Spin-dependent magnetism and superparamagnetic contribution to the magnetocaloric effect of non-stoichiometric manganite nanoparticles
Tài liệu tham khảo
Bleuzen, 2000, Photoinduced ferrimagnetic systems in Prussian blue analogues C-x(I)Co-4[Fe(CN)(6)](y) (C-I = alkali cation). 1. Conditions to observe the phenomenon, J. Am. Chem. Soc., 122, 6648, 10.1021/ja000348u
Coronado, 2005, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 127, 4580, 10.1021/ja043166z
Sato, 1999, Photoinduced long-range magnetic ordering of a cobalt-iron cyanide, Inorg. Chem., 38, 4405, 10.1021/ic980741p
Ksenofontov, 2003, Pressure-induced electron transfer in ferrimagnetic prussian blue analogs, Phys. Rev. B, 68, 10.1103/PhysRevB.68.024415
Levchenko, 2018, Change of the spin value, and driving of magnetic order by pressure in bimetallic molecular complexes, J. Phys. Chem. B, 122, 6846, 10.1021/acs.jpcb.8b03388
GschneidnerJr, 2005, Recent developments in magnetocaloric materials, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04
Tishin, 2016
Pecharsky, 1997, Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2), Phys. Rev. Lett., 78, 4494, 10.1103/PhysRevLett.78.4494
Hu, 2001, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6, Appl. Phys. Lett., 78, 3675, 10.1063/1.1375836
Wada, 2001, Giant magnetocaloric effect of MnAs1−xSbx, Appl. Phys. Lett., 79, 3302, 10.1063/1.1419048
Tegus, 2002, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature, 415, 150, 10.1038/415150a
Krenke, 2005, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys, Nat. Mater., 4, 450, 10.1038/nmat1395
Dong, 2009, Large magnetic refrigerant capacity in Gd71Fe3Al26 and Gd65Fe20Al15 amorphous alloys, J. Appl. Phys., 105, 10.1063/1.3072631
Giguere, 1999, Metamagnetic transition and magnetocaloric effect in ErCo2, J. Phys. Condens. Mater., 11, 6969, 10.1088/0953-8984/11/36/313
Boutahar, 2017, Large reversible magnetocaloric effect in antiferromagnetic Ho2O3 powders, Sci. Rep., 7, 10.1038/s41598-017-14279-y
Phan, 2007, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater., 308, 325, 10.1016/j.jmmm.2006.07.025
Orgiani, 2010, Multiple double-exchange mechanism byMn2+ doping in manganite compounds, Phys. Rev. B, 82, 10.1103/PhysRevB.82.205122
Abou-Ras, 2001, Effect of strontium deficiency on the transport and magnetic properties of Pr0.7Sr0.3MnO3, J. Magn. Magn. Mater., 233, 147, 10.1016/S0304-8853(01)00273-6
Arun, 2018, Observation of enhanced magnetocaloric properties with A-site deficiency in La0.67Sr0.33MnO3 manganite, Dalton Trans., 47, 15512, 10.1039/C8DT03538E
Elleuch, 2015, A-site-deficiency effect on critical behavior in the Pr0.6Sr0.4MnO3 compound, Dalton Trans., 44, 17712, 10.1039/C5DT02589C
Skini, 2014, Large magnetocaloric effect in lanthanum-deficiency manganites La(0.8-x)x xCa(0.2)MnO(3) (0.00 <= X <= 0.20) with a first-order magnetic phase transition, J. Magn. Magn. Mater., 364, 5, 10.1016/j.jmmm.2014.04.009
Wali, 2015, Effect of the oxygen deficiency on the physical properties of La0.8Na0.2MnO3-delta oxides (delta=0 and 0.05), J. Magn. Magn. Mater., 394, 207, 10.1016/j.jmmm.2015.06.042
Kallel, 2009, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites, Phys. B Condens. Matter, 404, 285, 10.1016/j.physb.2008.10.049
Liedienov, 2017, Influence of the K+ ions and the superstoichiometric manganese on structure defects, magneto-transport and dielectric properties of magnetoresistive La0.7Ca0.3-xKxMn1+xO3-delta ceramic, Low Temp. Phys., 43, 1076, 10.1063/1.5004451
