Magnetocaloric effect: From materials research to refrigeration devices
Tài liệu tham khảo
Energy Flow Charts. Laurence Livermore National Laboratory. <https://flowcharts.llnl.gov/commodities/energy>.
Gutfleisch, 2011, Magnetic materials and devices for the 21st Century: stronger, lighter, and more energy efficient, Adv Mater, 23, 821, 10.1002/adma.201002180
Gutfleisch, 2012, Preface to the viewpoint set on: magnetic materials for energy, Scr Mater, 67, 521, 10.1016/j.scriptamat.2012.07.012
International Energy Outlook. U.S. Energy Information Administration; 2016. <http://www.eia.gov/outlooks/ieo>.
Sivak, 2013, Put a chill on the global energy supply?, Am Sci, 100, 330, 10.1511/2013.104.330
An EU Strategy on Heating and Cooling. European Commission; 2016. <https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf>.
Pecharsky, 1997, Giant magnetocaloric effect in Gd-5(Si2Ge2), Phys Rev Lett, 78, 4494, 10.1103/PhysRevLett.78.4494
Yu, 2010, A review of magnetic refrigerator and heat pump prototypes built before the year 2010, Int J Refrig-Rev Int Froid, 33, 1029, 10.1016/j.ijrefrig.2010.04.002
Brown, 1976, Magnetic heat pumping near room temperature, J Appl Phys, 47, 3673, 10.1063/1.323176
Premiere of cutting-edge cooling appliance at CES; 2015. <https://www.basf.com/en/company/news-and-media/news-releases/2015/01/p-15-100.html>.
Gschneidner, 2000, Magnetocaloric materials, Annu Rev Mater Sci, 30, 387, 10.1146/annurev.matsci.30.1.387
Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep Prog Phys, 68, 1479, 10.1088/0034-4885/68/6/R04
Bruck, 2005, Developments in magnetocaloric refrigeration, J Phys D-Appl Phys, 38, R381, 10.1088/0022-3727/38/23/R01
Gschneidner, 2008, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int J Refrig-Rev Int Froid, 31, 945, 10.1016/j.ijrefrig.2008.01.004
Shen, 2009, Recent progress in exploring magnetocaloric materials, Adv Mater, 21, 4545, 10.1002/adma.200901072
de Oliveira, 2010, Theoretical aspects of the magnetocaloric effect, Phys Rep-Rev Sec Phys Lett, 489, 89
Nielsen, 2011, Review on numerical modeling of active magnetic regenerators for room temperature applications, Int J Refrig-Rev Int Froid, 34, 603, 10.1016/j.ijrefrig.2010.12.026
Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu Rev Mater Res, 42, 305, 10.1146/annurev-matsci-062910-100356
Smith, 2012, Materials challenges for high performance magnetocaloric refrigeration devices, Adv Energy Mater, 2, 1288, 10.1002/aenm.201200167
Gomez, 2013, A review of room temperature linear reciprocating magnetic refrigerators, Renew Sust Energ Rev, 21, 1, 10.1016/j.rser.2012.12.018
Brown, 2014, Review of alternative cooling technologies, Appl Therm Eng, 64, 252, 10.1016/j.applthermaleng.2013.12.014
Kitanovski, 2015
Tishin, 2003
Pecharsky, 1999, Magnetocaloric effect from indirect measurements: magnetization and heat capacity, J Appl Phys, 86, 565, 10.1063/1.370767
Pecharsky, 2001, Thermodynamics of the magnetocaloric effect, Phys Rev B, 64, 144406, 10.1103/PhysRevB.64.144406
Wood, 1985, General-analysis of magnetic refrigeration and its optimization using a new concept - maximization of refrigerant capacity, Cryogenics, 25, 667, 10.1016/0011-2275(85)90187-0
Gschneidner, 1999, Recent developments in magnetic refrigeration, Mater Sci Forum, 315–317, 69, 10.4028/www.scientific.net/MSF.315-317.69
Provenzano, 2004, Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron, Nature, 429, 853, 10.1038/nature02657
Ucar, 2012, Overview of amorphous and nanocrystalline magnetocaloric materials operating near room temperature, Jom, 64, 782, 10.1007/s11837-012-0349-6
Bruck, 2016, A universal metric for ferroic energy materials, Philos Trans R Soc A-Math Phys Eng Sci, 374, 20150303, 10.1098/rsta.2015.0303
Steyert, 1978, Stirling-cycle rotating magnetic refrigerators and heat engines for use near room-temperature, J Appl Phys, 49, 1216, 10.1063/1.325009
Tishin, 2016, A review and new perspectives for the magnetocaloric effect: new materials and local heating and cooling inside the human body, Int J Refrig-Rev Int Froid, 68, 177, 10.1016/j.ijrefrig.2016.04.020
Franco, 2009, Field dependence of the adiabatic temperature change in second order phase transition materials: application to Gd, J Appl Phys, 106, 103911, 10.1063/1.3261843
Liu, 2012, Giant magnetocaloric effect driven by structural transitions, Nat Mater, 11, 620, 10.1038/nmat3334
Law, 2011, Direct magnetocaloric measurements of Fe-B-Cr-X (X = La, Ce) amorphous ribbons, J Appl Phys, 110, 023907, 10.1063/1.3613666
Aliev, 2010, Magnetocaloric properties of manganites in alternating magnetic fields, Jetp Lett, 90, 663, 10.1134/S0021364009220068
Aliev, 2016, Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz, J Alloys Comp, 676, 601, 10.1016/j.jallcom.2016.03.238
Skokov, 2013, Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4, J Alloys Comp, 552, 310, 10.1016/j.jallcom.2012.10.008
Gottschall, 2016, On the S(T) diagram of magnetocaloric materials with first-order transition: kinetic and cyclic effects of Heusler alloys, Acta Mater, 107, 1, 10.1016/j.actamat.2016.01.052
Kohama, 2010, AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields, Rev Sci Instrum, 81, 104902, 10.1063/1.3475155
Kihara, 2013, Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T, Rev Sci Instrum, 84, 074901, 10.1063/1.4811798
Cugini, 2014, Non-contact direct measurement of the magnetocaloric effect in thin samples, Rev Sci Instrum, 85, 074902, 10.1063/1.4890394
Döntgen, 2015, Temperature dependent low-field measurements of the magnetocaloric ΔT with sub-mK resolution in small volume and thin film samples, Appl Phys Lett, 106, 032408, 10.1063/1.4906426
Cugini, 2016, Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect, Appl Phys Lett, 108, 012407, 10.1063/1.4939451
Marcos, 2003, A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions, Rev Sci Instrum, 74, 4768, 10.1063/1.1614857
Casanova, 2005, Direct observation of the magnetic-field-induced entropy change in Gd-5(SixGe1-x)(4) giant magnetocaloric alloys, Appl Phys Lett, 86, 262504, 10.1063/1.1968431
Basso, 2008, A Peltier cell calorimeter for the direct measurement of the isothermal entropy change in magnetic materials, Rev Sci Instrum, 79, 063907, 10.1063/1.2940218
Basso, 2010, A Peltier cells differential calorimeter with kinetic correction for the measurement of c(p)(H, T) and Delta s(H, T) of magnetocaloric materials, Rev Sci Instrum, 81, 113904, 10.1063/1.3499253
Nielsen, 2015, Direct measurements of the magnetic entropy change, Rev Sci Instrum, 86, 103903, 10.1063/1.4932308
Tocado, 2009, Entropy determinations and magnetocaloric parameters in systems with first-order transitions: study of MnAs, J Appl Phys, 105, 093918, 10.1063/1.3093880
Wang, 2012
Palacios, 2010, Direct measurement of the magnetocaloric effect in Gd5Si2Ge1.9Ga0.1, J Phys: Conf Ser, 200, 092011
Wang, 2014, Comparative analysis of magnetic and caloric determinations of the magnetocaloric effect in Mn0.99Co0.01As, EPJ Web Conf, 75, 04003, 10.1051/epjconf/20147504003
Palacios, 2015, Analysis of the magnetocaloric effect in heusler alloys: study of Ni50CoMn36Sn13 by calorimetric techniques, Entropy, 17, 1236, 10.3390/e17031236
Caballero-Flores, 2009, Influence of the demagnetizing field on the determination of the magnetocaloric effect from magnetization curves, J Appl Phys, 105, 07A919, 10.1063/1.3067463
Carvalho, 2011, The isothermal variation of the entropy (Delta S-T) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples, J Alloys Comp, 509, 3452, 10.1016/j.jallcom.2010.12.088
Caron, 2009, On the determination of the magnetic entropy change in materials with first-order transitions, J Magn Magn Mater, 321, 3559, 10.1016/j.jmmm.2009.06.086
Franco
Kaeswurm, 2016, Assessment of the magnetocaloric effect in La, Pr(Fe, Si) under cycling, J Magn Magn Mater, 406, 259, 10.1016/j.jmmm.2016.01.045
Moore, 2009, Reducing extrinsic hysteresis in first-order La(Fe Co, Si)(13) magnetocaloric systems, Appl Phys Lett, 95, 252504, 10.1063/1.3276565
Hansen, 2010, Consequences of the magnetocaloric effect on magnetometry measurements, J Appl Phys, 108, 043923, 10.1063/1.3466977
Pecharsky, 1999, Heat capacity near first order phase transitions and the magnetocaloric effect: an analysis of the errors, and a case study of Gd-5(Si2Ge2) and Dy, J Appl Phys, 86, 6315, 10.1063/1.371734
Pecharsky, 1997, A 3–350 K fast automatic small sample calorimeter, Rev Sci Instrum, 68, 4196, 10.1063/1.1148367
Plackowski, 2002, Specific heat and magnetocaloric effect measurements using commercial heat-flow sensors, Rev Sci Instrum, 73, 2755, 10.1063/1.1480452
Jeppesen, 2008, Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field, Rev Sci Instrum, 79, 083901, 10.1063/1.2957611
Minakov, 2005, Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields, Rev Sci Instrum, 76, 10.1063/1.1889432
Morrison, 2012, A calorimetric method to detect a weak or distributed latent heat contribution at first order magnetic transitions, Rev Sci Instrum, 83, 033901, 10.1063/1.3690381
Moreno-Ramírez, 2016, Optimal temperature range for determining magnetocaloric magnitudes from heat capacity, J Phys D: Appl Phys, 49, 495001, 10.1088/0022-3727/49/49/495001
Moreno-Ramírez LM, Franco V, Conde A, Neves-Bez H, Mudryk Y, Pecharsky VK. Influence of the starting temperature of calorimetric measurements on the accuracy of determined magnetocaloric effect [submitted for publication].
Kuz'min, 2007, Factors limiting the operation frequency of magnetic refrigerators, Appl Phys Lett, 90, 251916, 10.1063/1.2750540
Ghorbani Zavareh, 2015, Direct measurements of the magnetocaloric effect in pulsed magnetic fields: the example of the Heusler alloy Ni50Mn35In15, Appl Phys Lett, 106, 071904, 10.1063/1.4913446
Gottschall, 2016, Dynamical effects of the martensitic transition in magnetocaloric heusler alloys from direct Delta T-ad measurements under different magnetic-field-sweep rates, Phys Rev Appl, 5, 024013, 10.1103/PhysRevApplied.5.024013
Basso, 2005, Theoretical approach to the magnetocaloric effect with hysteresis, J Magn Magn Mater, 290, 654, 10.1016/j.jmmm.2004.11.324
Kuz'min, 2008, Landau-type parametrization of the equation of state of a ferromagnet, Phys Rev B, 77, 184431, 10.1103/PhysRevB.77.184431
Arrott, 1967, Approximate equation of state for nickel near its critical temperature, Phys Rev Lett, 19, 786, 10.1103/PhysRevLett.19.786
Franco, 2006, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change, Appl Phys Lett, 89, 222512, 10.1063/1.2399361
Franco, 2008, Magnetocaloric response of FeCrB amorphous alloys: predicting the magnetic entropy change from the Arrott-Noakes equation of state, J Appl Phys, 104, 033903, 10.1063/1.2961310
Fan, 2011, Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence of magnetic entropy change, Appl Phys Lett, 98, 072508, 10.1063/1.3554390
Zhang, 2011, 3D-Heisenberg ferromagnetic characteristics in CuCr2Se4, J Appl Phys, 109, 113911, 10.1063/1.3594752
Franco, 2010, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int J Refrig-Rev Int Froid, 33, 465, 10.1016/j.ijrefrig.2009.12.019
Bean, 1962, Magnetic disorder as a first-order phase transformation, Phys Rev, 126, 104, 10.1103/PhysRev.126.104
Romero-Muniz, 2017, Two different critical regimes enclosed in the Bean-Rodbell model and their implications for the field dependence and universal scaling of the magnetocaloric effect, Phys Chem Chem Phys, 19, 3582, 10.1039/C6CP06291A
Tegus, 2005, A model description of the first-order phase transition in MnFeP1-xAsx, J Magn Magn Mater, 290, 658, 10.1016/j.jmmm.2004.11.325
Balli, 2007, Modelling of the magnetocaloric effect in Gd1-xTbx and MnAs compounds, J Magn Magn Mater, 316, E558, 10.1016/j.jmmm.2007.03.019
Palacios, 2016, Effect of Gd polarization on the large magnetocaloric effect of GdCrO4 in a broad temperature range, Phys Rev B, 93, 064420, 10.1103/PhysRevB.93.064420
Yahyaoui, 2016, Modeling the magnetic properties and magnetocaloric effect of La0.7Sr0.3Mn0.9Ti0.1O3, J Alloys Comp, 685, 633, 10.1016/j.jallcom.2016.05.318
Franco, 2016, First-Order Reversal Curve (FORC) analysis of magnetocaloric Heusler-Type alloys, IEEE Magn Lett, 7, 6602904, 10.1109/LMAG.2016.2541622
Harmon, 2002, Electronic structure, optical, and magneto-optical properties of Gd-5(Si2Ge2) compound, J Appl Phys, 91, 9815, 10.1063/1.1461896
Mihalik, 2004, Anisotropic magnetic properties and specific-heat study of a TbFe2Si2 single crystal, Phys Rev B, 70, 134405, 10.1103/PhysRevB.70.134405
Paudyal, 2006, Electron correlation effects on the magnetostructural transition and magnetocaloric effect in Gd5Si2Ge2, Phys Rev B, 73, 144406, 10.1103/PhysRevB.73.144406
Buchelnikov, 2010, First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1-xGa, Phys Rev B, 81, 094411, 10.1103/PhysRevB.81.094411
Entel, 2013, Optimization of smart Heusler alloys from first principles, J Alloys Comp, 577, S107, 10.1016/j.jallcom.2012.03.005
Korotana, 2013, A hybrid-exchange density functional study of Ca-doped LaMnO3, J Appl Phys, 113, 17A910, 10.1063/1.4794877
Li, 2016, Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy, J Phys-Condes Matter, 28, 216002, 10.1088/0953-8984/28/21/216002
Korotana, 2016, A combined thermodynamics and first principles study of the electronic, lattice and magnetic contributions to the magnetocaloric effect in La0.75Ca0.25MnO3, J Phys D-Appl Phys, 49, 285001, 10.1088/0022-3727/49/28/285001
Pindor, 1983, Disordered local moment state of magnetic transition metals: a self-consistent KKR CPA calculation, J Phys F: Metal Phys, 13, 979, 10.1088/0305-4608/13/5/012
Staunton, 2014, Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: compositional hypersensitivity of FeRh, Phys Rev B, 89, 054427, 10.1103/PhysRevB.89.054427
Zverev, 2016, Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6, Appl Phys Lett, 108, 192405, 10.1063/1.4949355
Petit, 2015, Complex magnetism of lanthanide intermetallics and the role of their valence electrons: ab initio theory and experiment, Phys Rev Lett, 115, 207201, 10.1103/PhysRevLett.115.207201
