167/tvst.4.3.1 Li, 2016, Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pigment epithelium, Colloids Surf. B Biointerfaces, 140, 278, 10.1016/j.colsurfb.2015.12.053 Patel, 2015, Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application, J. Ocul. Pharmacol. Ther., 31, 215, 10.1089/jop.2014.0152 Kim, 2014, Particle-stabilized emulsion droplets for gravity-mediated targeting in the posterior segment of the eye, Adv. Healthc. Mater., 3, 1272, 10.1002/adhm.201300696 Balguri, 2016, Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues, Eur. J. Pharm. Biopharm., 109, 224, 10.1016/j.ejpb.2016.10.015 Tahara, 2017, Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles, Asian J. Pharm. Sci., 12, 394, 10.1016/j.ajps.2017.03.002 Varshochian, 2015, Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment, J. Biomed. Mater. Res., 103, 3148, 10.1002/jbm.a.35446 Huang, 2014, A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles, Eur. J. Pharm. Biopharm., 88, 104, 10.1016/j.ejpb.2014.04.011 Hironaka, 2011, European Journal of Pharmaceutics and Biopharmaceutics Edaravone-loaded liposomes for retinal protection against oxidative stress-induced retinal damage, Eur. J. Pharm. Biopharm., 79, 119, 10.1016/j.ejpb.2011.01.019 Sasaki, 2013, Retinal drug delivery using eyedrop preparations of poly- L -lysine-modified liposomes, Eur. J. Pharm. Biopharm., 83, 364, 10.1016/j.ejpb.2012.10.014 Takashima, 2012, Non-invasive ophthalmic liposomes for nucleic acid delivery to posterior segment of eye, Yakugaku Zasshi, 132, 1365, 10.1248/yakushi.12-00234-3 Huu, 2015, Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye, J. Control. Release, 200, 71, 10.1016/j.jconrel.2015.01.001 He, 2013, In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels, Int. J. Pharm., 458, 305, 10.1016/j.ijpharm.2013.10.033 Souza, 2014, Tacrolimus-loaded PLGA implants: in vivo release and ocular toxicity, Curr. Eye Res., 39, 99, 10.3109/02713683.2013.819927 Reijerkerk, 2014, Systemic treatment with glutathione PEGylated liposomal methylprednisolone (2B3-201) improves therapeutic efficacy in a model of ocular inflammation, Investig. Ophthalmol. Vis. Sci., 55, 2788, 10.1167/iovs.13-13599 Gan, 2013, Hyaluronan-modified core-shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection, Biomaterials, 34, 5978, 10.1016/j.biomaterials.2013.04.035 Adelli, 2015, Evaluation of topical hesperetin matrix film for back-of-the-eye delivery, Eur. J. Pharm. Biopharm., 92, 74, 10.1016/j.ejpb.2015.02.006 Wang, 2013, Evaluation of RGD peptide hydrogel in the posterior segment of the rabbit eye, J. Biomater. Sci. Polym. Ed., 24, 37, 10.1080/09205063.2012.745714 Li, 2014, Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy, Nanoscale, 6, 14488, 10.1039/C4NR04761C Xie, 2015, An injectable thermosensitive polymeric hydrogel for sustained release of Avastin 1 to treat posterior segment disease, Int. J. Pharm., 490, 375, 10.1016/j.ijpharm.2015.05.071 Vaishya, 2014, Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis, AAPS PharmSci, 10.1208/s12249-014-0100-4 Lovett, 2015, Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics, Eur. J. Pharm. Biopharm., 95, 271, 10.1016/j.ejpb.2014.12.029 Engineering, 2015, Controlled and extended release of a model protein from a microsphere-hydrogel drug delivery system, Ann. Biomed. Eng., 43, 2609, 10.1007/s10439-015-1314-7 Taylor, 2016, Hydrogel ring for topical drug delivery to the ocular posterior segment hydrogel ring for topical drug delivery to the ocular posterior segment, Curr. Eye Res., 41, 653, 10.3109/02713683.2015.1050738 Nagai, 2014, A polymeric device for controlled transscleral multi-drug delivery to the posterior segment of the eye, Acta Biomater., 10, 680, 10.1016/j.actbio.2013.11.004