Pashchenko, 2014, Influence of structure defects on functional properties of magnetoresistance (Nd0.7Sr0.3)1−xMn1+xO3 ceramics, Acta Mater., 70, 218, 10.1016/j.actamat.2014.02.014
AboZied, 2019, Structure, magnetic and magnetocaloric properties of nano crystalline perovskite La0.8Ag0.2MnO3, J. Magn. Magn. Mater., 479, 260, 10.1016/j.jmmm.2019.02.043
Wang, 2016, Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1+δO3 manganites, J. Magn. Magn. Mater., 397, 198, 10.1016/j.jmmm.2015.08.096
Salamon, 2001, The physics of manganites: structure and transport, Rev. Mod. Phys., 73, 583, 10.1103/RevModPhys.73.583
Millis, 1995, Double exchange alone does not explain the resistivity of La1−x SrxMnO3, Phys. Rev. Lett., 74, 5144, 10.1103/PhysRevLett.74.5144
Bodnaruk, 2019, Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters, J. Phys. Condens. Matter, 31, 10.1088/1361-648X/ab26fa
Law, 2018, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect, Nat. Commun., 9, 2680, 10.1038/s41467-018-05111-w
Stanley, 1971
Dagotto, 2013
Markovich, 2014, 22, 1
Wei, 2020, Multifunctionality of lanthanum-strontium manganite nanopowder, Phys. Chem. Chem. Phys., 22, 11817, 10.1039/D0CP01426E
Fesich, 2014, Optical and Electromagnetic Properties of LaCoO3:li+;M2+ (M = Ca, Sr, Ba), J. Appl. Spectrosc., 81, 624, 10.1007/s10812-014-9980-z
Liedienov, 2019, Liquid-phase sintered bismuth ferrite multiferroics and their giant dielectric constant, Ceram. Int., 45, 14873, 10.1016/j.ceramint.2019.04.220
Rietveld, 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558
Patterson, 1939, The scherrer formula for X-Ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978
Seah, 1990
Balcells, 2000, Low-temperature magnetotransport in nanometric half-metallic ferromagnetic perovskites, J. Phys. Condens. Matter, 12, 3013, 10.1088/0953-8984/12/13/311
Viret, 1997, Magnetic localization in mixed-valence manganites, Phys. Rev. B, 55, 8067, 10.1103/PhysRevB.55.8067
Arrott, 1967, Approximate equation of state for nickel near its critical temperature, Phys. Rev. Lett., 19, 786, 10.1103/PhysRevLett.19.786
Stanley, 1999, Scaling, universality, and renormalization: three pillars of modern critical phenomena, Rev. Mod. Phys., 71, S358, 10.1103/RevModPhys.71.S358
Kouvel, 1964, Detailed magnetic behavior of nickel near its Curie point, Phys. Rev., 136, A1626, 10.1103/PhysRev.136.A1626
Franco, 2006, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change, Appl. Phys. Lett., 89, 10.1063/1.2399361
Fitta, 2019, Multifunctional molecular magnets: magnetocaloric effect in octacyanometallates, Crystals, 9, 9, 10.3390/cryst9010009
Prado-Gonjal, 2011, Microwave-assisted synthesis: a fast and efficient route to produce LaMO3 (M = Al, Cr, Mn, Fe, Co) perovskite materials, Mater. Res. Bull., 46, 222, 10.1016/j.materresbull.2010.11.010
Baron, 1998, The influence of iron substitution in the magnetic properties of hausmannite, Mn (super 2+)(Fe, Mn)(super 3+) 2 O 4, Am. Mineral., 83, 786, 10.2138/am-1998-7-810
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32, 751, 10.1107/S0567739476001551
Hundley, 1997, Thermoelectric power of La 1− x Ca x MnO 3+ δ: inadequacy of the nominal Mn 3+/4+ valence approach, Physical Review B, 55, 11511, 10.1103/PhysRevB.55.11511
Ignatans, 2019, The Effect of Surface Reconstruction on the Oxygen Reduction Reaction Properties of LaMnO3, J Phys Chem C, 123, 11621, 10.1021/acs.jpcc.9b00458