Fujita, 2016, Relation between paramagnetic entropy and disordered local moment in La(Fe0.88Si0.12)(13) magnetocaloric compound, Apl Mater, 4, 064108, 10.1063/1.4953434
Hou, 2010, Study on magnetocaloric effect of Gd0.95Nb0.05 alloys, Rare Metal Mater Eng, 39, 126
Min, 2013, Large magnetocaloric effect and application features of Gd99.75Fe0.25 alloy, Rare Metal Mater Eng, 42, 362
Wang, 2004, The magnetic entropy changes in Gd1-xBx alloys, Solid State Commun, 131, 97, 10.1016/j.ssc.2004.04.040
Jayaraman, 2011, Near room temperature magnetocaloric properties of melt-spun Gd100-xBx (x=0, 5, 10, 15, and 20 at%) alloys, J Magn Magn Mater, 323, 2037, 10.1016/j.jmmm.2011.03.006
GschneidnerJr, 1997, Some observations on the Gd-rich side of the Gd-C system, J Alloys Comp, 260, 107, 10.1016/S0925-8388(97)00146-1
Wang, 2005, The magnetic entropy changes in Gd1-xCx alloys, J Alloys Comp, 387, 6, 10.1016/j.jallcom.2004.06.031
Ma, 2009, Monte Carlo simulation of magnetic and magnetocaloric properties of binary alloy Gd1-xCx, J Magn Magn Mater, 321, L65, 10.1016/j.jmmm.2009.07.042
Chen, 2006, Magnetocaloric properties and solid solution strengthening of Gd-C and Gd-Dy-C alloys, J Alloys Comp, 422, 21, 10.1016/j.jallcom.2005.11.072
Burkhanov, 2014, Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity, Appl Phys Lett, 104, 242402, 10.1063/1.4883744
Jayaraman, 2011, Near room temperature magnetic entropy changes in as-cast Gd100-xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys, J Alloys Comp, 509, 1411, 10.1016/j.jallcom.2010.10.208
Wang, 2005, The reduced Curie temperature and magnetic entropy changes in Gd1-xInx alloys, J Alloys Comp, 396, 22, 10.1016/j.jallcom.2004.12.004
Ren, 2008, Magnetic property and magnetocaloric effect of Gd(In) solid solutions, J Appl Phys, 103, 07B323, 10.1063/1.2830684
Jayaraman, 2014, Near room-temperature magnetocaloric properties of Gd-Ga alloys, J Magn Magn Mater, 363, 201, 10.1016/j.jmmm.2014.03.082
Provenzano, 2015, Gd90Co2.5Fe7.5 alloy displaying enhanced magnetocaloric properties, J Alloys Comp, 622, 1061, 10.1016/j.jallcom.2014.10.169
Shao, 1996, Magnetic entropy in nanocomposite binary gadolinium alloys, J Appl Phys, 80, 76, 10.1063/1.362773
Pecharsky, 1999, Gd-Zn alloys as active magnetic regenerator materials for magnetic refrigeration, Cryocoolers, 10, 629
Xiao, 2016, Magnetic properties and magnetic exchange interactions in Gd1-xREx (RE=Pr, Nd) alloys, J Rare Earths, 34, 489, 10.1016/S1002-0721(16)60054-6
Xu, 2015, A GdxHo1-x-based composite and its performance characteristics in a regenerative Ericsson refrigeration cycle, J Alloys Comp, 639, 520, 10.1016/j.jallcom.2015.03.147
Perez, 2014, Magnetocaloric effect in as-cast Gd1-xYx alloys with x=0.0, 0.1, 0.2, 0.3, 0.4, J Appl Phys, 115, 17A910, 10.1063/1.4862086
Mathew, 2010, Magnetic irreversibility, spin-wave excitations and magnetocaloric effect in nanocrystalline Gadolinium, J Phys: Conference Series, 200, 072047
Miller, 2010, Magnetocaloric effect in Gd/W thin film heterostructures, J Appl Phys, 107, 09A903, 10.1063/1.3335515
Svalov, 2014, Magnetic properties and magnetic entropy change in Gd/Ti multilayers, IEEE Trans Magn, 50, 4, 10.1109/TMAG.2014.2326915
Doblas, 2017, Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect, Mater Des, 114, 214, 10.1016/j.matdes.2016.11.085
Mello, 2006, Magnetocaloric effect of thin Dy films, Solid State Commun, 140, 447, 10.1016/j.ssc.2006.09.013
Medeiros, 2011, Giant magnetocaloric effect of thin Ho films, J Appl Phys, 109, 07A914, 10.1063/1.3549566
Liu, 2011, Magnetic properties of Dy nanoparticles and Al2O3-coated Dy nanocapsules, J Nanopart Res, 13, 1163, 10.1007/s11051-010-0108-y
Shinde, 2015, Fabrication of Gd films by vacuum evaporation and its magnetocaloric properties, J Magn Magn Mater, 374, 144, 10.1016/j.jmmm.2014.08.007
Taskaev, 2015, Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets, J Appl Phys, 117, 5, 10.1063/1.4916377
Dudek, 2015, Colossal magnetocaloric effect in magnetoauxetic systems, Smart Mater Struct, 24, 5, 10.1088/0964-1726/24/8/085027
Crossley, 2015, New developments in caloric materials for cooling applications, AIP Adv, 5, 067153, 10.1063/1.4922871
Starkov, 2014, Multicaloric effect in a solid: new aspects, J Exp Theor Phys, 119, 258, 10.1134/S1063776114070097
Flerov, 2015, Caloric and multicaloric effects in oxygen ferroics and multiferroics, Phys Solid State, 57, 429, 10.1134/S1063783415030075
Balli, 2014, Search for the magnetocaloric effect in multiferroics oxides, 47
Szytula, 1993
Jagodzinski, 1979, Fritz H. Laves. Obituary, Acta Crystall A, 35, 343, 10.1107/S0567739479000747
Paufler, 2011, Early work on Laves phases in East Germany, Intermetallics, 19, 599, 10.1016/j.intermet.2010.11.032
Huang, 2005, Magnetic and magnetocaloric properties of quenched Hf1-xTaxFe2 materials, J Alloys Comp, 394, 80, 10.1016/j.jallcom.2004.10.047
Han, 2004, Low-field magnetic entropy changes in Hf1-xTaxFe2, J Alloys Comp, 377, 75, 10.1016/j.jallcom.2004.02.005
Dong, 2009, Magnetic entropy change and refrigerant capacity in GdFeAl compound, J Appl Phys, 105, 07A305, 10.1063/1.3059372
Chelvane, 2010, Magnetic structure and magnetic entropy change in the intermetallic compound DyCoAl, J Appl Phys, 107, 09A906, 10.1063/1.3335815
Li, 2014, Study of the critical behaviour and magnetocaloric effect in DyFeAl, Intermetallics, 46, 231, 10.1016/j.intermet.2013.11.019
Herbst, 1996, Structural, magnetic, and magnetocaloric properties of (Hf0.83Ta0.17)Fe-2+x materials, J Appl Phys, 79, 5998, 10.1063/1.362133
Diop, 2015, Magnetic and magnetocaloric properties of itinerant-electron system Hf1-xTaxFe2 (x=0.125 and 0.175), J Alloys Comp, 627, 446, 10.1016/j.jallcom.2014.11.234
Bag, 2016, Unconventional thermal effects across first-order magnetic transition in the Ta-doped HfFe2 intermetallic, Phys Rev B, 93, 014416, 10.1103/PhysRevB.93.014416
Dong, 2015, Magnetic properties and magnetocaloric effect of Hf-Ta-Fe-(CO) alloys, Physica B, 476, 171, 10.1016/j.physb.2015.04.019
Dong, 2015, Large low-field magnetic entropy changes in as-cast Hf0.83-xZrxTa0.17Fe2 compounds, Physica B, 466, 86, 10.1016/j.physb.2015.03.032
Herrero-Albillos, 2006, Nature and entropy content of the ordering transitions in RCo2, Phys Rev B, 73, 134410, 10.1103/PhysRevB.73.134410
Bonilla, 2010, Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions, Phys Rev B, 81, 224424, 10.1103/PhysRevB.81.224424
Gu, 2007, Magnetocaloric effect of GdCo2-xAlx compounds, Solid State Commun, 141, 548, 10.1016/j.ssc.2006.12.026
Imai, 1995, Calorimetric study on magnetism of ERCO2, J Magn Magn Mater, 140, 835, 10.1016/0304-8853(94)01471-X
Burrola-Gandara, 2012, Magnetocaloric effect in Sm-Co2-xFex alloys, J Appl Phys, 111, 07A942, 10.1063/1.3679392
Mudryk, 2016, Balancing structural distortions via competing 4f and itinerant interactions: a case of polymorphism in magnetocaloric HoCo2, J Mater Chem C, 4, 4521, 10.1039/C6TC00867D
Singh, 2007, Itinerant electron metamagnetism and magnetocaloric effect in RCo2-based Laves phase compounds, J Magn Magn Mater, 317, 68, 10.1016/j.jmmm.2007.04.009
Khmelevskyi, 2000, The order of the magnetic phase transitions in RCo2 (R = rare earth) intermetallic compounds, J Phys: Cond Matter, 12, 9453
Nikitin, 1991, Magnetocaloric effect in HoCo2 compound, Cryogenics, 31, 166, 10.1016/0011-2275(91)90171-R
Tohei, 2004, Change in the character of magnetocaloric effect with Ni substitution in Ho(Co1-xNix)(2), J Magn Magn Mater, 280, 101, 10.1016/j.jmmm.2004.02.026
Dong, 2008, A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition, J Appl Phys, 103, 116101, 10.1063/1.2913166
Halder, 2010, Magnetocaloric effect and critical behavior near the paramagnetic to ferrimagnetic phase transition temperature in TbCo2-xFex, Phys Rev B, 81, 174402, 10.1103/PhysRevB.81.174402
Franco, 2007, Field dependence of the magnetocaloric effect in Gd and (Er1-xDyx)Al-2: does a universal curve exist?, Epl, 79, 47009, 10.1209/0295-5075/79/47009
von Ranke, 1998, Influence of the crystalline electrical field on the magnetocaloric effect of DyAl2, ErAl2, and DyNi2, Phys Rev B, 58, 12110, 10.1103/PhysRevB.58.12110
Nobrega, 2006, Monte Carlo calculations of the magnetocaloric effect in RAl2 (R=Dy, Er), J Appl Phys, 99, 08Q103, 10.1063/1.2150815
Alvarez, 2011, Influence of magnetic fluctuations in the magnetocaloric effect on rare-earth intermetallic compounds, Phys Rev B, 84, 024412, 10.1103/PhysRevB.84.024412
de Oliveira, 2002, Magnetocaloric effect in the intermetallic compounds RCo2 (R=Dy, Ho, Er), Phys Rev B, 66, 094402, 10.1103/PhysRevB.66.094402
Lima, 2002, Origin of anomalous magnetocaloric effect in (Dy1-zErz)Al-2 alloys, Phys Rev B, 65, 172411, 10.1103/PhysRevB.65.172411
de Sousa, 2012, Heat flow measurements and the order of the magnetic transition in (Dy, Gd)Co-2 solid solutions, J Alloys Comp, 513, 615, 10.1016/j.jallcom.2011.11.027
Zhu, 2011, Magnetocaloric effect of (Er(x)R(1-x))CO(2) (R = Ho, Dy) for magnetic refrigeration between 20 and 80 K, Cryogenics, 51, 494, 10.1016/j.cryogenics.2011.06.004
Balli, 2007, A study of magnetism and magnetocaloric effect in Ho1-xTbxCo2 compounds, J Magn Magn Mater, 314, 16, 10.1016/j.jmmm.2007.02.007
Balli, 2008, The influence of gadolinium on magnetism and magnetocaloric properties of HoCo2 alloy, J Alloys Comp, 455, 73, 10.1016/j.jallcom.2007.01.110
Balli, 2011, Magnetic behaviour and experimental study of the magnetocaloric effect in the pseudobinary Laves phase Er1-xDyxCo2, J Alloys Comp, 509, 3907, 10.1016/j.jallcom.2010.12.161
Cwik, 2011, The influence of Er substitution on magnetic and magnetocaloric properties of Dy(1-x)Er(x)Co(2) solid solutions, Intermetallics, 19, 1656, 10.1016/j.intermet.2011.07.012
Cwik, 2011, Magnetic properties and magnetocaloric effect in (Dy(0.6)Er(0.4))(1-x)Gd(x)Co(2) multicomponent compounds, 012025
de Oliveira, 2008, Magnetocaloric effect in the pseudobinaries (Ho1-cRc)Co-2 (R = Er and Dy), Eur Phys J B, 65, 207, 10.1140/epjb/e2008-00346-y
Gu, 2007, The magnetocaloric effect in (Dy, Tb)Co-2 alloys, J Alloys Comp, 441, 39, 10.1016/j.jallcom.2006.09.125
Tereshina, 2010, Magnetocaloric and magnetoelastic effects in (Tb0.45Dy0.55)(1-x)ErxCo2 multicomponent compounds, J Phys: Conference Series, 200, 092012
Chen, 2009, Magnetocaloric effect of (Tb1-xCex)Co-2 alloys in low magnetic field, J Rare Earths, 27, 1027, 10.1016/S1002-0721(08)60382-8
de Oliveira, 2015, Magnetocaloric effect in (TbcR1-c)Co-2 (R = Er and Ho), J Alloys Comp, 618, 386, 10.1016/j.jallcom.2014.08.203
Liu, 2002, The magnetocaloric effect and magnetic phase transitions in Dy(Co1-xAlx)(2) compounds, J Alloys Comp, 346, 314, 10.1016/S0925-8388(02)00848-4
Ao, 2007, Magnetocaloric properties of DyCo2-xGax alloys, Solid State Commun, 141, 219, 10.1016/j.ssc.2006.10.035
Fu, 2014, Table-like magnetocaloric effect in the Gd-Co-Al alloys with multi-phase structure, Appl Phys Lett, 104, 072401, 10.1063/1.4865554
Ivanova, 2014, Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1-xAlx)(2) compounds, J Alloys Comp, 592, 271, 10.1016/j.jallcom.2013.12.171
Fu, 2014, Magnetocaloric effect in GdCoxAl2-x system for (0.15 <= x <= 1) compositions, J Appl Phys, 115, 17A914, 10.1063/1.4863167
Han, 2006, Magnetic properties and magnetocaloric effect in Dy(Co1-xFex)(2) alloys, J Magn Magn Mater, 302, 109, 10.1016/j.jmmm.2005.08.013
Tereshina, 2011, Magnetocaloric effect in (Tb, Dy, R)(Co, Fe)(2) (R = Ho, Er) multicomponent compounds, 012077
Liu, 2008, Magnetocaloric effect in co-rich Er(Co1-xFex)(2) laves phase, J Appl Phys, 103, 07B304, 10.1063/1.2829758
Balli, 2007, Effect of Ni substitution on the magnetic and magnetocaloric properties of the Dy(Co1-xNix)(2) Laves phase, J Phys D-Appl Phys., 40, 7601, 10.1088/0022-3727/40/24/001
Li, 2008, Structure, transport properties and the magnetocaloric effect in Gd(Co1-xNix)(2) pseudobinary compounds, Solid State Commun, 145, 427, 10.1016/j.ssc.2007.12.027
Zhang, 2007, Magnetocaloric effect of Gd(Co1-xMnx)(2) compounds, Solid State Commun, 143, 541, 10.1016/j.ssc.2007.07.006
Pathak, 2011, Magnetic, magnetocaloric, and magnetotransport properties of RCo1.8Mn0.2 (R = Er, Ho, Dy, and Tb) compounds, J Magn Magn Mater, 323, 2436, 10.1016/j.jmmm.2011.04.020
Gerasimov, 2016, Structure, magnetic and magnetothermal properties of the non-stoichiometric ErCo2Mnx alloys, J Alloys Comp, 680, 359, 10.1016/j.jallcom.2016.04.130
Wang, 2016, The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2, J Magn Magn Mater, 405, 122, 10.1016/j.jmmm.2015.12.062
Zou, 2015, Manipulation of the magnetic properties in Er1-xCo2 compounds by atomic vacancies, J Alloys Comp, 632, 30, 10.1016/j.jallcom.2015.01.122
Cwik, 2012, Magnetic and magnetocaloric properties of Gd(1-x)Sc(x)Ni(2) solid solutions, J Magn Magn Mater, 324, 677, 10.1016/j.jmmm.2011.08.060
Ibarra-Gaytán, 2015, Magnetic entropy table-like shape in RNi2 composites for cryogenic refrigeration, J Appl Phys, 117, 17C116, 10.1063/1.4915480
Yano, 2006, Detection of Ni magnetic moment in GdNi2 compound by magnetic Compton profile (MCP) method, J Phys: Cond Matter, 18, 6891
Gerasimov, 2013, Magnetic properties of the off-stoichiometric GdNi2Mnx alloys, J Alloys Comp, 571, 132, 10.1016/j.jallcom.2013.03.233
Aryal, 2016, Phase transitions and magnetocaloric and transport properties in off-stoichiometric GdNi2Mnx, J Appl Phys, 119, 043905, 10.1063/1.4940877
Wang, 2011, Critical magnetic transition in TbNi(2)Mn-magnetization and Mossbauer spectroscopy, J Phys-Cond Matter, 23, 216002, 10.1088/0953-8984/23/21/216002
Cwik, 2004, Some physical properties of YxHo1-xNi2 solid solutions, J Alloys Comp, 373, 78, 10.1016/j.jallcom.2003.11.016
Cwik, 2005, The effect of substitution of Lu for Ho on some physical properties of LuxHo1-xNi2 solid solutions, Physica B, 358, 323, 10.1016/j.physb.2005.01.468
Cwik, 2005, Magnetic, electrical, and thermodynamic properties of the LaxHo1-xNi2 solid solutions, J Alloys Comp, 399, 7, 10.1016/j.jallcom.2005.03.006
Cwik, 2005, The influence of Sc substitution on some physical properties of ScxHo1-xNi2 solid solutions, Phys Status Solidi B-Basic Solid State Phys, 242, 1969, 10.1002/pssb.200440037
