Spin-dependent magnetism and superparamagnetic contribution to the magnetocaloric effect of non-stoichiometric manganite nanoparticles

Applied Materials Today - Tập 26 - Trang 101340 - 2022
Nikita A. Liedienov1,2, Ziyu Wei1, Viktor M. Kalita3,4,5, Aleksey V. Pashchenko1,2,4, Quanjun Li1, Igor V. Fesych6, Vitaliy A. Turchenko7,8, Changmin Hou9, Xu Wei9, Bingbing Liu1, Aleksey T. Kozakov10, Georgiy G. Levchenko1,2
1State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University, Changchun 130012, China
2Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine, Kyiv 03028, Ukraine
3National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
4Institute of Magnetism NAS of Ukraine and MES of Ukraine, Kyiv 03142, Ukraine
5Institute of Physics, NAS of Ukraine, Kyiv, 03028, Ukraine
6Taras Shevchenko National University of Kyiv, Kyiv 01030, Ukraine
7Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
8South Ural State University, Chelyabinsk 454080, Russian Federation
9State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
10Scientific-Research Institute of Physics at Southern Federal University, Rostov-na-Donu 344194, Russian Federation

Tài liệu tham khảo

Bleuzen, 2000, Photoinduced ferrimagnetic systems in Prussian blue analogues C-x(I)Co-4[Fe(CN)(6)](y) (C-I = alkali cation). 1. Conditions to observe the phenomenon, J. Am. Chem. Soc., 122, 6648, 10.1021/ja000348u

Coronado, 2005, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 127, 4580, 10.1021/ja043166z

Sato, 1999, Photoinduced long-range magnetic ordering of a cobalt-iron cyanide, Inorg. Chem., 38, 4405, 10.1021/ic980741p

Ksenofontov, 2003, Pressure-induced electron transfer in ferrimagnetic prussian blue analogs, Phys. Rev. B, 68, 10.1103/PhysRevB.68.024415

Levchenko, 2018, Change of the spin value, and driving of magnetic order by pressure in bimetallic molecular complexes, J. Phys. Chem. B, 122, 6846, 10.1021/acs.jpcb.8b03388

GschneidnerJr, 2005, Recent developments in magnetocaloric materials, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04

Tishin, 2016

Pecharsky, 1997, Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2), Phys. Rev. Lett., 78, 4494, 10.1103/PhysRevLett.78.4494

Hu, 2001, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6, Appl. Phys. Lett., 78, 3675, 10.1063/1.1375836

Wada, 2001, Giant magnetocaloric effect of MnAs1−xSbx, Appl. Phys. Lett., 79, 3302, 10.1063/1.1419048

Tegus, 2002, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature, 415, 150, 10.1038/415150a

Krenke, 2005, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys, Nat. Mater., 4, 450, 10.1038/nmat1395

Dong, 2009, Large magnetic refrigerant capacity in Gd71Fe3Al26 and Gd65Fe20Al15 amorphous alloys, J. Appl. Phys., 105, 10.1063/1.3072631

Giguere, 1999, Metamagnetic transition and magnetocaloric effect in ErCo2, J. Phys. Condens. Mater., 11, 6969, 10.1088/0953-8984/11/36/313

Boutahar, 2017, Large reversible magnetocaloric effect in antiferromagnetic Ho2O3 powders, Sci. Rep., 7, 10.1038/s41598-017-14279-y

Phan, 2007, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater., 308, 325, 10.1016/j.jmmm.2006.07.025

Coey, 1999, Mixed-valence manganites, Adv. Phys., 48, 167, 10.1080/000187399243455

Orgiani, 2010, Multiple double-exchange mechanism byMn2+ doping in manganite compounds, Phys. Rev. B, 82, 10.1103/PhysRevB.82.205122

Abou-Ras, 2001, Effect of strontium deficiency on the transport and magnetic properties of Pr0.7Sr0.3MnO3, J. Magn. Magn. Mater., 233, 147, 10.1016/S0304-8853(01)00273-6

Arun, 2018, Observation of enhanced magnetocaloric properties with A-site deficiency in La0.67Sr0.33MnO3 manganite, Dalton Trans., 47, 15512, 10.1039/C8DT03538E

Elleuch, 2015, A-site-deficiency effect on critical behavior in the Pr0.6Sr0.4MnO3 compound, Dalton Trans., 44, 17712, 10.1039/C5DT02589C

Skini, 2014, Large magnetocaloric effect in lanthanum-deficiency manganites La(0.8-x)x xCa(0.2)MnO(3) (0.00 <= X <= 0.20) with a first-order magnetic phase transition, J. Magn. Magn. Mater., 364, 5, 10.1016/j.jmmm.2014.04.009