Abdelmoula, 2000, Effects of the oxygen nonstoichiometry on the physical properties of La0.7Sr0.3MnO3-delta square delta manganites (0 <=delta <= 0.15), J. Solid State Chem., 151, 139, 10.1006/jssc.2000.8636
De Leon-Guevara, 1997, Influence of controlled oxygen vacancies on the magnetotransport and magnetostructural phenomena in La 0.85 Sr 0.15 MnO 3− δ single crystals, Physical Review B, 56, 6031, 10.1103/PhysRevB.56.6031
Ohldag, 2003, Correlation between exchange bias and pinned interfacial spins, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.017203
Arun, 2019, Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La0.67Sr0.33MnO3 manganite, RSC Adv., 9, 23598, 10.1039/C9RA04973H
Vertruyen, 2007, Electrical transport and magnetic properties of Mn3O4-La0.7Ca0.3MnO3 ceramic composites prepared by a one-step spray-drying technique, J. Eur. Ceram. Soc., 27, 3923, 10.1016/j.jeurceramsoc.2007.02.061
Wali, 2015, A giant magnetocaloric effect with a tunable temperature transition close to room temperature in Na-deficient La0.8Na0.2-x squarexMnO3 manganites, Dalton Trans., 44, 12796, 10.1039/C5DT01254F
Vergara, 1999, Effect of disorder produced by cationic vacancies at the B sites on the electronic properties of mixed valence manganites, Phys. Rev. B, 60, 1127, 10.1103/PhysRevB.60.1127
Cortes-Gil, 2008, Magnetic structure and electronic study of complex oxygen-deficient manganites, Chem. Eur. J., 14, 9038, 10.1002/chem.200800723
Kochur, 2014, X-ray photoelectron study of temperature effect on the valence state of Mn in single crystal YMnO3, J. Electron. Spectrosc. Relat. Phenom., 195, 1, 10.1016/j.elspec.2014.04.007
Kochur, 2014, Temperature effect on X-ray photoelectron spectra of 3D transition metal ions, J. Electron. Spectrosc. Relat. Phenom., 195, 200, 10.1016/j.elspec.2014.07.011
Lopez-Quintela, 2003, Intergranular magnetoresistance in nanomanganites, Nanotechnology, 14, 212, 10.1088/0957-4484/14/2/322
Zhang, 1997, Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3, Phys. Rev. B, 56, 8138, 10.1103/PhysRevB.56.8138
Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8
Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356
Mahjoub, 2021, Critical behaviour and renormalization of magnetic entropy change in La0.65Nd0.05Ba0.3Mn1−xCrxO3(0≤ x≤ 0.15) ceramics, J. Mater. Sci. Mater. Electron., 32, 6094, 10.1007/s10854-021-05328-4
Widom, 1965, Equation of state in the neighborhood of the critical point, J. Chem. Phys., 43, 3898, 10.1063/1.1696618
Pashchenko, 2020, Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia, RSC Adv., 10, 30907, 10.1039/D0RA06779B
Zubov, 2017, Magnetic and magnetocaloric properties of the La0.9-xAgxMn1.1O3 compounds, Low Temp. Phys., 43, 1190, 10.1063/1.5008411
Wang, 2015, Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite, Ceram. Int., 41, 9035, 10.1016/j.ceramint.2015.03.275
Zhong, 1999, Synthesis, structure and magnetic entropy change of polycrystalline La1− xKxMnO3+ δ, J. Magn. Magn. Mater., 195, 112, 10.1016/S0304-8853(98)01080-4
Morelli, 1996, Magnetocaloric properties of doped lanthanum manganite films, J. Appl. Phys., 79, 373, 10.1063/1.360840
Andrade, 2016, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality, Acta Mater., 102, 49, 10.1016/j.actamat.2015.08.080
Bohigas, 2000, Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3, J. Magn. Magn. Mater., 208, 85, 10.1016/S0304-8853(99)00581-8
Pękała, 2010, Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites La 1− x M x MnO 3 (M= Ca, Sr), J. Appl. Phys., 108, 10.1063/1.3517831