Cwik, 2008, The effect of substitution of La for Tb on some physical properties of Tb1-xLaxNi2 solid solutions, J Alloys Comp, 460, 41, 10.1016/j.jallcom.2007.06.006
Xiong, 2005, Magnetocaloric effect of Gd(FexAl1-x)(2) compounds, Physica B, 369, 273, 10.1016/j.physb.2005.08.026
Xiong, 2006, The influence of boron atoms on the magnetocaloric effect of Laves compounds Gd(Fe, Al)(2), J Alloys Comp, 413, 7, 10.1016/j.jallcom.2005.06.066
Hermes, 2009, Ferromagnetism and magnetocaloric effect around 95 K in the Laves Phase EuRh1.2Zn0.8, Chem Mater, 21, 3325, 10.1021/cm900841t
Gencer, 2011, Magnetic and magnetocaloric properties of (Gd(1-x)Ce(x))Al(2) (x=0, 0.25, 0.5, 0.75) compounds, J Magn, 16, 337, 10.4283/JMAG.2011.16.4.337
Alho, 2014, Magnetocaloric effect in Gd(1-y)DyyAl2, Int J Refrig-Rev Int Froid, 37, 297, 10.1016/j.ijrefrig.2013.07.012
Pathak, 2014, Low temperature crystal structure and magnetic properties of RAl2, J Appl Phys, 115, 17E109, 10.1063/1.4859096
Gil, 2016, Conventional and anisotropic magnetic entropy change in HoAl2 ferromagnetic compound, J Magn Magn Mater, 409, 45, 10.1016/j.jmmm.2016.02.085
Ribeiro, 2015, Theoretical investigations on magnetocaloric effect in Er1-yTbyAl2 series, J Magn Magn Mater, 379, 112, 10.1016/j.jmmm.2014.12.023
Ribeiro, 2013, Theoretical investigations on the magnetocaloric and barocaloric effects in TbyGd(1-y)Al2 series, J Alloys Comp, 563, 242, 10.1016/j.jallcom.2013.02.068
Pathak, 2015, The structural and magnetic properties of Pr1−xErxAl2, J Appl Phys, 117, 17C107, 10.1063/1.4906431
Pathak, 2015, Negative to positive magnetoresistance and magnetocaloric effect in Pr0.6Er0.4Al2, J Alloys Comp, 621, 411, 10.1016/j.jallcom.2014.09.227
Karmakar, 2015, Observation of large low temperature magnetocaloric effect in HoCu2, J Appl Phys, 117, 193904, 10.1063/1.4921360
Gao, 2012, Large magnetocaloric effect in Laves phase TbMn1.8Fe0.2 compound over a wide temperature range, J Alloys Comp, 530, 26, 10.1016/j.jallcom.2012.03.095
Ćwik, 2015, Magnetic properties and transformation of crystal structure in the ErFe2-ErAl2 system, J Appl Phys, 117, 123912, 10.1063/1.4916353
Rosca, 2010, Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds, J Alloys Comp, 490, 50, 10.1016/j.jallcom.2009.10.093
Wang, 2003, Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study, J Phys-Condes Matter, 15, 5269, 10.1088/0953-8984/15/30/309
Hu, 2001, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6, Appl Phys Lett, 78, 3675, 10.1063/1.1375836
Ilyn, 2005, Magnetocaloric properties of the LaFe11.7Si1.3 and LaFe11.2Co0.7Si1.1 systems, J Magn Magn Mater, 290, 712, 10.1016/j.jmmm.2004.11.345
Liu, 2004, Magnetocaloric enect in La(Fe0.88Al0.12)(13)Cx interstitial compounds, J Phys D-Appl Phys, 37, 2469, 10.1088/0022-3727/37/18/001
Di, 2004, First-order magnetic phase transition in LaFe11.7Si1.3 studied using Mossbauer spectroscopy, Phys Rev B, 69, 224411, 10.1103/PhysRevB.69.224411
Fujita, 2009, Influence of hydrogenation on the electronic structure and the itinerant-electron metamagnetic transition in strong magnetocaloric compound La(Fe0.88Si0.12)(13), J Magn Magn Mater, 321, 3553, 10.1016/j.jmmm.2008.03.001
Wang, 2014, Magnetic transitions in LaFe13-x-yCoySix compounds, Hyperfine Interact, 226, 405, 10.1007/s10751-013-0972-9
Gruner, 2015, Element-resolved thermodynamics of magnetocaloric LaFe(13-x)Si(x), Phys Rev Lett, 114, 057202, 10.1103/PhysRevLett.114.057202
Gutfleisch, 2005, Large magnetocaloric effect in melt-spun LaFe13-xSix, J Appl Phys, 97, 10M305, 10.1063/1.1847871
Lyubina, 2010, Novel design of La(Fe, Si)(13) alloys towards high magnetic refrigeration performance, Adv Mater, 22, 3735, 10.1002/adma.201000177
Lyubina, 2011, Recent advances in the microstructure design of materials for near room temperature magnetic cooling (invited), J Appl Phys, 109, 07A902, 10.1063/1.3540372
Franco, 2008, A universal curve for the magnetocaloric effect: an analysis based on scaling relations, J Phys-Condes Matter, 20, 285207, 10.1088/0953-8984/20/28/285207
de Medeiros, 2006, Theoretical calculations of the magnetocaloric effect in La(FexSi1-x)(13), J Magn Magn Mater, 306, 265, 10.1016/j.jmmm.2006.03.026
Jia, 2009, Magnetocaloric effects in the La(Fe, Si)(13) intermetallics doped by different elements, J Appl Phys, 105, 07A924, 10.1063/1.3072021
Passamani, 2007, Magnetic and magnetocaloric properties of La(Fe, Co)(11.4)SP1.6 compounds (SP = Al or Si), J Magn Magn Mater, 312, 65, 10.1016/j.jmmm.2006.09.010
Liu, 2005, Phase formation and magnetocaloric effect in rapidly quenched La(Fe1-xCox)(11.4)Si-1.6, J Appl Phys, 98, 113904, 10.1063/1.2137884
Hu, 2005, Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCox)(11.9)Si-1.1, J Appl Phys, 97, 10M303, 10.1063/1.1847071
Hu, 2002, Magnetic entropy change and its temperature variation in compounds La(Fe1-xCox)(11.2)Si-1.8, J Appl Phys, 92, 3620, 10.1063/1.1502919
Liu, 2003, Effect of Co content on magnetic entropy change and structure of La(Fe1-xCox)(11.4)Si-1.6, J Magn Magn Mater, 264, 209, 10.1016/S0304-8853(03)00207-5
Chen, 2014, The system study of 1:13 phase formation, the magnetic transition adjustment, and magnetocaloric property in La(Fe, Co)(13-x)Si-x alloys, J Magn Magn Mater, 368, 155, 10.1016/j.jmmm.2014.04.020
Pathak, 2010, Influence of the small substitution of Z=Ni, Cu, Cr, V for Fe on the magnetic, magnetocaloric, and magnetoelastic properties of LaFe11.4Si1.6, J Magn Magn Mater, 322, 692, 10.1016/j.jmmm.2009.10.043
Gercsi, 2015, Magnetic coupling in transition-metal–doped LaSiFe11.5 TM0.5 (TM=Cr, Mn, Co and Ni), EPL (Europhys Lett), 110, 47006, 10.1209/0295-5075/110/47006
Wang, 2003, The effect of Mn substitution in LaFe11.7Si1.3 compound on the magnetic properties and magnetic entropy changes, J Phys D-Appl Phys, 36, 1, 10.1088/0022-3727/36/1/301
Lin, 2010, Magnetocaloric effect of La0.8Ce0.2Fe11.4-xMnxSi1.6 compounds, J Alloys Comp, 489, 1, 10.1016/j.jallcom.2009.09.028
Fujieda, 2006, Control of working temperature of large isothermal magnetic entropy change in La(FexTMySi1-x-y)(13) (TM = Cr, Mn, Ni) and La1-zCez(FexMnySi1-x-y)(13), Mater Trans, 47, 482, 10.2320/matertrans.47.482
Gao, 2009, Influence of the substitution of Cu for Si on magnetic entropy change and hysteresis loss in LaFe11.7(Si1-xCux)(1.3) compounds, J Appl Phys, 105, 07A916, 10.1063/1.3063067
Fujieda, 2004, Enhancements of magnetocaloric effects in La(Fe0.90Si0.10)(13) and its hydride by partial substitution of Ce for La, Mater Trans, 45, 3228, 10.2320/matertrans.45.3228
Fujieda, 2005, Control of large magnetocaloric effects and hysteresis of La1-zCez(Fe0.86Si0.14)(13) compounds, IEEE Trans Magn, 41, 2787, 10.1109/TMAG.2005.854775
Fujieda, 2006, Large magnetocaloric effects enhanced by partial substitution of Ce for La in La(Fe0.88Si0.12)(13) compound, J Alloys Comp, 408, 1165, 10.1016/j.jallcom.2004.12.112
Fujieda, 2006, Strong magnetocaloric effects in La1-zCez(Fex-yMnySi1-x)(13) at low temperatures, Appl Phys Lett, 89, 062504, 10.1063/1.2227631
Fujita, 2011, Changes in electronic states and magnetic free energy in La1-zCez(FexSi1-x)(13) magnetic refrigerants, J Phys D-Appl Phys, 44, 064013, 10.1088/0022-3727/44/6/064013
Anh, 2003, Magnetism and magnetocaloric effect in La1-yNdy(Fe0.88Si0.12)(13) compounds, J Magn Magn Mater, 262, 427, 10.1016/S0304-8853(03)00073-8
Mican, 2012, Magnetic properties and magnetocaloric effect in La0.7Nd0.3Fe13-xSix compounds, J Solid State Chem, 187, 238, 10.1016/j.jssc.2012.01.030
Fujieda, 2007, Reduction of hysteresis loss in itinerant-electron metamagnetic transition by partial substitution of Pr for La in La(FexSi1-x)(13), J Magn Magn Mater, 310, E1004, 10.1016/j.jmmm.2006.10.960
Fujieda, 2007, Enhancement of magnetocaloric effects in La1-zPrz(Fe0.88Si0.12)(13) and their hydrides, J Appl Phys, 102, 023907, 10.1063/1.2753590
Fu, 2010, Effect of praseodymium and cobalt substitution on magnetic properties and structures in La(Fe1-xSix)(13) compounds, J Rare Earths, 28, 611, 10.1016/S1002-0721(09)60164-2
Ding, 2010, Magnetocaloric effect in NaZn13-type La(1-)PrxFe(11.44)Si(1.56) melt-spun ribbons, J Appl Phys, 107, 09A952, 10.1063/1.3359807
Huang, 2014, Effect of particle size on the hysteretic behavior and magnetocaloric effect of La0.5Pr0.5Fe11.4Si1.6 compound, Acta Metall Sin-Engl Lett, 27, 27, 10.1007/s40195-014-0031-9
Demuner, 2009, Magnetocaloric properties of the (La-Gd)Fe11.4Si1.6 metamagnetic compound, J Magn Magn Mater, 321, 1809, 10.1016/j.jmmm.2008.11.096
Balli, 2007, Magnetic and magnetocaloric properties of La1-xErxFe11.44Si1.56 compounds, J Magn Magn Mater, 313, 43, 10.1016/j.jmmm.2006.11.211
Fujita, 2014, Realization of small intrinsic hysteresis with large magnetic entropy change in La0.8Pr0.2(Fe0.88Si0.10Al0.02)(13) by controlling itinerant-electron characteristics, Appl Phys Lett, 104, 122410, 10.1063/1.4869957
Din, 2014, Effects of Cr substitution on structural and magnetic properties in La0.7Pr0.3Fe11.4Si1.6 compound, J Appl Phys, 115, 17A942, 10.1063/1.4868703
Zhang, 2011, Effect of Ca on the microstructure and magnetocaloric effects in the La1-xCaxFe11.5Si1.5 compounds, J Alloys Comp, 509, 3746, 10.1016/j.jallcom.2010.12.194
Bao, 2012, Magnetocaloric properties of La(Fe, Si)13-based material and its hydride prepared by industrial mischmetal, Appl Phys Lett, 101, 162406, 10.1063/1.4760262
Fujita, 2002, Giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)(13)H-y compounds, Mater Trans, 43, 1202, 10.2320/matertrans.43.1202
Chen, 2002, Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound, Chin Phys, 11, 741, 10.1088/1009-1963/11/7/318
Chen, 2003, Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds, J Phys-Condes Matter, 15, L161, 10.1088/0953-8984/15/7/102
Fujita, 2003, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)(13) compounds and their hydrides, Phys Rev B, 67, 104416, 10.1103/PhysRevB.67.104416
de Medeiros, 2006, Magnetocaloric effect in La(FexSi1-x)(13) doped with hydrogen and under external pressure, J Alloys Comp, 424, 41, 10.1016/j.jallcom.2005.12.071
Fujieda, 2007, Large isothermal magnetic entropy change after hydrogen absorption into La0.5Pr0.5(Fe0.88Si0.12)(13), 577
Fujieda, 2003, Large magnetocaloric effects in NaZn13-type La(FexSi1-x)(13) compounds and their hydrides composed of icosahedral clusters, Sci Technol Adv Mater, 4, 339, 10.1016/j.stam.2003.07.002
Zhao, 2010, Reduction of magnetic hysteresis loss in La0.5Pr0.5Fe11.4Si1.6Hx hydrides with large magnetocaloric effects, J Appl Phys, 107, 113911, 10.1063/1.3374635
Phejar, 2016, Investigation on structural and magnetocaloric properties of LaFe13-xSix(H, C)(y) compounds, J Solid State Chem, 233, 95, 10.1016/j.jssc.2015.10.016
Hai, 2016, In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1-x)(13) magnetocaloric alloys for room-temperature refrigeration application, J Magn Magn Mater, 400, 344, 10.1016/j.jmmm.2015.07.018
Makarov, 2015, Local electronic and magnetic properties of pure and Mn-containing magnetocaloric LaFe13−x Si x compounds inferred from Mössbauer spectroscopy and magnetometry, J Phys D: Appl Phys, 48, 305006, 10.1088/0022-3727/48/30/305006
Wang, 2014, Hydriding and dehydriding kinetics in magnetocaloric La(Fe, Si)(13) compounds, J Appl Phys, 115, 143903, 10.1063/1.4871194
Jia, 2011, Influence of interstitial and substitutional atoms on the crystal structure of La(FeSi)(13), J Alloys Comp, 509, 5804, 10.1016/j.jallcom.2011.02.124
Wang, 2009, The hydrogenation behavior of LaFe11.44Si1.56 magnetic refrigerating alloy, J Alloys Comp, 485, 313, 10.1016/j.jallcom.2009.06.110
Wang, 2011, The hydrogen absorption properties and magnetocaloric effect of La0.8Ce0.2(Fe1-xMnx)(11.5)Si1.5Hy, J Appl Phys, 109, 07A910, 10.1063/1.3549560
Ma, 2010, Study on the homogeneity of hydrogenation for LaFe11.5Si1.5 intermetallic compound, Mater Lett, 64, 2520, 10.1016/j.matlet.2010.07.077
Baumfeld, 2014, The dynamics of spontaneous hydrogen segregation in LaFe13-xSixHy, J Appl Phys, 115, 203905, 10.1063/1.4879099
Mandal, 2005, Effect of reactive milling in hydrogen on the magnetic and magnetocaloric properties of LaFe11.57Si1.43, J Magn Magn Mater, 290, 673, 10.1016/j.jmmm.2004.11.333
Mandal, 2007, Magnetocaloric effect in reactively-milled LaFe11.57Si1.43Hy intermetallic compounds, J Appl Phys, 102, 053906, 10.1063/1.2775877
Lyubina, 2012, Electrolytic hydriding of LaFe13-xSix alloys for energy efficient magnetic cooling, Adv Mater, 24, 2042, 10.1002/adma.201200112
Fujieda, 2011, Influence of homogenization of microstructual composition on hydrogen absorption into La(Fe(x)Si(1-x))(13) magnetic refrigerants, IEEE Trans Magn, 47, 2459, 10.1109/TMAG.2011.2157092
Bez, 2015, Magnetocaloric effect and H gradient in bulk La(Fe, Si)(13)H-y magnetic refrigerants obtained by HDSH, J Magn Magn Mater, 386, 125, 10.1016/j.jmmm.2015.03.068
Zheng, 2015, The high-temperature hydrogenation behavior of LaFe11.6Si1.4 and splitting of LaFe11.6Si1.4Hy magnetocaloric transition, J Alloys Comp, 646, 124, 10.1016/j.jallcom.2015.05.164
Teixeira, 2012, Effect of carbon on magnetocaloric effect of LaFe11.6Si1.4 compounds and on the thermal stability of its hydrides, J Appl Phys, 111, 07A927, 10.1063/1.3675985
Zhao, 2012, Hydrogenating process and magnetocaloric effect in La0.7Pr0.3Fe11.5Si1.5C0.2Hx hydrides, J Alloys Comp, 520, 277, 10.1016/j.jallcom.2012.01.042
Barcza, 2011, Stability and magnetocaloric properties of sintered La(Fe, Mn, Si)(13)H(z) alloys, IEEE Trans Magn, 47, 3391, 10.1109/TMAG.2011.2147774
Basso, 2015, Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)(13)-H compounds, J Appl Phys, 118, 6, 10.1063/1.4928086
Bez, 2016, Magneto-elastic coupling in La(Fe, Mn, Si)(13)Hy within the Bean-Rodbell model, AIP Adv., 6, 056217, 10.1063/1.4944400
Piazzi, 2016, Modeling specific heatandentropychangeinLa(Fe-Mn-Si)(13)-H compounds, J Magn Magn Mater, 400, 349, 10.1016/j.jmmm.2015.07.055
Wang, 2011, Hydrogenation, structure and magnetic properties of La(Fe0.91Si0.09)(13) hydrides and deuterides, Chin Phys B, 20, 067502, 10.1088/1674-1056/20/6/067502