Wali, 2015, Effect of the oxygen deficiency on the physical properties of La0.8Na0.2MnO3-delta oxides (delta=0 and 0.05), J. Magn. Magn. Mater., 394, 207, 10.1016/j.jmmm.2015.06.042

Kallel, 2009, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites, Phys. B Condens. Matter, 404, 285, 10.1016/j.physb.2008.10.049

Liedienov, 2017, Influence of the K+ ions and the superstoichiometric manganese on structure defects, magneto-transport and dielectric properties of magnetoresistive La0.7Ca0.3-xKxMn1+xO3-delta ceramic, Low Temp. Phys., 43, 1076, 10.1063/1.5004451

Pashchenko, 2014, Influence of structure defects on functional properties of magnetoresistance (Nd0.7Sr0.3)1−xMn1+xO3 ceramics, Acta Mater., 70, 218, 10.1016/j.actamat.2014.02.014

AboZied, 2019, Structure, magnetic and magnetocaloric properties of nano crystalline perovskite La0.8Ag0.2MnO3, J. Magn. Magn. Mater., 479, 260, 10.1016/j.jmmm.2019.02.043

Wang, 2016, Effect of non-stoichiometry on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33Mn1+δO3 manganites, J. Magn. Magn. Mater., 397, 198, 10.1016/j.jmmm.2015.08.096

Salamon, 2001, The physics of manganites: structure and transport, Rev. Mod. Phys., 73, 583, 10.1103/RevModPhys.73.583

Millis, 1995, Double exchange alone does not explain the resistivity of La1−x SrxMnO3, Phys. Rev. Lett., 74, 5144, 10.1103/PhysRevLett.74.5144

Bodnaruk, 2019, Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters, J. Phys. Condens. Matter, 31, 10.1088/1361-648X/ab26fa

Law, 2018, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect, Nat. Commun., 9, 2680, 10.1038/s41467-018-05111-w

Stanley, 1971

Dagotto, 2013

Markovich, 2014, 22, 1

Wei, 2020, Multifunctionality of lanthanum-strontium manganite nanopowder, Phys. Chem. Chem. Phys., 22, 11817, 10.1039/D0CP01426E

Fesich, 2014, Optical and Electromagnetic Properties of LaCoO3:li+;M2+ (M = Ca, Sr, Ba), J. Appl. Spectrosc., 81, 624, 10.1007/s10812-014-9980-z

Liedienov, 2019, Liquid-phase sintered bismuth ferrite multiferroics and their giant dielectric constant, Ceram. Int., 45, 14873, 10.1016/j.ceramint.2019.04.220

Rietveld, 1969, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65, 10.1107/S0021889869006558

Patterson, 1939, The scherrer formula for X-Ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978

Seah, 1990

Balcells, 2000, Low-temperature magnetotransport in nanometric half-metallic ferromagnetic perovskites, J. Phys. Condens. Matter, 12, 3013, 10.1088/0953-8984/12/13/311

Viret, 1997, Magnetic localization in mixed-valence manganites, Phys. Rev. B, 55, 8067, 10.1103/PhysRevB.55.8067

Arrott, 1967, Approximate equation of state for nickel near its critical temperature, Phys. Rev. Lett., 19, 786, 10.1103/PhysRevLett.19.786

Stanley, 1999, Scaling, universality, and renormalization: three pillars of modern critical phenomena, Rev. Mod. Phys., 71, S358, 10.1103/RevModPhys.71.S358

Kouvel, 1964, Detailed magnetic behavior of nickel near its Curie point, Phys. Rev., 136, A1626, 10.1103/PhysRev.136.A1626

Franco, 2006, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change, Appl. Phys. Lett., 89, 10.1063/1.2399361

Fitta, 2019, Multifunctional molecular magnets: magnetocaloric effect in octacyanometallates, Crystals, 9, 9, 10.3390/cryst9010009

Prado-Gonjal, 2011, Microwave-assisted synthesis: a fast and efficient route to produce LaMO3 (M = Al, Cr, Mn, Fe, Co) perovskite materials, Mater. Res. Bull., 46, 222, 10.1016/j.materresbull.2010.11.010

Baron, 1998, The influence of iron substitution in the magnetic properties of hausmannite, Mn (super 2+)(Fe, Mn)(super 3+) 2 O 4, Am. Mineral., 83, 786, 10.2138/am-1998-7-810

Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32, 751, 10.1107/S0567739476001551

Hundley, 1997, Thermoelectric power of La 1− x Ca x MnO 3+ δ: inadequacy of the nominal Mn 3+/4+ valence approach, Physical Review B, 55, 11511, 10.1103/PhysRevB.55.11511