Lyubina, 2008, Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, Si)(13)H-x, Phys Rev Lett, 101, 177203, 10.1103/PhysRevLett.101.177203
Balli, 2009, Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound, J Magn Magn Mater, 321, 123, 10.1016/j.jmmm.2008.08.081
Chen, 2003, Magnetism and magnetic entropy change of LaFe11.6Si1.4Cx (x=0-0.6) interstitial compounds, J Appl Phys, 93, 1323, 10.1063/1.1532930
Shen, 2007, Reduction of hysteresis loss and large magnetic entropy change in the NaZn13-type LaPrFeSiC interstitial compounds, Appl Phys Lett, 91, 142504, 10.1063/1.2794412
Balli, 2010, Refrigerant capacity and direct measurements of the magnetocaloric effect on LaFe11.2Co0.7Si1.1Cx materials, J Appl Phys, 107, 09A933, 10.1063/1.3349372
Shen, 2012, Magnetocaloric effect in La0.5Pr0.5Fe11.5Si1.5 compounds with a combined addition of Co and C, J Appl Phys, 111, 07A908, 10.1063/1.3670598
Shen, 2010, Reduction in hysteresis losses and large magnetic entropy change in the B-doped La(Fe, Si)(13) compounds, J Appl Phys, 107, 09A909, 10.1063/1.3349325
Xie, 2007, Influence of boron on the giant magnetocaloric effect of La(Fe0.9Si0.1)(13), J Magn Magn Mater, 311, 589, 10.1016/j.jmmm.2006.08.021
Chen, 2011, Phase, structural, and magnetocaloric properties of high temperature annealed LaFe11.6Si1.4BX, J Alloys Comp, 509, 2864, 10.1016/j.jallcom.2010.11.144
Lin, 2011, The magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6Bx compounds prepared by copper-mold casting, J Magn Magn Mater, 323, 1741, 10.1016/j.jmmm.2010.12.038
Hu, 2000, Magnetic entropy change in La(Fe0.98C0.02)(11.7)A(1)l(1.3), J Phys-Condes Matter, 12, L691, 10.1088/0953-8984/12/46/101
Wu, 1996, The magnetic entropy change properties of La(1-z)R(z)(Fe1-x-yCoxAly)(13) compounds, J Appl Phys, 79, 982, 10.1063/1.360883
Hu, 2007, Magnetic properties and magnetocaloric effect around phase boundary in La(FexAl1-x)(13) compounds, J Appl Phys, 101, 09C525, 10.1063/1.2713219
Bao, 2009, Enhancement of magnetocaloric effects in La0.8R0.2(Fe0.919Co0.081)(11.7) Al-1.3 (R = Pr, Nd) compounds, J Magn Magn Mater, 321, 786, 10.1016/j.jmmm.2008.11.081
Zhao, 2010, Enhancement of the magnetocaloric effect and magnetic transition temperature in LaFe11.5Al1.5 by hydrogenation, Solid State Commun, 150, 2329, 10.1016/j.ssc.2010.10.006
Xu, 2015, The effects of interstitial atoms C and B on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound, J Alloys Comp, 651, 8, 10.1016/j.jallcom.2015.07.133
Zhang, 2014, The magnetic properties and magnetocaloric effect in LaFe11.5Al1.5Bx compounds, J Alloys Comp, 591, 143, 10.1016/j.jallcom.2013.12.193
Zhang, 2014, The effects of interstitial atoms H and B on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound, J Appl Phys, 115, 183908, 10.1063/1.4876261
Palstra, 1983, Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe, Si)13 compounds, J Magn Magn Mater, 36, 290, 10.1016/0304-8853(83)90128-2
Blazquez, 2015, Effect of alpha-Fe impurities on the field dependence of magnetocaloric response in LaFe11.5Si1.5, J Alloys Comp, 646, 101, 10.1016/j.jallcom.2015.06.085
Xu, 2006, Itinerant-electron metamagnetic transition and giant magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6 compound, Chin Sci Bull, 51, 2046, 10.1007/s11434-006-2078-0
Krautz, 2014, Systematic investigation of Mn substituted La(Fe, Si)(13) alloys and their hydrides for room-temperature magnetocaloric application, J Alloys Comp, 598, 27, 10.1016/j.jallcom.2014.02.015
Zhang, 2012, Simultaneous enhancements of Curie temperature and magnetocaloric effects in the La(1-x)Ce(x)Fe(11.5)Si(1.5)C(y) compounds, J Magn Magn Mater, 324, 484, 10.1016/j.jmmm.2011.08.028
Zhang, 2012, Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)(13) compounds around room temperature, J Appl Phys, 111, 07A909, 10.1063/1.3670608
Liu, 2011, Influence of H and extra La on magnetocaloric effect of La(0.5+x)Pr(0.5)Fe(11.4)Si(1.6) melt-spun ribbons, IEEE Trans Magn, 47, 2478, 10.1109/TMAG.2011.2147295
Bao, 2014, A novel preparation method and magnetic properties of NaZn13-type La(Fe, Si)(13) compounds, J Alloys Comp, 589, 416, 10.1016/j.jallcom.2013.11.173
Fujita, 2014, Improvement of low-field magnetic entropy change by increasing Fe concentration in solid-state reactive sintered La(FexSi1-x)(13), J Alloys Comp, 601, 158, 10.1016/j.jallcom.2014.02.163
Chen, 2011, Influence of iron on phase and magnetic property of the LaFe11.6Si1.4 compound, J Rare Earths, 29, 354, 10.1016/S1002-0721(10)60459-0
Lai, 2015, Magnetocaloric effect of nonstoichiometric La1-xFe11.4+xSi1.6 alloys with first-order and second-order magnetic transitions, Intermetallics, 63, 7, 10.1016/j.intermet.2015.03.012
Zhang, 2014, Novel microstructure and large magnetocaloric effect in La2Fe11Si2 magnetic refrigerant, Mater Lett, 134, 87, 10.1016/j.matlet.2014.07.060
Zhang, 2015, Influence of extra La and annealing temperature on microstructure and magnetocaloric properties of La-Fe-Co-Si alloys, Physica B, 476, 167, 10.1016/j.physb.2015.03.012
Liu, 2011, Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La-Fe-Si alloys, Acta Mater, 59, 3602, 10.1016/j.actamat.2011.02.033
Liu, 2009, Structure and magnetic properties of shortly high temperature annealing LaFe11.6Si1.4 compound, J Alloys Comp, 475, 672, 10.1016/j.jallcom.2008.07.139
Kolat, 2009, Production of LaFe11.4Si1.6 compound at high temperature with a very short annealing time, J Optoelectron Adv Mater, 11, 1106
Xiang, 2011, The effect of different temperature annealing on phase relation of LaFe(11.5)Si(1.5) and the magnetocaloric effects of La(0.8)Ce(0.2)Fe(11.5-x)Co(x)Si(1.5) alloys, J Magn Magn Mater, 323, 3177, 10.1016/j.jmmm.2011.05.041
Zhang, 2008, Phase formation with NaZn13 structure in metamagnetic La(Fe1-xCox)(11.9)Si-1.1 compounds, J Rare Earths, 26, 727, 10.1016/S1002-0721(08)60171-4
Xie, 2004, Large magnetic entropy change in melt-spun LaFe11.5Si1.5 ribbons, J Phys D-Appl Phys, 37, 3063, 10.1088/0022-3727/37/22/001
Liu, 2005, Phase formation and structure in rapidly quenched La(Fe0.88Co0.12)(13-x)Si-x alloys, J Alloys Comp, 397, 120, 10.1016/j.jallcom.2005.01.022
Lyubina, 2008, La(Fe, Si)(13)-based magnetic refrigerants obtained by novel processing routes, J Magn Magn Mater, 320, 2252, 10.1016/j.jmmm.2008.04.116
Lyubina, 2009, La(Fe, Si)(13)-based magnetic refrigerants obtained by novel processing routes (vol 320, pg 2252, 2008), J Magn Magn Mater, 321, 3571, 10.1016/j.jmmm.2008.03.063
Hou, 2015, Formation mechanisms of NaZn13-type phase in giant magnetocaloric La-Fe-Si compounds during rapid solidification and annealing, J Alloys Comp, 646, 503, 10.1016/j.jallcom.2015.05.173
Hou, 2016, Formation of tree-like and vortex magnetic domains of nanocrystalline alpha-(Fe, Si) in La-Fe-Si ribbons during rapid solidification and subsequent annealing, J Alloys Comp, 669, 205, 10.1016/j.jallcom.2016.01.211
Zhang, 2015, Large entropy change, adiabatic temperature change, and small hysteresis in La(Fe, Mn)(11.6)Si-1.4 strip-cast flakes, J Magn Magn Mater, 377, 90, 10.1016/j.jmmm.2014.10.035
Zhang, 2015, Microstructure and magnetocaloric properties of LaFe11.8−xCoxSi1.2 strip-cast flakes, IEEE Trans Magn, 51, 2502404
Dong, 2014, Microstructure and magnetocaloric properties of melt-extracted La-Fe-Si microwires, J Magn Magn Mater, 357, 73, 10.1016/j.jmmm.2014.01.031
Phejar, 2010, Structural and magnetic properties of magnetocaloric LaFe13-xSix compounds synthesized by high energy ball-milling, Intermetallics, 18, 2301, 10.1016/j.intermet.2010.07.022
Passamani, 2007, Magnetocaloric properties of (La, RE)Fe11.4Si1.6 compounds (RE=Y, Gd), J Appl Phys, 102, 093906, 10.1063/1.2803658
Patissier, 2015, Fast synthesis of LaFe13-xSix magnetocaloric compounds by reactive Spark Plasma Sintering, J Alloys Comp, 645, 143, 10.1016/j.jallcom.2015.04.199
Waske, 2015, Asymmetric first-order transition and interlocked particle state in magnetocaloric La(Fe, Si)(13), Phys Stat Solidi-Rapid Res Lett, 9, 136, 10.1002/pssr.201409484
Yuan, 2015, Influence of microstructural changes on magnetic refrigeration performance for La(Fe0.94Co0.06)(11.8)Si-1.2 alloys during magnetic field cycling, J Appl Phys, 117, 4, 10.1063/1.4906765
Zhang, 2014, Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)(13)-based magnetic refrigeration materials, Appl Phys Lett, 104, 062407, 10.1063/1.4865236
Pulko, 2015, Epoxy-bonded La-Fe-Co-Si magnetocaloric plates, J Magn Magn Mater, 375, 65, 10.1016/j.jmmm.2014.08.074
Xia, 2015, Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe, Mn)(11.7)Si1.3H1.8, J Alloys Comp, 635, 124, 10.1016/j.jallcom.2015.02.131
Zhang, 2015, Mechanical properties and magnetocaloric effects in La(Fe, Si)(13) hydrides bonded with different epoxy resins, J Appl Phys, 117, 4
Skokov, 2014, Heat exchangers made of polymer-bonded La(Fe, Si)(13), J Appl Phys, 115, 17A941, 10.1063/1.4868707
Radulov, 2015, On the preparation of La(Fe, Mn, Si)(13)H-x polymer-composites with optimized magnetocaloric properties, J Magn Magn Mater, 396, 228, 10.1016/j.jmmm.2015.08.044
Lanzarini, 2015, Thermoplastic filled with magnetocaloric powder, Mater Des, 87, 1022, 10.1016/j.matdes.2015.08.057
Krautz, 2015, A new type of La(Fe, Si)(13)-based magnetocaloric composite with amorphous metallic matrix, Scr Mater, 95, 50, 10.1016/j.scriptamat.2014.10.002
Zhang, 2016, LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing, Scr Mater, 120, 58, 10.1016/j.scriptamat.2016.04.021
Shao, 2015, Enhanced thermal conductivity in off-stoichiometric La-(Fe, Co)-Si magnetocaloric alloys, Appl Phys Lett, 107, 152403, 10.1063/1.4933261
You, 2016, Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders, AIP Adv, 6, 055321, 10.1063/1.4952757
Fujieda, 2014, Suppression of aqueous corrosion of La(Fe0.88Si0.12)(13) by reducing dissolved oxygen concentration for high-performance magnetic refrigeration, J Alloys Comp, 600, 67, 10.1016/j.jallcom.2014.01.229
Hu, 2014, Corrosion and latent heat in thermal cycles for La(Fe, Mn, Si)(13) magnetocaloric compounds, J Magn Magn Mater, 354, 336, 10.1016/j.jmmm.2013.11.025
Forchelet, 2014, Corrosion behavior of gadolinium and La-Fe-Co-Si compounds in various heat conducting fluids, Int J Refrig-Rev Int Froid, 37, 307, 10.1016/j.ijrefrig.2013.09.021
Hu, 2015, Corrosion behavior and Delta S-T-c relation of LaFe13-x-yCoxSiyCz compounds near room temperature, J Magn Magn Mater, 377, 368, 10.1016/j.jmmm.2014.10.133
Pecharsky, 2002, The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4-Gd5Ge4 system, J Alloys Comp, 338, 126, 10.1016/S0925-8388(02)00226-8
Pecharsky, 2001, Gd-5(SixGe1-x)(4): an extremum material, Adv Mater, 13, 683, 10.1002/1521-4095(200105)13:9<683::AID-ADMA683>3.0.CO;2-O
Pecharsky, 2003, The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4-x alloys for 1.4 <= x <= 2.2, J Magn Magn Mater, 267, 60, 10.1016/S0304-8853(03)00305-6
Pecharsky, 2003, The effect of varying the crystal structure on the magnetism, electronic structure and thermodynamics in the Gd-5(SixGe1-x)(4) system near x=0.5, J Solid State Chem, 171, 57, 10.1016/S0022-4596(02)00146-9
Miller, 2006, Complex rare-earth tetrelides, RE5(SixGe1-x)(4): new materials for magnetic refrigeration and a superb playground for solid state chemistry, Chem Soc Rev, 35, 799, 10.1039/B208133B
Pecharsky, 2009, Making the most of the magnetic and lattice entropy changes, J Magn Magn Mater, 321, 3541, 10.1016/j.jmmm.2008.03.013
Mudryk, 2005, Polymorphism of Gd5Si2Ge2: the equivalence of temperature, magnetic field, and chemical and hydrostatic pressures, Phys Rev B, 71, 174104, 10.1103/PhysRevB.71.174104
Melikhov, 2015, Gd-5(SixGe1-x)(4) system - updated phase diagram, J Magn Magn Mater, 395, 143, 10.1016/j.jmmm.2015.07.062
Pecharsky, 1997, Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from similar to 20 to similar to 290 K, Appl Phys Lett, 70, 3299, 10.1063/1.119206
Pecharsky, 2003, Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect, Phys Rev Lett, 91, 197204, 10.1103/PhysRevLett.91.197204
Kouvel, 1962, Anomalous magnetic moments and transformations in the ordered FeRh, J Appl Phys, 33, 1343, 10.1063/1.1728721
Melikhov, 2014, Phenomenological modelling of first order phase transitions in magnetic systems, J Appl Phys, 115, 183902, 10.1063/1.4875678
Alvaranega, 2014, Theoretical investigation on the barocaloric and magnetocaloric properties in the Gd5Si2Ge2 compound, J Appl Phys, 116, 243908, 10.1063/1.4904959
Pires, 2014, Phase competitions behind the giant magnetic entropy variation: Gd5Si2Ge2 and Tb5Si2Ge2 case studies, Entropy, 16, 3813, 10.3390/e16073813
von Moos, 2015, The influence of hysteresis on the determination of the magnetocaloric effect in Gd5Si2Ge2, J Phys D: Appl Phys, 48, 025005, 10.1088/0022-3727/48/2/025005
Giguere, 1999, Direct measurement of the “giant” adiabatic temperature change in Gd5Si2Ge2, Phys Rev Lett, 83, 2262, 10.1103/PhysRevLett.83.2262
Gschneidner, 2000, Comment on “Direct measurement of the 'giant' adiabatic temperature change in Gd5Si2Ge2”, Phys Rev Lett, 85, 4190, 10.1103/PhysRevLett.85.4190
Sun, 2000, Comment on “Direct measurement of the 'giant' adiabatic temperature change in Gd5Si2Ge2”, Phys Rev Lett, 85, 4191, 10.1103/PhysRevLett.85.4191
Casanova, 2002, Entropy change and magnetocaloric effect in Gd-5(SixGe1-x)(4), Phys Rev B, 66, 100401, 10.1103/PhysRevB.66.100401
Pecharsky, 1997, Effect of alloying on the giant magnetocaloric effect of Gd-5(Si2Ge2), J Magn Magn Mater, 167, L179, 10.1016/S0304-8853(96)00759-7
Shull, 2006, The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy, J Appl Phys, 99, 08K908, 10.1063/1.2173632
Aksoy, 2008, The influence of gallium on the magnetocaloric properties of Gd5Si2Ge2, J Alloys Comp, 460, 94, 10.1016/j.jallcom.2007.06.060
Provenzano, 2008, Magnetocaloric properties and structure of the Gd(5)Ge(1.8)Si(1.8)Sn(0.4)compund, IEEE Trans Magn, 44, 3048, 10.1109/TMAG.2008.2002789
Zhuang, 2006, Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound, J Alloys Comp, 421, 49, 10.1016/j.jallcom.2005.11.052
Li, 2006, The giant magnetocaloric effect of Gd5Si1.95Ge2.05 enhanced by Sn doping, J Appl Phys, 100, 073904, 10.1063/1.2355430
Aghababyan, 2015, Magnetocaloric effect of compounds in the Gd5Si2-xGe2-xSn2x system, J Contemp Phys-Armenian Acad Sci, 50, 200, 10.3103/S1068337215020152
Yuzuak, 2010, Magnetocaloric properties of the Gd5Si2.05-xGe1.95-xMn2x compounds, J Rare Earths, 28, 477, 10.1016/S1002-0721(09)60114-9
Yuzuak, 2010, Giant magnetocaloric effect in the Gd5Ge2.025Si1.925In0.05 compound, Chin Phys B, 19, 037502, 10.1088/1674-1056/19/3/037502
Prabahar, 2010, Solidification behaviour and microstructural correlations in magnetocaloric Gd-Si-Ge-Nb alloys, Mater Sci Eng B-Adv Funct Solid-State Mater, 172, 294, 10.1016/j.mseb.2010.06.002
Podmiljsak, 2009, Magnetocaloric properties and nanoscale structure of Fe-doped Gd5Ge2Si2 alloys, J Appl Phys, 105, 07A941, 10.1063/1.3074779
Podmiljsak, 2009, Microstructural changes in Fe-doped Gd5Si2Ge2, J Magn Magn Mater, 321, 300, 10.1016/j.jmmm.2008.09.001
Nirmala, 2005, Magnetocaloric effect in the intermetallic compound Gd5Si2Sb2, Europhys Lett, 72, 652, 10.1209/epl/i2005-10268-x
Svitlyk, 2009, Magnetic transitions in the Gd5Si4-xPx (x=0.5, 0.75, 1.25) phases. Magnetocaloric effect of the Gd5Si2.75P1.25 phase, Solid State Sci, 11, 1941, 10.1016/j.solidstatesciences.2009.07.010
Chernyshov, 2006, Structural and magnetothermal properties of the Gd5SbxGe4-x system, J Appl Phys, 99, 08Q102, 10.1063/1.2150811
Wu, 2005, Influence of oxygen on the giant magnetocaloric effect of Gd5Si1.95Ge2.05, J Alloys Comp, 403, 118, 10.1016/j.jallcom.2005.06.001
Alves, 2004, Influence of hydrogen on the magnetic behaviour of Gd5Ge2Si2Hx, 0.1 <= x <= 2.5, J Magn Magn Mater, 272, 2391, 10.1016/j.jmmm.2004.01.054
Carvalho, 2007, Effect of hydrogen on the structural, magnetic and magnetocaloric properties of the Gd5Ge2.1Si1.9 compound, J Alloys Comp, 432, 11, 10.1016/j.jallcom.2006.05.121
Belo, 2012, Phase control studies in Gd5Si2Ge2 giant magnetocaloric compound, J Alloys Comp, 529, 89, 10.1016/j.jallcom.2012.02.164
Pecharsky, 2003, The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2, J Appl Phys, 93, 4722, 10.1063/1.1558210
Yan, 2004, Effect of composition and cooling rate on the structure and magnetic entropy change in Gd5SixGe4-x, J Appl Phys, 95, 7064, 10.1063/1.1667852
Lograsso, 2005, Synthesis and characterization of single crystalline Gd-5(Si, Ge1-x)(4) by the Bridgman method, J Alloys Comp, 393, 141, 10.1016/j.jallcom.2004.09.068
Gschneidner, 1999, Magnetic refrigeration materials (invited), J Appl Phys, 85, 5365, 10.1063/1.369979
Fu, 2005, Phase analysis of Gd-5(SixGe1-x)(4) alloys prepared from different purity Gd with x=0.475 and 0.43, Acta Mater, 53, 2377, 10.1016/j.actamat.2005.01.045
Spichkin, 2001, Preparation, crystal structure, magnetic and magnetothermal properties of (GdxR5-x)Si-4, where R=Pr and Tb, alloys, J Appl Phys, 89, 1738, 10.1063/1.1335821
Yang, 2003, Crystal structure and magnetic properties of Pr5Si4-Ge-x(x) compounds, J Magn Magn Mater, 263, 146, 10.1016/S0304-8853(02)01548-2
Magen, 2004, Evidence for a coupled magnetic-crystallographic transformation in Nd-5(Si0.6Ge0.4)(4), Phys Rev B, 70, 224429, 10.1103/PhysRevB.70.224429
Yang, 2003, Structure dependence of magnetic properties of Nd5Si4-xGex (x=1.2 and 2), Physica B, 325, 293, 10.1016/S0921-4526(02)01542-9
Ahn, 2007, Phase relationships, and the structural, magnetic, and thermodynamic properties in the Sm5SixGe4-x pseudobinary system, Phys Rev B, 76, 014415, 10.1103/PhysRevB.76.014415
Morellon, 2001, Magnetocaloric effect in Tb-5(SixGe1-x)(4), Appl Phys Lett, 79, 1318, 10.1063/1.1399007
Thuy, 2002, Magnetic properties and magnetocaloric effect of Tb-5(SixGe1-x)(4) compounds, J Magn Magn Mater, 242, 841, 10.1016/S0304-8853(01)01092-7
Deng, 2007, Magnetic phase transition and magnetocaloric effect in (Gd1-xTbx)(5)Si1.72Ge2.28 compounds, J Alloys Comp, 428, 28, 10.1016/j.jallcom.2006.03.078
Deng, 2007, The magnetocaloric effect in (Gd0.74Tb0.26)(5)(SixGe1-x)(4) alloys, Mater Lett, 61, 2359, 10.1016/j.matlet.2006.09.033
Min, 2015, Structure, magnetic properties and giant magnetocaloric effect of Tb4Gd1Si2.035Ge1.935Mn0.03 alloy, Intermetallics, 57, 68, 10.1016/j.intermet.2014.10.002
Xie, 2004, Magnetic entropy change in (Gd1-xDyx)Si-4 compounds, J Alloys Comp, 372, 49, 10.1016/j.jallcom.2003.10.016
Gschneidner, 2000, The nonpareil R-5(SixGe1-x)(4) phases, J Alloys Comp, 303, 214, 10.1016/S0925-8388(00)00747-7
Singh, 2010, Magnetostructural properties of Ho(5)(Si(0.8)Ge(0.2))(4), Phys Rev B, 81, 184414, 10.1103/PhysRevB.81.184414
Singh, 2010, Magnetic and magnetothermodynamic properties of Ho5Si4, J Appl Phys, 107, 09A921, 10.1063/1.3365515
Pecharsky, 2004, Phase relationships and structural, magnetic, and thermodynamic properties of alloys in the pseudobinary Er5Si4-Er5Ge4 system, Phys Rev B, 70, 144419, 10.1103/PhysRevB.70.144419
Singh, 2008, Unusual magnetic properties of (Er1-xGdx)(5)Si-4 compounds, Phys Rev B, 77, 054414, 10.1103/PhysRevB.77.054414
Zou, 2015, The structural and magnetic properties of the compound Tm5Ge4, RSC Adv, 5, 26850, 10.1039/C5RA02620B
Zhang, 2010, Phase relationships, and structural, magnetic, and magnetocaloric properties in the Ce5Si4-Ce5Ge4 system, J Appl Phys, 107, 013909, 10.1063/1.3276211
Uthaman, 2015, Tuning the structural and magnetocaloric properties of Gd5Si2Ge2 with Nd substitution, J Appl Phys, 117, 013910, 10.1063/1.4905544
Vecchini, 2004, Dynamic magnetic susceptibility of Gd5Si2Ge2 and Gd4YSi1.9Ge2.1, J Appl Phys, 95, 7207, 10.1063/1.1652371
Prabahar, 2011, Phase analysis and magnetocaloric properties of Zr substituted Gd-Si-Ge alloys, J Magn Magn Mater, 323, 1755, 10.1016/j.jmmm.2011.01.029
Zhong, 2011, Crystal structure and magnetic properties of R5Sn4 alloys, where R is Tb, Dy, Ho, and Er, J Appl Phys, 109, 07A917, 10.1063/1.3549562
Carvalho, 2005, The magnetic and magnetocaloric properties of Gd5Ge2Si2 compound under hydrostatic pressure, J Appl Phys, 97, 10M320, 10.1063/1.1860932
Zou, 2012, Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound, Chin Phys B, 21, 037503, 10.1088/1674-1056/21/3/037503
Morellon, 2004, Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2, Phys Rev Lett, 93, 137201, 10.1103/PhysRevLett.93.137201
Arnold, 2009, Pressure effect on phase transitions and magnetocaloric effect in Gd5Ge4, J Appl Phys, 105, 07A934, 10.1063/1.3070661
Hadimani, 2015, Gd5(Si, Ge)4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition, Appl Phys Lett, 106, 032402, 10.1063/1.4906056
Pires, 2015, Annealing influence on the magnetostructural transition in Gd5Si1.3Ge2.7 thin films, Mater Lett, 159, 301, 10.1016/j.matlet.2015.05.029
Lewis, 2003, Simple enhancement of the magnetocaloric effect in giant magnetocaloric materials, Appl Phys Lett, 83, 515, 10.1063/1.1593821
Yue, 2007, Magnetocaloric effect in layer structural Gd-5(SixGe1-x)(4)/Gd composite material, J Appl Phys, 101, 09C520, 10.1063/1.2712298
Hadimani, 2014, Growth and characterization of Pt-protected Gd5Si4 thin films, J Appl Phys, 115, 17C113, 10.1063/1.4865322
Hadimani, 2015, Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4, IEEE Trans Magn, 51, 2504104, 10.1109/TMAG.2015.2446774
Rajkumar, 2008, Magnetocaloric effect in high-energy ball-milled Gd5Si2Ge2 and Gd5Si2Ge2/Fe nanopowders, J Magn Magn Mater, 320, 1479, 10.1016/j.jmmm.2007.12.005
Zhang, 2008, Magnetic properties of a high energy ball-milled amorphous Gd5Si1.8Ge1.8Sn0.4 alloy, Solid State Commun, 147, 107, 10.1016/j.ssc.2008.05.009
Trevizoli, 2008, Powder metallurgy influences on the magnetic properties of Gd5.09Ge2.03Si1.88 alloy, J Magn Magn Mater, 320, 1582, 10.1016/j.jmmm.2008.01.007
Pires, 2015, Influence of short time milling in R-5(Si, Ge)(4), R = Gd and Tb, magnetocaloric materials, Mater Des, 85, 32, 10.1016/j.matdes.2015.06.099
Ozaydin, 2014, Multi-energy conversion of Gd-5 (SiGe2)-poly (vinylidene fluoride), a hybrid material, Appl Phys Lett, 105, 062903, 10.1063/1.4893296
Wang, 2009, Magnetic phase transitions in Pr(1-x)LuxMn(2)Ge(2) compounds, J Phys-Condes Matter, 21, 124217, 10.1088/0953-8984/21/12/124217
Koyama, 2006, Magnetocaloric and structural properties of SmMn2Ge2, J Alloys Comp, 408, 118, 10.1016/j.jallcom.2005.04.181
Duraj, 2010, Magnetic properties and magnetocaloric effect of R1-xRx ' Mn2Ge2 compounds, Acta Phys Pol A, 117, 603, 10.12693/APhysPolA.117.603
Kumar, 2008, Magnetic, magnetothermal, and magnetotransport properties in SmMn2Si2-xGex compounds, J Appl Phys, 103, 013909, 10.1063/1.2828179
Kumar, 2008, Pressure-induced changes in the magnetic and magnetocaloric properties of RMn2Ge2 (R=Sm, Gd), Phys Rev B, 77, 224427, 10.1103/PhysRevB.77.224427
Emre, 2008, Antiferromagnetic-ferromagnetic crossover in La0.5Pr0.5Mn2Si2 and its consequences on magnetoelastic and magnetocaloric properties, Phys Rev B, 78, 144408, 10.1103/PhysRevB.78.144408
Emre, 2010, Magnetic and magnetocaloric results of magnetic field-induced transitions in La1-xCexMn2Si2 (x=0.35 and 0.45) compounds., J Magn Magn Mater, 322, 448, 10.1016/j.jmmm.2009.09.074
Zhang, 2006, Magnetocaloric effect in LaMn2-xFexGe2 at near room temperature, Phys Lett A, 354, 462, 10.1016/j.physleta.2006.01.102
Bruck, 2008, A review on Mn based materials for magnetic refrigeration: structure and properties, Int J Refrig-Rev Int Froid, 31, 763, 10.1016/j.ijrefrig.2007.11.013
Wang, 2011, Magnetocaloric effect in layered NdMn2Ge0.4Si1.6, Appl Phys Lett, 98, 232509, 10.1063/1.3599456
Zeng, 2011, Large magnetocaloric effect in re-entrant ferromagnet PrMn1.4Fe0.6Ge2, J Alloys Comp, 509, L119, 10.1016/j.jallcom.2010.12.047
Chen, 2010, Magnetic properties and magnetocaloric effect of Nd(Mn1-xFex)(2)Ge-2 compounds, J Alloys Comp, 489, 13, 10.1016/j.jallcom.2009.09.078
Kaya, 2015, Effects of size reduction on the magnetic and magnetocaloric properties of NdMn2Ge2 nanoparticles prepared by high-energy ball milling, Phys Status Solidi B-Basic Solid State Phys, 252, 192, 10.1002/pssb.201451127
Din, 2014, Magnetic properties and magnetocaloric effect of NdMn2-xCuxSi2 compounds, J Appl Phys, 115, 17A921, 10.1063/1.4864249
Md Din, 2014, Magnetic phase transitions and entropy change in layered NdMn1.7Cr0.3Si2, Appl Phys Lett, 104, 042401, 10.1063/1.4863230
Kervan, 2011, Magnetocaloric effect in re-entrant ferrimagnet Nd0.2Gd0.8Mn2Ge2 compound, Solid State Commun, 151, 408, 10.1016/j.ssc.2010.11.034
Li, 2014, Magnetic properties and large reversible magnetocaloric effect in TmMn2Si2, J Alloys Comp, 582, 670, 10.1016/j.jallcom.2013.08.117
Li, 2015, Large entropy change accompanying two successive magnetic phase transitions in TbMn2Si2 for magnetic refrigeration, Appl Phys Lett, 106, 182405, 10.1063/1.4919895
Maji, 2014, Large exchange bias and magnetocaloric effect in TbMn2Si2, J Appl Phys, 116, 213913, 10.1063/1.4903770
Samanta, 2007, Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound, Appl Phys Lett, 91, 152506, 10.1063/1.2798594
Samanta, 2008, Comparative studies of magnetocaloric effect and magnetotransport behavior in GdRu2Si2 compound, J Appl Phys, 104, 123901, 10.1063/1.3043558
Li, 2011, Giant magnetocaloric effect in antiferromagnetic borocarbide superconductor RNi(2)B(2)C (R = Dy, Ho, and Er) compounds, J Appl Phys, 110, 043912, 10.1063/1.3625250
Li, 2009, Magnetic properties and large reversible magnetocaloric effect in PrCo2B2 compound, J Appl Phys, 106, 023903, 10.1063/1.3173565
Li, 2009, Magnetic properties and magnetocaloric effect in NdCo2B2 compound, J Phys D-Appl Phys, 42, 145003, 10.1088/0022-3727/42/14/145003
Li, 2009, Giant reversible magnetocaloric effect in antiferromagnetic superconductor Dy0.9Tm0.1Ni2B2C compound, Appl Phys Lett, 95, 132505, 10.1063/1.3240399
Li, 2009, Giant reversible magnetocaloric effect in antiferromagnetic GdCo2B2 compound, Appl Phys Lett, 94, 102509, 10.1063/1.3095660
Zhang, 2014, Effect of Fe substitution on magnetocaloric effect in metamagnetic boron-carbide ErNi2-xFexB2C compounds, J Alloys Comp, 610, 540, 10.1016/j.jallcom.2014.05.008
Chen, 2016, The magnetic properties of NdMnxCr2-xSi2C (0 < x < 2), J Phys D-Appl Phys, 49, 025001, 10.1088/0022-3727/49/2/025001
Kim, 2011, Giant reversible anisotropic magnetocaloric effect in an antiferromagnetic EuFe(2)As(2) single crystal, Appl Phys Lett, 98, 172509, 10.1063/1.3579254
Li, 2012, Magnetocaloric effect in metamagnetic borocarbide DyNi(2-x)A(x)B(2)C (A = Co and Cr) compounds, J Alloys Comp, 529, 25, 10.1016/j.jallcom.2012.03.061
Mo, 2014, Magnetic properties and magnetocaloric effect in the RCu2Si2 and RCu2Ge2 (R = Ho, Er) compounds, J Appl Phys, 115, 073905, 10.1063/1.4864419
Paramanik, 2014, Observation of large magnetocaloric effect in HoRu2Si2, J Appl Phys, 115, 10.1063/1.4867050
Paramanik, 2015, Generation of magnetic phase diagram of HoRu2Si2 using magnetocaloric effect, J Magn Magn Mater, 381, 168, 10.1016/j.jmmm.2014.12.080
Dörr, 2006, Ferromagnetic manganites: spin-polarized conduction versus competing interactions, J Phys D: Appl Phys, 39, R125, 10.1088/0022-3727/39/7/R01
Wang, 2011, Room temperature magnetocaloric effect of La-deficient bulk perovskite manganite La0.7MnO3-delta, Physica B, 406, 1436, 10.1016/j.physb.2011.01.044
Szewczyk, 2005, Specific heat and phase diagram of heavily doped La1-xSrxMnO3 (0.45 <= x <= 1.0), Phys Rev B, 72, 224429, 10.1103/PhysRevB.72.224429
Sudheendra, 2007, Metal–insulator transition and colossal magnetoresistance: relevance of electron–lattice coupling and electronic phase separation, Contemp Phys, 48, 349, 10.1080/00107510801981168
Phan, 2007, Review of the magnetocaloric effect in manganite materials, J Magn Magn Mater, 308, 325, 10.1016/j.jmmm.2006.07.025
Töpfer, 1997, LaMnO3+d Revisited, J Solid State Chem, 130, 117, 10.1006/jssc.1997.7287
Ghosh, 1999, Transition-element doping effects in La0.7Ca0.3MnO3, Phys Rev B, 59, 533, 10.1103/PhysRevB.59.533
Nisha, 2009, Near room temperature magneto caloric effect in V doped La0.67Ca0.33MnO3 ceramics, J Alloys Comp, 478, 566, 10.1016/j.jallcom.2008.11.091
Uthaman, 2015, Structural properties, magnetic interactions, magnetocaloric effect and critical behaviour of cobalt doped La0.7Te0.3MnO3, RSC Adv, 5, 86144, 10.1039/C5RA13408K