Ignatans, 2019, The Effect of Surface Reconstruction on the Oxygen Reduction Reaction Properties of LaMnO3, J Phys Chem C, 123, 11621, 10.1021/acs.jpcc.9b00458

Abdelmoula, 2000, Effects of the oxygen nonstoichiometry on the physical properties of La0.7Sr0.3MnO3-delta square delta manganites (0 <=delta <= 0.15), J. Solid State Chem., 151, 139, 10.1006/jssc.2000.8636

De Leon-Guevara, 1997, Influence of controlled oxygen vacancies on the magnetotransport and magnetostructural phenomena in La 0.85 Sr 0.15 MnO 3− δ single crystals, Physical Review B, 56, 6031, 10.1103/PhysRevB.56.6031

Ohldag, 2003, Correlation between exchange bias and pinned interfacial spins, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.017203

Arun, 2019, Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La0.67Sr0.33MnO3 manganite, RSC Adv., 9, 23598, 10.1039/C9RA04973H

Vertruyen, 2007, Electrical transport and magnetic properties of Mn3O4-La0.7Ca0.3MnO3 ceramic composites prepared by a one-step spray-drying technique, J. Eur. Ceram. Soc., 27, 3923, 10.1016/j.jeurceramsoc.2007.02.061

Wali, 2015, A giant magnetocaloric effect with a tunable temperature transition close to room temperature in Na-deficient La0.8Na0.2-x squarexMnO3 manganites, Dalton Trans., 44, 12796, 10.1039/C5DT01254F

Vergara, 1999, Effect of disorder produced by cationic vacancies at the B sites on the electronic properties of mixed valence manganites, Phys. Rev. B, 60, 1127, 10.1103/PhysRevB.60.1127

Cortes-Gil, 2008, Magnetic structure and electronic study of complex oxygen-deficient manganites, Chem. Eur. J., 14, 9038, 10.1002/chem.200800723

Kochur, 2014, X-ray photoelectron study of temperature effect on the valence state of Mn in single crystal YMnO3, J. Electron. Spectrosc. Relat. Phenom., 195, 1, 10.1016/j.elspec.2014.04.007

Kochur, 2014, Temperature effect on X-ray photoelectron spectra of 3D transition metal ions, J. Electron. Spectrosc. Relat. Phenom., 195, 200, 10.1016/j.elspec.2014.07.011

Lopez-Quintela, 2003, Intergranular magnetoresistance in nanomanganites, Nanotechnology, 14, 212, 10.1088/0957-4484/14/2/322

Zhang, 1997, Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3, Phys. Rev. B, 56, 8138, 10.1103/PhysRevB.56.8138

Bedanta, 2009, Supermagnetism, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/1/013001

Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys. Lett., 12, 16, 10.1016/0031-9163(64)91158-8

Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356

Mahjoub, 2021, Critical behaviour and renormalization of magnetic entropy change in La0.65Nd0.05Ba0.3Mn1−xCrxO3(0≤ x≤ 0.15) ceramics, J. Mater. Sci. Mater. Electron., 32, 6094, 10.1007/s10854-021-05328-4

Widom, 1965, Equation of state in the neighborhood of the critical point, J. Chem. Phys., 43, 3898, 10.1063/1.1696618

Pashchenko, 2020, Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia, RSC Adv., 10, 30907, 10.1039/D0RA06779B

Zubov, 2017, Magnetic and magnetocaloric properties of the La0.9-xAgxMn1.1O3 compounds, Low Temp. Phys., 43, 1190, 10.1063/1.5008411

Wang, 2015, Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite, Ceram. Int., 41, 9035, 10.1016/j.ceramint.2015.03.275

Zhong, 1999, Synthesis, structure and magnetic entropy change of polycrystalline La1− xKxMnO3+ δ, J. Magn. Magn. Mater., 195, 112, 10.1016/S0304-8853(98)01080-4

Morelli, 1996, Magnetocaloric properties of doped lanthanum manganite films, J. Appl. Phys., 79, 373, 10.1063/1.360840

Andrade, 2016, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality, Acta Mater., 102, 49, 10.1016/j.actamat.2015.08.080

Bohigas, 2000, Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3, J. Magn. Magn. Mater., 208, 85, 10.1016/S0304-8853(99)00581-8

Pękała, 2010, Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline manganites La 1− x M x MnO 3 (M= Ca, Sr), J. Appl. Phys., 108, 10.1063/1.3517831

Franco, 2008, Influence of Ge addition on the magnetocaloric effect of a Co-containing nanoperm-type alloy, J. Appl. Phys., 103, 07B316, 10.1063/1.2835688