Morelli, 1996, Magnetocaloric properties of doped lanthanum manganite film, J Appl Phys, 79, 373, 10.1063/1.360840
Zhang, 1996, Magnetocaloric effect in La0.67Ca0.33MnOd and La0.60Y0.07Ca0.33MnOd bulk materials, Appl Phys Lett, 69, 3596, 10.1063/1.117218
Guo, 1996, Large magnetic entropy change in La0.75Ca0.25MnO3, Appl Phys Lett, 70, 204
Zhang, 2010, Nanometer size effect on the structure and magnetic properties of high oxygen content ferromagnetic PrMnO[sub3+d] nanoparticles, J Appl Phys, 108, 113901, 10.1063/1.3516486
Pękała, 2007, Magnetocaloric effect in nano- and polycrystalline manganite La0.7Ca0.3MnO3, Appl Phys A-Mater Sci Process, 90, 237, 10.1007/s00339-007-4309-x
Pekala, 2010, Magnetocaloric effect in nano- and polycrystalline manganites La0.5Ca0.5MnO3, J Alloys Comp, 507, 350, 10.1016/j.jallcom.2010.07.165
Tang, 2010, Size-induced changes of structural, magnetic and magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3, Physica B, 405, 2733, 10.1016/j.physb.2010.03.059
Hao, 2011, A-site-disorder-dependent magnetocaloric properties in the mono-valent-metal doped La0.7Ca0.3MnO3 manganites, J Alloys Comp, 509, 5877, 10.1016/j.jallcom.2011.02.162
Ji, 2009, Effects of A-site cation disorder on structure and magnetocaloric properties in Y and Sr codoped La[sub 2/3]Ca[sub 1/3]MnO[sub 3] compounds, J Appl Phys, 105, 07D713, 10.1063/1.3059602
Xie, 2009, Evolution of A-site disorder-dependent structural and magnetic transport properties in La2/3-xEuxCa1/3-ySryMnO3, Mater Chem Phys, 114, 636, 10.1016/j.matchemphys.2008.10.016
Amaral, 2008, The effect of chemical distribution on the magnetocaloric effect: a case study in second-order phase transition manganites, J Non-Cryst Solids, 354, 5301, 10.1016/j.jnoncrysol.2008.05.078
Irmak, 2010, The influence of the sintering temperature on the structural and the magnetic properties of doped manganites: La0.95Ag0.05MnO3 and La0.75Ag0.25MnO3, J Magn Magn Mater, 322, 945, 10.1016/j.jmmm.2009.11.029
Othmani, 2009, The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds, J Alloys Comp, 475, 46, 10.1016/j.jallcom.2008.08.005
Tasarkuyu, 2011, Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7, J Alloys Comp, 509, 3717, 10.1016/j.jallcom.2010.12.011
Szymczak, 2010, Cooling by adiabatic pressure application in La0.7Ca0.3MnO3 magnetocaloric effect material, J Magn Magn Mater, 322, 1589, 10.1016/j.jmmm.2009.09.020
Thiyagarajan, 2014, Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3 (B=Co and Cr), J Appl Phys, 115, 043905, 10.1063/1.4862810
Thiyagarajan, 2016, Effect of hydrostatic pressure on magnetic and magnetocaloric properties in La0.35Pr0.35Ca0.3Mn0.3, J Magn Magn Mater, 398, 116, 10.1016/j.jmmm.2015.06.091
Bingham, 2009, Magnetocaloric effect and refrigerant capacity in charge-ordered manganites, J Appl Phys, 106, 023909, 10.1063/1.3174396
Karmakar, 2008, Magnetocaloric effect in charge ordered Nd0.5Ca0.5MnO3 manganite, J Appl Phys, 103, 023901, 10.1063/1.2827117
Bonilla, 2010, A new criterion to distinguish the order of magnetic transitions by means of magnetic measurements, J Appl Phys, 107, 09E131, 10.1063/1.3366614
Dhahri, 2014, Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)(0.3)Mn0.9V0.1O3, Ceram Int, 40, 459, 10.1016/j.ceramint.2013.06.024
Giri, 2014, Large magnetocaloric effect and critical behavior in Sm0.09Ca0.91MnO3 electron-doped nanomanganite, EPL, 105, 47007, 10.1209/0295-5075/105/47007
Phan, 2014, Critical behavior of La0.7Ca0.3Mn1-xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions, Solid State Commun, 184, 40, 10.1016/j.ssc.2013.12.032
Abassi, 2016, Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1Ca0.23MnO3, Dalton Trans, 45, 4736, 10.1039/C5DT04490A
Khondabi, 2015, Magnetocaloric and phase coexistence in La0.5Ca0.5-xSrxMnO3 manganites, J Appl Phys, 118, 233908, 10.1063/1.4937914
Mohamed, 2016, Magnetocaloric-transport properties correlation in doped manganites, Solid State Commun, 233, 15, 10.1016/j.ssc.2016.02.004
Debnath, 2010, Giant magnetic entropy change in colossal magnetoresistance in La0.7Ca0.3MnO3 material in low field, J Appl Phys, 107, 09A916, 10.1063/1.3359808
Bez, 2016, A detailed study of the hysteresis in La0.67Ca0.33MnO3, J Magn Magn Mater, 416, 429, 10.1016/j.jmmm.2016.05.011
Coskun, 2016, High magnetic entropy change in La0.70Ca0.21Ag0.09MnO3 compound, J Alloys Comp, 669, 217, 10.1016/j.jallcom.2016.01.230
Turcaud, 2015, Publisher's Note: Quantifying the deleterious role of strong correlations inLa1−xCaxMnO3at the magnetocaloric transition [Phys. Rev. B91, 134410 (2015)], Phys Rev B, 91, 139902, 10.1103/PhysRevB.91.139902
Khlifi, 2014, Magnetic, magnetocaloric, magnetotransport and magnetoresistance properties of calcium deficient manganites La0.8Ca0.2-x square xMnO3 post-annealed at 800 degrees C, J Alloys Comp, 587, 771, 10.1016/j.jallcom.2013.11.012
Phan, 2016, First-to-second-order magnetic-phase transformation in La0.7Ca0.3-xBaxMnO3 exhibiting large magnetocaloric effect, J Alloys Comp, 657, 818, 10.1016/j.jallcom.2015.10.162
Andrade, 2016, Magnetocaloric functional properties of Sm0.6Sr0.4MnO3 manganite due to advanced nanostructured morphology, Mater Chem Phys, 172, 20, 10.1016/j.matchemphys.2015.12.013
Andrade, 2016, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality, Acta Mater, 102, 49, 10.1016/j.actamat.2015.08.080
Anwar, 2014, Dimensionality dependent magnetic and magnetocaloric response of La0.6Ca0.4MnO3 manganite, J Nanosci Nanotechnol, 14, 8745, 10.1166/jnn.2014.9994
Kumaresavanji, 2014, Room temperature magnetocaloric effect and refrigerant capacitance in La0.7Sr0.3MnO3 nanotube arrays, Appl Phys Lett, 105, 083110, 10.1063/1.4894175
Kumaresavanji, 2015, Magnetocaloric effect in La0.7Ca0.3MnO3 nanotube arrays with broad working temperature span, J Appl Phys, 117, 104304, 10.1063/1.4914410
Quintero, 2014, Grain size modification in the magnetocaloric and non-magnetocaloric transitions in La0.5Ca0.5MnO3 probed by direct and indirect methods, Appl Phys Lett, 105, 152411, 10.1063/1.4898129
Das, 2016, Giant enhancement of magnetocaloric effect at room temperature by the formation of nanoparticle of La0.48Ca0.52MnO3 compound, J Appl Phys, 119, 093903, 10.1063/1.4942829
Giri, 2015, Strain modulated large magnetocaloric effect in Sm0.55Sr0.45MnO3 epitaxial films, Appl Phys Lett, 106, 023507, 10.1063/1.4906087
Bhatt, 2015, Near room temperature magneto-transport (TCR & MR) and magnetocaloric effect in Pr2/3Sr1/3MnO3:Ag2O composite, J Alloys Comp, 619, 151, 10.1016/j.jallcom.2014.08.216
Hussain, 2015, Effect of Zn on the Magnetic and Magnetocaloric Properties of (0.95)La0.7Ca0.3MnO3/(0.05)Mn1-x Zn (x) Fe2O4 Composites, J Supercond Nov Magn, 28, 3323, 10.1007/s10948-015-3157-8
Jerbi, 2015, Magnetic and magnetocaloric study of manganite compounds Pr(0.5)A(0.05)Sr(0.45)MnO(3) (A=Na and K) and composite, Physica B, 477, 75, 10.1016/j.physb.2015.08.022
Marzouki-Ajmi, 2015, Magnetic and magnetocaloric study of polycrystalline (1-x) La0.65Ca0.35MnO3/xFe(2)O(3) composites, J Supercond Nov Magn, 28, 103, 10.1007/s10948-014-2805-8
Marzouki-Ajmi, 2015, Structural, magnetic and magnetocaloric study of polycrystalline (1-x)La0.65Ca0.35MnO3/xCr(2)O(3) composites, J Supercond Nov Magn, 28, 1065, 10.1007/s10948-014-2892-6
Mikhaleva, 2015, Magnetization and magnetocaloric effect in La0.7Pb0.3MnO3 ceramics and 0.85(La0.7Pb0.3MnO3)-0.15(PbTiO3) composite, J Mater Res, 30, 278, 10.1557/jmr.2014.369
M'Nassri, 2016, Enhanced refrigerant capacity and magnetic entropy nearly flattening in (La-2/3 Ba-1/3 MnO3)(1-x/)(La-2/3 Ba-1/3 MnO2.98)(x) Composite, J Supercond Nov Magn, 29, 1879
Mohamed, 2016, Magnetoresistive and magnetocaloric response of manganite/insulator system, J Alloys Comp, 657, 495, 10.1016/j.jallcom.2015.10.095
Mohamed, 2016, Annealing temperature effect on magnetic and magnetocaloric properties of manganites, J Alloys Comp, 665, 394, 10.1016/j.jallcom.2016.01.057
Nasri, 2016, Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites, J Alloys Comp, 678, 427, 10.1016/j.jallcom.2016.04.020
Pekala, 2015, Effect of nanocrystalline structure on magnetocaloric effect in manganite composites (1/3)La0.7Ca0.3MnO3/(2/3)La0.8Sr0.2MnO3, J Alloys Comp, 629, 98, 10.1016/j.jallcom.2014.12.216
Sellami-Jmal, 2015, Magnetic and magnetocaloric properties of La0.65Ca0.35MnO3/La0.7Ca0.2Ba0.1MnO3 and La0.65Ca0.35MnO3/Pr0.5Sr0.5MnO3 composite manganites, J Supercond Nov Magn, 28, 3121, 10.1007/s10948-015-3135-1
Skini, 2016, An efficient composite magnetocaloric material with a tunable temperature transition in K-deficient manganites, RSC Adv, 6, 34271, 10.1039/C5RA27132K
Vandrangi, 2015, Enhanced magnetocaloric effect driven by interfacial magnetic coupling in self-assembled Mn3O4-La0.7Sr0.3MnO3 nanocomposites, ACS Appl Mater Interfaces, 7, 26504, 10.1021/acsami.5b07585
Wang, 2015, Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite, Ceram Int, 41, 9035, 10.1016/j.ceramint.2015.03.275
Han, 2010, Magnetocaloric and colossal magnetoresistance effect in layered perovskite La1.4Sr1.6Mn2O7, J Mater Sci Technol, 26, 234, 10.1016/S1005-0302(10)60039-4
Tetean, 2008, Magnetic properties and magnetocaloric effect in La1.4-XRXCa1.6Mn2O7 compounds with R=Ho or Yb, J Optoelectron Adv Mater, 10, 849
Wang, 2004, Magnetic entropy change and colossal magnetoresistance effect in the layered perovskite La1.34Sr1.66Mn2O7, Solid State Commun, 130, 293, 10.1016/j.ssc.2003.12.037
Himcinschi, 2001, Magnetic and magnetocaloric properties of La1.4-XYbXCa1.6Mn2O7, 521
Aliev, 2011, Direct and inverse magnetocaloric effects in A-site ordered PrBaMn2O6 manganite, J Alloys Comp, 509, L165, 10.1016/j.jallcom.2011.02.058
Balli, 2014, A study of the phase transition and magnetocaloric effect in multiferroic La2MnNiO6 single crystals, J Appl Phys, 115, 173904, 10.1063/1.4874943
Mohamed, 2014, Effect of the partial substitution of Fe on the magnetic properties of new brownmillerite oxides LaSrMn2-xFexO5 (0 <= x <= 0.5), J Magn Magn Mater, 361, 44, 10.1016/j.jmmm.2014.02.066
Dhahri, 2006, Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6, J Alloys Comp, 420, 15, 10.1016/j.jallcom.2005.10.030
Balli, 2014, Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals, Appl Phys Lett, 104, 232402, 10.1063/1.4880818
de Oliveira, 2005, Magnetocaloric effect in systems of itinerant electrons: application to Fe Co, Ni, YFe and YFe compounds, J Alloys Comp, 403, 45, 10.1016/j.jallcom.2005.05.014
Nikitin, 1974, Magnetocaloric effect in compounds of rare-earth metals with iron, Soviet Phys JETP-USSR, 38, 1028
Buschow, 1977, Intermetallic compounds of rare-earth and 3d transition metals, Rep Prog Phys, 40, 1179, 10.1088/0034-4885/40/10/002
Paul-Boncour, 2009, Investigation of compounds for magnetocaloric applications: YFe2H4.2, YFe2D4.2, and Y0.5Tb0.5Fe2D4.2, J Appl Phys, 105, 013914, 10.1063/1.3055348
Budziak, 2011, Structural and magnetic transformations in HoMn(2)H(x) hydrides, 012010
Klepka, 2011, EXAFS and XRD investigation of crystal structure in Cr doped YMn2 deuterides, Radiat Phys Chem, 80, 1019, 10.1016/j.radphyschem.2011.03.016
Morariu, 1974, Mossbauer effect on YFe3 compound, Solid State Commun, 15, 1313, 10.1016/0038-1098(74)91370-2
Mandal, 2004, The study of magnetocaloric effect in R2Fe17 (R = Y, Pr) alloys, J Phys D-Appl Phys, 37, 2628, 10.1088/0022-3727/37/19/002
Fang, 2008, Microstructure and magnetocaloric effect of melt-spun Y(2)Fe(17) ribbons, J Appl Phys, 103, 07B302, 10.1063/1.2829031
Karpenkov, 2016, Adiabatic temperature change of micro- and nanocrystalline Y2Fe17 heat-exchangers for magnetic cooling, J Alloys Comp, 668, 40, 10.1016/j.jallcom.2016.01.209
Wang, 2010, Magnetic properties of YFe(12-x)Mo(x) compounds and magnetocaloric effect of YFe(9.5)Mo(2.5), J Magn Magn Mater, 322, 3000, 10.1016/j.jmmm.2010.05.019
Karotsis, 2010, Mn(4)(III)Ln(4)(III) Calix 4 arene clusters as enhanced magnetic coolers and molecular magnets, J Am Chem Soc, 132, 12983, 10.1021/ja104848m
Langley, 2011, Molecular coolers: the case for (Cu5Gd4III)-Gd-II, Chem Sci, 2, 1166, 10.1039/c1sc00038a
Adhikary, 2015, A family of Fe3+ based double-stranded helicates showing a magnetocaloric effect, and Rhodamine B dye and DNA binding activities, Dalton Trans, 44, 15531, 10.1039/C5DT01569C
Biswas, 2016, Densely packed lanthanide cubane based 3D metal-organic frameworks for efficient magnetic refrigeration and slow magnetic relaxation, Inorg Chem, 55, 2085, 10.1021/acs.inorgchem.5b02486
Guo, 2012, Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect, Inorg Chem, 51, 405, 10.1021/ic2018314
Zheng, 2011, Co-Gd phosphonate complexes as magnetic refrigerants, Chem Sci, 2, 99, 10.1039/C0SC00371A
Pineda, 2014, Iron lanthanide phosphonate clusters: Fe(6)Ln(6)P(6) Wells-Dawson-like structures with D-3d symmetry, Inorg Chem, 53, 3032, 10.1021/ic402839q
Sibille, 2014, Magnetocaloric effect in gadolinium-oxalate framework Gd2(C2O4)3(H2O)6⋅(0⋅6H2O), APL Mater, 2, 124402, 10.1063/1.4900884
Tang, 2016, Co(II)(4)Gd(III)(6) phosphonate grid and cage as molecular refrigerants, Inorg Chim Acta, 442, 195, 10.1016/j.ica.2015.12.013
Lorusso, 2012, Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks, Chem Commun, 48, 7592, 10.1039/c2cc33485b
Ding, 2016, The magnetocaloric effect with critical behavior of a periodic Anderson-like organic polymer, Phys Chem Chem Phys, 18, 510, 10.1039/C5CP06137G
Liu, 2016, Tricarboxylate-based Gd-III coordination polymers exhibiting large magnetocaloric effects, Dalton Trans., 45, 9209, 10.1039/C6DT01349J
Qiu, 2016, The effect of magnetic coupling on magnetocaloric behaviour in two 3D Gd(III)-glycolate coordination polymers, Inorg Chem Front, 3, 150, 10.1039/C5QI00208G
Peng, 2011, A 48-metal cluster exhibiting a large magnetocaloric effect, Angew Chem-Int Ed, 50, 10649, 10.1002/anie.201105147
Hooper, 2012, The importance of being exchanged: (Gd4M8II)-M-III(OH)(8)(L)(8)(O2CR)(8) (4+) clusters for magnetic refrigeration, Angew Chem-Int Ed, 51, 4633, 10.1002/anie.201200072
Florez, 2011, Thermal observables in coupled Cr7Ni molecular rings: role and quantification of spin-entanglement, J Appl Phys, 109, 07B109, 10.1063/1.3549563
Chen, 2014, Switching of the magnetocaloric effect of Mn-II glycolate by water molecules, Chem-Eur J, 20, 3029, 10.1002/chem.201304423
Tian, 2014, Reversible crystal-to-amorphous-to-crystal phase transition and a large magnetocaloric effect in a spongelike metal organic framework material, Chem Commun, 50, 1915, 10.1039/c3cc48325h
Biswas, 2014, Synthesis and characterization of two lanthanide (Gd3+ and Dy3+)-based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocks and their magnetic, sorption, and fluorescence properties study, Cryst Growth Des, 14, 1287, 10.1021/cg401804e
Adhikary, 2014, Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes, Dalton Trans, 43, 9334, 10.1039/C4DT00540F
Pasatoiu, 2014, Octanuclear Ni(4)(II)Ln(4)(III) complexes. Synthesis, crystal structures and magnetocaloric properties, Dalton Trans, 43, 9136, 10.1039/C4DT00515E
Upadhyay, 2014, Synthesis and magnetothermal properties of a ferromagnetically coupled Ni-II-Gd-III-Ni-II cluster, Dalton Trans, 43, 259, 10.1039/C3DT52384E
Wang, 2014, Magnetocaloric effect of a series of remarkably isostructural intermetallic Ni(3)(II)Ln(III) cubane aggregates, Dalton Trans, 43, 182, 10.1039/C3DT52176A
Xiong, 2014, The multiple core-shell structure in Cu(24)Ln(6) cluster with magnetocaloric effect and slow magnetization relaxation, Dalton Trans, 43, 5639, 10.1039/c3dt53251h
Wang, 2014, A series of 3D metal organic frameworks based on 24-MC-6 metallacrown clusters: structure, magnetic and luminescence properties, Dalton Trans, 43, 12989, 10.1039/C4DT01593B
Biswas, 2014, Two isostructural 3D lanthanide coordination networks (Ln = Gd-3 Dy3+) with squashed cuboid-type nanoscopic cages showing significant cryogenic magnetic refrigeration and slow magnetic relaxation, Inorg Chem, 53, 3926, 10.1021/ic4030316
Orendac, 2014, Enhanced magnetocaloric effect in quasi-one-dimensional S = 1/2 Heisenberg antiferromagnet Cu(dmen)(2)(H2O) SiF6, J Alloys Comp, 586, 34, 10.1016/j.jallcom.2013.10.044
Pelka, 2014, Magnetocaloric effect in { Fe(pyrazole)(4) (2) Nb(CN)(8) center dot 4H(2)O}(n) molecular magnet, J Magn Magn Mater, 354, 359
Alexandropoulos, 2016, Dodecanuclear 3d/4f-metal clusters with a 'Star of David' topology: single-molecule magnetism and magnetocaloric properties, Chem Commun, 52, 1693, 10.1039/C5CC09385F
Balanda, 2016, Relaxation and magnetocaloric effect in the Mn-12 molecular nanomagnet incorporated into mesoporous silica: a comparative study, RSC Adv, 6, 49179, 10.1039/C6RA04063B
Kuang, 2015, Synthesis, crystal structure, and magnetic properties of a family of undecanuclear Cu(9)(II)Ln(2)(III) nanoclusters, Eur J Inorg Chem, 2245, 10.1002/ejic.201500064
Langley, 2014, Synthesis, structure, and magnetism of a family of heterometallic Cu(2)Ln(7) and Cu(4)Ln(12) (Ln = Gd, Tb, and Dy) complexes: the Gd analogues exhibiting a large magnetocaloric effect, Inorg Chem, 53, 13154, 10.1021/ic5023467
Liu, 2014, Hexanuclear Ni(2)Ln(4) clusters exhibiting enhanced magnetocaloric effect and slow magnetic relaxation, RSC Adv, 4, 53870, 10.1039/C4RA07882A
Pedersen, 2014, Fluoride-bridged Gd-III M-3(III) (2) (M= Cr, Fe, Ga) molecular magnetic refrigerants, Angew Chem-Int Ed, 53, 2394, 10.1002/anie.201308240
Liu, 2016, Molecular design for cryogenic magnetic coolants, Chem Rec, 16, 825, 10.1002/tcr.201500278
Evangelisti, 2010, Recipes for enhanced molecular cooling, Dalton Trans, 39, 4672, 10.1039/b926030g
Evangelisti, 2006, Magnetothermal properties of molecule-based materials, J Mater Chem, 16, 2534, 10.1039/b603738k
Torres, 2000, Giant and time-dependent magnetocaloric effect in high-spin molecular magnets, Appl Phys Lett, 77, 3248, 10.1063/1.1325393
Affronte, 2004, Engineering molecular rings for magnetocaloric effect, Appl Phys Lett, 84, 3468, 10.1063/1.1737468
Evangelisti, 2005, Molecular nanoclusters as magnetic refrigerants: the case of Fe-14 with very large spin ground-state, Polyhedron, 24, 2573, 10.1016/j.poly.2005.03.123
Manuel, 2006, Magnetocaloric effect in hexacyanochromate Prussian blue analogs, Phys Rev B, 73, 172406, 10.1103/PhysRevB.73.172406
Yuan, 2017, Rare-earth high-entropy alloys with giant magnetocaloric effect, Acta Mater, 125, 481, 10.1016/j.actamat.2016.12.021
Tripathy, 2006, A comparative study of the magnetocaloric effect in Gd3Co and Gd3Ni, J Magn Magn Mater, 306, 24, 10.1016/j.jmmm.2006.02.253
Kumar, 2011, Magnetothermal effect in Gd3Rh, J Appl Phys, 109, 07A909, 10.1063/1.3540664
Monteiro, 2015, The physical properties of Gd3Ru: a real candidate for a practical cryogenic refrigerator, Appl Phys Lett, 106, 194106, 10.1063/1.4921143
Li, 2008, Large reversible magnetocaloric effect in Tb3Co compound, Appl Phys Lett, 92, 242504, 10.1063/1.2939220
Shen, 2010, Magnetocaloric effect in antiferromagnetic Dy3Co compound, Appl Phys A-Mater Sci Process, 99, 853, 10.1007/s00339-010-5613-4
Shen, 2011, Magnetocaloric effect and magnetic phase transition in Ho3Co, J Appl Phys, 109, 07A931, 10.1063/1.3561146
Kumar, 2010, Large reversible magnetocaloric effect in Er3Co compound, J Appl Phys, 107, 09A932, 10.1063/1.3367887
Sánchez Llamazares, 2015, Magnetocaloric properties of rapidly solidified Dy3Co alloy ribbons, J Appl Phys, 117, 17A706, 10.1063/1.4906764
Shen, 2010, Order of magnetic transition and large magnetocaloric effect in Er3Co, Chin Phys B, 19, 047502, 10.1088/1674-1056/19/4/047502
Paramanik, 2015, Magnetic and magnetocaloric properties of Dy5Pd2: role of magnetic irreversibility, RSC Adv, 5, 47860, 10.1039/C5RA06970J
Toyoizumi, 2015, Sample dependence of giant magnetocaloric effect in a cluster-glass system Ho5Pd2, J Appl Phys, 117, 17D101, 10.1063/1.4906296
Toyoizumi, 2016, Iop. Magnetocaloric effect in a cluster-glass system Ho5Pd2-xNix, 012036
Canepa, 2002, Magnetocaloric properties of Gd7Pd3 and related intermetallic compounds, IEEE Trans Magn, 38, 3249, 10.1109/TMAG.2002.802510
Talik, 2016, Magnetocaloric and Hopkinson effects in slowly and rapidly cooled Gd7Pd3, Int J Mater Res, 107, 3, 10.3139/146.111318
Canepa, 2002, Magnetocaloric effect in the intermetallic compound Gd7Pd3, Intermetallics, 10, 731, 10.1016/S0966-9795(02)00051-1
Oboz, 2011, Physical properties of Gd7NiPd2 single crystal, J Alloys Comp, 509, 4478, 10.1016/j.jallcom.2011.01.034
Talik, 2016, Influence of nickel on the electronic structure and magnetic properties in Gd7Pd3-xNix, Philos Mag, 96, 1073, 10.1080/14786435.2016.1154620
Oboz, 2010, Magnetic and transport properties of Gd3Y4Pd3 single crystal, J Alloys Comp, 492, 13, 10.1016/j.jallcom.2009.11.105
Talik, 2010, Magnetic properties of Gd4Y3Pd3 single crystal, J Cryst Growth, 312, 1651, 10.1016/j.jcrysgro.2010.01.047
Talik, 2014, Magnetic and transport properties of Gd7-xYxPd3 (x=0-6) system, J Alloys Comp, 582, 718, 10.1016/j.jallcom.2013.08.084
Sengupta, 2005, Large magnetoresistance and magnetocaloric effect above 70 K in Gd2Co2Al, Gd2Co2Ga, and Gd7Rh3, Phys Rev B, 72, 054422, 10.1103/PhysRevB.72.054422
Kumar, 2015, Magnetocaloric effect and refrigeration cooling power in amorphous Gd7Ru3 alloys, AIP Adv, 5, 077125, 10.1063/1.4926810
Bhattacharyya, 2012, Field induced sign reversal of magnetocaloric effect in Gd2In, J Magn Magn Mater, 324, 1239, 10.1016/j.jmmm.2011.11.023
Zhang, 2009, Large reversible magnetocaloric effect in Tb2In, Solid State Commun, 149, 396, 10.1016/j.ssc.2008.12.009
Zhang, 2009, Large reversible magnetocaloric effect in Dy2In, J Phys D-Appl Phys, 42, 055011, 10.1088/0022-3727/42/5/055011
Zhang, 2009, Magnetocaloric effect in Ho2In over a wide temperature range, Appl Phys Lett, 94, 182501, 10.1063/1.3130090
Zhang, 2011, Large reversible magnetocaloric effect in Er2In compound, J Alloys Comp, 509, 2602, 10.1016/j.jallcom.2010.11.108
Tence, 2016, Magnetic and magnetocaloric properties of Gd2In0.8X0.2 compounds (X=Al, Ga, Sn, Pb), J Magn Magn Mater, 399, 46, 10.1016/j.jmmm.2015.09.058
Hadimani, 2014, Enhancement of magnetocaloric effect in the Gd2Al phase by Co alloying, J Appl Phys, 116, 183908, 10.1063/1.4900782
Morozkin, 2010, Magnetic properties of Fe2P-type R6CoTe2 compounds (R = Gd-Er), J Solid State Chem, 183, 1314, 10.1016/j.jssc.2010.04.002
Zhang, 2016, Structure and magnetic behaviors of Gd6FeBi2 compound, Intermetallics, 68, 51, 10.1016/j.intermet.2015.07.013
Hermes, 2010, Large reversible magnetocaloric effect due to a rather unstable antiferromagnetic ground state in Er4NiCd, J Appl Phys, 108, 113919, 10.1063/1.3518556
Li, 2014, Reversible table-like magnetocaloric effect in Eu4PdMg over a very large temperature span, Appl Phys Lett, 104, 092416, 10.1063/1.4867882
Li, 2016, Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals, Chin Phys B, 25, 037502, 10.1088/1674-1056/25/3/037502
Wang, 2010, Magnetic properties and magnetocaloric effect in Ho6-xErxMnBi2 compounds, J Appl Phys, 107, 09A918, 10.1063/1.3359812
Morozkin, 2015, Magnetic and magnetocaloric properties of Ho6Co2Ga-type Dy6Co2.5Sn0.5 compound, J Magn Magn Mater, 378, 174, 10.1016/j.jmmm.2014.11.011
Couillaud, 2011, The magnetocaloric properties of GdScSi and GdScGe, Intermetallics, 19, 1573, 10.1016/j.intermet.2011.06.001
Mayer, 2011, The new ternary silicide Gd5CoSi2: structural, magnetic and magnetocaloric properties, J Solid State Chem, 184, 325, 10.1016/j.jssc.2010.11.023
Tian, 2010, Magnetic properties and magnetocaloric effect in Nd5Si3 compound, J Appl Phys, 107, 09A917, 10.1063/1.3359811
Tian, 2010, Large reversible magnetocaloric effect of light rare-earth intermetallic compound Pr5Si3, J Alloys Comp, 496, 517, 10.1016/j.jallcom.2010.02.093
Schafer, 2014, Magnetic properties of RE5Ir2X (RE = Y, Gd-Ho, X = Sn, Sb, Pb, Bi) and magnetocaloric characterization of Gd5Ir2X, Solid State Sci, 35, 66, 10.1016/j.solidstatesciences.2014.06.010
Yuan, 2015, Targeted structural changes and magnetic properties study in (Ho/Er)(5)Ga3-x(Co/Fe)(x), J Alloys Comp, 620, 376, 10.1016/j.jallcom.2014.09.158
Mohapatra, 2011, Isothermal magnetic entropy behavior in Tb(5)Si(3): sign reversal and non-monotonic variation with temperature, and implications, Solid State Commun, 151, 1340, 10.1016/j.ssc.2011.06.020
Nirmala, 2011, Competing magnetic interactions in the intermetallic compounds Pr5Ge3 and Nd5Ge3, J Appl Phys, 109, 07A716, 10.1063/1.3556920
Maji, 2012, Magnetic and magnetocaloric properties of ball milled Nd5Ge3, J Appl Phys, 111, 073905, 10.1063/1.3700243
Bie, 2009, Rare-earth tetrel antimonidesRE5TtxSb3-x(RE= La-Nd;Tt= Si, Ge), Eur J Inorg Chem, 2009, 3403, 10.1002/ejic.200900336
Morozkin, 2011, New ternary Yb5Sb3-type R5T1-x{Sb, Bi}(2+x) phases (R = Y, Dy, Ho, T = Co, Ru, Rh, Pd) and their magnetic properties, Intermetallics, 19, 302, 10.1016/j.intermet.2010.10.015
Svitlyk, 2008, Gd5Ni0.96Sb2.04 and Gd5Ni0.71Bi2.29: crystal structure, magnetic properties and magnetocaloric effect. Structural transformation and magnetic properties of hexagonal Gd5Bi3, J Solid State Chem, 181, 1080, 10.1016/j.jssc.2008.02.002
Zheng, 2011, Magnetic phase transitions and magnetocaloric properties of (Gd(12-x)Tb(x))Co(7) alloys, J Appl Phys, 109, 07A919, 10.1063/1.3551736
Zheng, 2016, Large magnetocaloric effect in Er12Co7 compound and the enhancement of delta T-FWHM by Ho-substitution, J Alloys Comp, 680, 617, 10.1016/j.jallcom.2016.04.216
Shigeoka, 2011, Novel magnetic behaviour of GdPd2Si2 single crystal, 012121
Han, 2010, Low-field magnetocaloric effect in (Gd1-xDyx)(3)Al-2 alloys, J Alloys Comp, 504, 310, 10.1016/j.jallcom.2010.05.157
Li, 2015, Successive magnetic transitions and magnetocaloric effect in Dy3Al2 compound, J Alloys Comp, 651, 278, 10.1016/j.jallcom.2015.08.087
Zhang, 2014, Magnetic properties and magnetocaloric effect in Tb3Al2 compound, J Alloys Comp, 615, 406, 10.1016/j.jallcom.2014.06.209
Dong, 2011, Magnetic properties and magnetocaloric effects in R(3)Ni(2) (R = Ho and Er) compounds, Appl Phys Lett, 99, 132504, 10.1063/1.3643142
Bhattacharyya, 2014, Magnetocaloric effect near the second order ferromagnetic transition in superstructure R15Si9C compounds (R = Gd, Tb and Dy), J Alloys Comp, 588, 720, 10.1016/j.jallcom.2013.11.071
Niu, 2001, Crystallography, magnetic properties and magnetocaloric effect in Gd-4(BixSb1-x)(3) alloys, J Magn Magn Mater, 234, 193, 10.1016/S0304-8853(01)00391-2
Nobrega, 2011, Theoretical investigation on the magnetocaloric effect in the intermetallic Gd(4)Sb(3), J Alloys Comp, 509, 8979, 10.1016/j.jallcom.2011.05.097
Mohapatra, 2008, Large magnetocaloric effect and magnetoresistance behavior in Gd4Co3, Eur Phys J B, 63, 451, 10.1140/epjb/e2008-00266-x
Zhang, 2009, Magnetic and reversible magnetocaloric properties of (Gd1-xDyx)(4)Co-3 ferrimagnets, J Appl Phys, 105, 053902, 10.1063/1.3075627
Tence, 2010, Around the composition Gd4Co3: Structural, magnetic and magnetocaloric properties of Gd6Co4.85(2), Intermetallics, 18, 1216, 10.1016/j.intermet.2010.03.016
Shen, 2009, Magnetic properties and magnetocaloric effects in R6Co2Si3 compounds with R=Nd and Tb, J Alloys Comp, 476, 693, 10.1016/j.jallcom.2008.09.099
Shen, 2009, Room-temperature large refrigerant capacity of Gd6Co2Si3, J Appl Phys, 106, 083902, 10.1063/1.3243289
Shen, 2008, Magnetocaloric effect in Pr6Co1.67Si3 compound, J Alloys Comp, 458, L6, 10.1016/j.jallcom.2007.12.102
Shen, 2007, Magnetic properties and magnetocaloric effects in Tb6Co1.67Si3 compound, Chin Phys, 16, 3853, 10.1088/1009-1963/16/12/050
Shen, 2008, Magnetocaloric effect in Gd6Co1.67Si3 compound with a second-order phase transition, Chin Phys B, 17, 2268, 10.1088/1674-1056/17/6/055
Zhao, 2010, Effect of Dy substitution on magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 compounds, Chin Phys B, 19, 047501, 10.1088/1674-1056/19/4/047501
Haldar, 2010, Metastable magnetization behavior of magnetocaloric R6Co1.67Si3 (R=Tb and Nd) compounds, Physica B, 405, 3446, 10.1016/j.physb.2010.05.021
Shen, 2011, Magnetic entropy change and large refrigerant capacity of Ce6Ni2Si3-type GdCoSiGe compound, Chin Phys B, 20, 027501, 10.1088/1674-1056/20/2/027501
Gaudin, 2008, Structural and magnetocaloric properties of the new ternary silicides Gd6M5/3Si3 with M = Co and Ni, Chem Mater, 20, 2972, 10.1021/cm8000859
Pathak, 2011, Magnetic and magnetocaloric properties of Gd6X2Si3 (X = Ni, Co) and Ln(6)Co(2)Si(3) (Ln = Pr, La), J Appl Phys, 109, 07A913, 10.1063/1.3544509
Chennabasappa, 2014, A core-shell phenomenon maintain the magnetocaloric properties of the ternary silicide Gd6Co1.67Si3 during water flux ageing, J Alloys Comp, 584, 34, 10.1016/j.jallcom.2013.08.211
Zhang, 2015, Abnormal thermal expansion, multiple transitions, magnetocaloric effect, and electronic structure of Gd6Co4.85, J Appl Phys, 118, 133903, 10.1063/1.4931982
Duraj, 2012, Magnetic properties of Dy11Si4In6, Acta Phys Pol A, 121, 1118, 10.12693/APhysPolA.121.1118
Cheung, 2011, Structure, magnetic and magnetocaloric properties of RE11Ge8In2 (RE = Gd-Tm), Intermetallics, 19, 276, 10.1016/j.intermet.2010.10.004
Yamamoto, 2004, Magnetocaloric effect of rare earth mono-nitrides, TbN and HoN, J Alloys Comp, 376, 17, 10.1016/j.jallcom.2003.12.012
Nakagawa, 2006, Magnetocaloric effects of ferromagnetic erbium mononitride, J Alloys Comp, 408, 191, 10.1016/j.jallcom.2005.04.061
Nishio, 2006, Specific heat and thermal conductivity of HoN and ErN at cryogenic temperatures, J Appl Phys, 99, 08K901, 10.1063/1.2158689
Nakagawa, 2006, Magnetocaloric effects of binary rare earth mononitrides, GdxTb1-xN and TbxHo1-xN, J Alloys Comp, 408, 187, 10.1016/j.jallcom.2005.04.046
Nakagawa, 2004, Magnetocaloric effect of mononitride containing gadolinium and dysprosium GdxDy1-xN, J Alloys Comp, 364, 53, 10.1016/S0925-8388(03)00546-2
Hirayama, 2008, Magnetocaloric effect, specific heat and adiabatic temperature change of HoxEr1-xN (x=0.25, 0.5, 0.75), J Alloys Comp, 462, L12, 10.1016/j.jallcom.2007.08.052
von Ranke, 2012, Spin reorientation and the magnetocaloric effect in HoyEr(1-y)N, J Appl Phys, 111, 113916, 10.1063/1.4728201
Hirayama, 2008, Magnetocaloric effect of rare earth nitrides, IEEE Trans Magn, 44, 2997, 10.1109/TMAG.2008.2002586
Kim, 2015, Novel route to prepare HoN nanoparticles for magnetic refrigerant in cryogenic temperature, Int J Hydrog Energy, 40, 11465, 10.1016/j.ijhydene.2015.03.052
Shinde, 2015, Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method, Dalton Trans, 44, 20386, 10.1039/C5DT03528G
Ahn, 2004, Preparation, heat capacity, magnetic properties, and the magnetocaloric effect of EuO, J Appl Phys, 97, 063901, 10.1063/1.1841463
Li, 2014, Large reversible magnetocaloric effect in ferromagnetic semiconductor EuS, Solid State Commun, 193, 6, 10.1016/j.ssc.2014.05.024
Hu, 2008, Giant magnetocaloric effect in the Ising antiferromagnet DySb, Appl Phys Lett, 92, 192505, 10.1063/1.2928233
Li, 2010, Giant and anisotropic magnetocaloric effect in antiferromagnetic single crystalline DySb, Solid State Commun, 150, 1865, 10.1016/j.ssc.2010.07.049
de Sousa, 2010, The influence of spontaneous and field induced spin reorientation transitions on the magnetocaloric properties in rare earth intermetallic compounds: application to TbZn, J Appl Phys, 107, 103928, 10.1063/1.3386523
de Sousa, 2011, The influence of spontaneous and field-induced spin reorientation transitions on the magnetocaloric properties of HoZn and ErZn, J Appl Phys, 109, 063904, 10.1063/1.3554725
Law, 2016, Gd plus GdZn biphasic magnetic composites synthesized in a single preparation step: increasing refrigerant capacity without decreasing magnetic entropy change, J Alloys Comp, 675, 244, 10.1016/j.jallcom.2016.03.130
Mo, 2015, Magnetic properties and magnetocaloric effects in HoPd intermetallic, Chin Phys B, 24, 037503, 10.1088/1674-1056/24/3/037503
Zhang, 2009, Magnetic properties and magnetocaloric effect of GdGa compound, J Alloys Comp, 469, 15, 10.1016/j.jallcom.2008.01.115
Zheng, 2014, Magnetic properties and magnetocaloric effects of GdxEr1-xGa (0 <= x <= 1) compounds, J Appl Phys, 115, 17A905, 10.1063/1.4854875
Zheng, 2014, Nearly constant magnetic entropy change and adiabatic temperature change in PrGa compound, J Appl Phys, 115, 17A938, 10.1063/1.4868203
Chen, 2010, Giant magnetocaloric effect in HoGa compound over a large temperature span, Solid State Commun, 150, 157, 10.1016/j.ssc.2009.10.023
Drulis, 2011, The magnetocaloric effect and low temperature specific heat of SmNi, Solid State Commun, 151, 1240, 10.1016/j.ssc.2011.05.047
Xu, 2011, Magnetocaloric effect in ErSi compound, IEEE Trans Magn, 47, 2470, 10.1109/TMAG.2011.2153837
Smarzhevskaya, 2014, New magnetocaloric material based on GdNiH3.2 hydride for application in cryogenic devices, Phys Stat Solidi C: Curr Topics Solid State Phys, 11, 1102, 10.1002/pssc.201300728
Oboz, 2012, Magnetocaloric effect in GdCu intermetallic compound, Cryst Res Technol, 47, 341, 10.1002/crat.201100485
Wang, 2014, Low-temperature large magnetocaloric effect in the antiferromagnetic CeSi compound, J Alloys Comp, 587, 10, 10.1016/j.jallcom.2013.10.183
Yang, 2014, Magnetic and magnetocaloric properties of equiatomic alloys RAl (R = Ho and Er), J Alloys Comp, 596, 58, 10.1016/j.jallcom.2014.01.202
Manfrinetti, 2011, Magnetic ordering of novel La3NiGe2-type R3CoGe2 compounds (R = Pr, Nd, Sm, Gd-Dy), Intermetallics, 19, 321, 10.1016/j.intermet.2010.10.013
Ahn, 2009, The magnetothermal behavior of mixed-valence Eu3O4, J Appl Phys, 106, 043918, 10.1063/1.3204662
Midya, 2012, Giant magnetocaloric effect in magnetically frustrated EuHo[sub 2]O[sub 4] and EuDy[sub 2]O[sub 4] compounds, Appl Phys Lett, 101, 132415, 10.1063/1.4754849
Morozkin, 2016, Magnetic order of Y3NiSi3-type R3NiSi3 (R= Gd-DY) compounds, J Magn Magn Mater, 398, 141, 10.1016/j.jmmm.2015.09.035
Linsinger, 2010, The solid solution Gd2NixCu2-xMg: Large reversible magnetocaloric effect and a drastic change of the magnetism by substitution, J Appl Phys, 108, 043903, 10.1063/1.3466775
Morozkin, 2012, Magnetic properties and magnetocaloric effect of Sc(2)CoSi(2)-type Gd(2)CoSi(2) and Gd(2)CoGe(2) compounds, Intermetallics, 21, 115, 10.1016/j.intermet.2011.10.009
Tence, 2014, Stabilization by Si substitution of the pseudobinary compound Gd-2(Co3-xSix) with magnetocaloric properties around room temperature, Inorg Chem, 53, 6728, 10.1021/ic500529b
Morozkin, 2016, Magnetic ordering in Sc2CoSi2-type R2FeSi2 (R = Gd, Tb) and R2CoSi2 (R=Y, Gd-Er) compounds, J Magn Magn Mater, 413, 97, 10.1016/j.jmmm.2016.04.034
Fu, 2011, Structural, magnetic, and magnetothermal properties of R(2)Co(2)Al (R = Tb, and Dy) compounds, Mater Charact, 62, 451, 10.1016/j.matchar.2011.02.009
Karmakar, 2014, Investigation of magnetic and electrical transport properties of Dy2Ni2Sn, J Magn Magn Mater, 370, 96, 10.1016/j.jmmm.2014.06.065
Zhang, 2016, Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound, J Alloys Comp, 667, 130, 10.1016/j.jallcom.2016.01.157
Li, 2016, Magnetic properties and large magnetocaloric effect in Ho2Cu2In and Ho2Au2In compounds, J Mater Sci, 51, 5421, 10.1007/s10853-016-9845-3
Zhang, 2016, Large reversible magnetocaloric effect in RE2Cu2In (RE = Er and Tm) and enhanced refrigerant capacity in its composite materials, J Phys D-Appl Phys, 49, 145002, 10.1088/0022-3727/49/14/145002
da Silva, 2005, Magnetization and specific heat in U1-xLaxGa2 and magnetocaloric effect in UGa2, J Appl Phys, 97, 10A921, 10.1063/1.1854412
da Silva, 2009, A study of pressure and chemical substitution effects on the magnetocaloric properties of the ferromagnetic compound UGa2, J Phys-Condes Matter, 21, 276001, 10.1088/0953-8984/21/27/276001
da Silva, 2008, Magnetic and magnetocaloric properties on the U1-yRyGa2 (R=Er and Dy) compound, J Appl Phys, 103, 07B308, 10.1063/1.2830689
Han, 2010, Magnetocaloric effect in terbium diboride, J Alloys Comp, 498, 118, 10.1016/j.jallcom.2010.03.154
Meng, 2012, Reversible magnetocaloric effect and refrigeration capacity enhanced by two successive magnetic transitions in DyB2, Sci China-Technol Sci, 55, 501, 10.1007/s11431-011-4684-6
dos Reis, 2014, Anisotropic magnetocaloric effect in ErGa2 and HoGa2 single-crystals, J Alloys Comp, 582, 461, 10.1016/j.jallcom.2013.08.023
Wang, 2014, Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds, J Alloys Comp, 592, 63, 10.1016/j.jallcom.2013.12.265
Mo, 2015, A giant reversible magnetocaloric effect in Ho2PdSi3 compound, J Alloys Comp, 618, 512, 10.1016/j.jallcom.2014.08.224
Bazela, 2003, Magnetic structures of R2RhSi3 (R=Ho, Er) compounds, J Alloys Comp, 360, 76, 10.1016/S0925-8388(03)00374-8
Wang, 2014, Large magnetocaloric effect with a wide working temperature span in the R2CoGa3 (R = Gd, Dy, and Ho) compounds, J Appl Phys, 115, 233913, 10.1063/1.4884233
Singh, 2009, Investigations on magnetic and magnetocaloric properties of the intermetallic compound TbAgAl, J Appl Phys, 105, 023901, 10.1063/1.3065528
Chen, 2010, Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound, Appl Phys Lett, 96, 152501, 10.1063/1.3386536
Chen, 2010, Giant magnetic entropy change in antiferromagnetic DyCuSi compound, Solid State Commun, 150, 1429, 10.1016/j.ssc.2010.05.017
Drulis, 2010, Magnetocaloric effect in terbium dihydrides: Heat capacity measurements, Solid State Commun, 150, 164, 10.1016/j.ssc.2009.10.024
Drulis, 2009, Magnetic properties of terbium dihydrides, Solid State Commun, 149, 1266, 10.1016/j.ssc.2009.05.016
Zhang, 2015, Magnetocaloric effects in RT X intermetallic compounds (R = Gd-Tm, T = Fe-Cu and Pd, X = Al and Si), Chin Phys B, 24, 127504, 10.1088/1674-1056/24/12/127504
Canepa, 1999, Magnetocaloric properties of GdNiGa and GdNiIn intermetallic compounds, J Phys D-Appl Phys, 32, 2721, 10.1088/0022-3727/32/21/303
Klimczak, 2010, Magnetocaloric effect of GdTX (T = Mn, Fe, Ni, Pd, X=Al, In) and GdFe6Al6 ternary compounds, J Phys: Conference Series, 200, 092009
Schappacher, 2008, Structure and magnetism of GdRuGe, Solid State Commun, 148, 326, 10.1016/j.ssc.2008.08.033
Oboz, 2011, Properties of the GdTX (T = Mn, Fe, Ni, Pd, X = Al, In) and GdFe6Al6 intermetallics, J Alloys Comp, 509, 5441, 10.1016/j.jallcom.2010.08.163
Takeya, 1994, New-type of magnetocaloric effect - implications on low-temperature magnetic refrigeration using an ericsson cycle, Appl Phys Lett, 64, 2739, 10.1063/1.111459
Zhang, 2011, Magnetocaloric effects in RNiIn (R = Gd-Er) intermetallic compounds, J Appl Phys, 109, 123926, 10.1063/1.3603044
Cui, 2015, Effect of Cu doping on the magnetic and magnetocaloric properties in the HoNiAl intermetallic compound, J Alloys Comp, 622, 24, 10.1016/j.jallcom.2014.08.181
Dong, 2009, Large reversible magnetocaloric effect in DyCuAl compound, J Appl Phys, 105, 113902, 10.1063/1.3122598
Dong, 2011, Spin-glass behavior and magnetocaloric effect in melt-spun TbCuAl alloys, Solid State Commun, 151, 112, 10.1016/j.ssc.2010.11.013
Dong, 2012, Large magnetic entropy change and refrigerant capacity in rare-earth intermetallic RCuAl (R=Ho and Er) compounds, J Magn Magn Mater, 324, 2676, 10.1016/j.jmmm.2012.03.052
Dong, 2012, Effect of crystal grain dimension on the magnetic properties and magnetocaloric effects in DyCuAl compound, J Nanosci Nanotechnol, 12, 1040, 10.1166/jnn.2012.4267
Shen, 2011, Metamagnetic transition and magnetocaloric effect in antiferromagnetic TbPdAl compound, J Magn Magn Mater, 323, 2949, 10.1016/j.jmmm.2011.05.042
Kastil, 2010, Magnetocaloric effect of the Tb1-xYxNiAl and TbNiAl1-yIny Series, Acta Phys Pol A, 118, 888, 10.12693/APhysPolA.118.888
Kastil, 2011, Anisotropic magnetocaloric effect in TbNiAl, J Alloys Comp, 509, 5931, 10.1016/j.jallcom.2011.02.001
Mukadam, 2010, Magnetocaloric effect in UNiGa compound with the multiple magnetic phase transitions, Physica B, 405, 686, 10.1016/j.physb.2009.09.087
Mo, 2014, Evolution of magnetic properties and magnetocaloric effect in TmNi1-xCuxAl (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) compounds, J Appl Phys, 115, 17A909, 10.1063/1.4861580
Bajorek, 2011, Magnetism of selected ternary Sm compounds, J Alloys Comp, 509, 2667, 10.1016/j.jallcom.2010.12.050
Franca, 2016, Magnetocaloric effect of the ternary Dy, Ho and Er platinum gallides, J Magn Magn Mater, 401, 1088, 10.1016/j.jmmm.2015.10.138
Prokes, 2002, Magnetic properties and magnetic structure of HoTiGe and ErTiGe, J Alloys Comp, 335, 62, 10.1016/S0925-8388(01)01819-9
Provenzano, 2006, Structure and magnetocaloric properties of the Fe-doped HoTiGe alloy, J Appl Phys, 99, 08K906, 10.1063/1.2159396
Shen, 2010, Magnetic properties and magnetocaloric effects in antiferromagnetic ErTiSi, J Appl Phys, 107, 09A931, 10.1063/1.3365531
Zhang, 2014, Successive inverse and normal magnetocaloric effects in HoFeSi compound, J Appl Phys, 115, 063901, 10.1063/1.4865297
Ma, 2016, Comparative study of the magnetocaloric effect in multiphase Gd-Ni-Al alloys: single peak versus table-like profile in magnetic entropy changes, J Alloys Comp, 680, 268, 10.1016/j.jallcom.2016.04.120
Wlodarczyk, 2015, Characterization of magnetocaloric effect, magnetic ordering and electronic structure in the GdFe1-xCoxSi intermetallic compounds, Mater Chem Phys, 162, 273, 10.1016/j.matchemphys.2015.05.067
Gupta, 2015, Review on magnetic and related properties of RTX compounds, J Alloys Comp, 618, 562, 10.1016/j.jallcom.2014.08.079
Bajorek, 2009, Influence of Fe substitution on the structure and magnetic properties in Gd(Ni1-xFex)(3) intermetallic compounds, J Alloys Comp, 485, 6, 10.1016/j.jallcom.2009.05.134
Bajorek, 2010, Magnetic properties and magnetocaloric effect in Gd(Ni1-xCox)(3) intermetallic compounds, J Alloys Comp, 494, 22, 10.1016/j.jallcom.2010.01.027
Xie, 2010, Tunable magnetocaloric effect around hydrogen liquefaction temperature in Tb1-xYxCoC2 compounds, Physica B, 405, 2133, 10.1016/j.physb.2010.01.120
Dembele, 2015, Large magnetocaloric effect of GdNiAl2 compound, J Magn Magn Mater, 391, 191, 10.1016/j.jmmm.2015.05.005
Gao, 2015, Magnetic properties and low-temperature large magnetocaloric effect in the antiferromagnetic HoCu0.33Ge2 and ErCu0.25Ge2 compounds, J Alloys Comp, 631, 33, 10.1016/j.jallcom.2015.01.073
Gupta, 2016, Magnetism, electronic structure and optical properties of TbNiGe2, J Alloys Comp, 664, 120, 10.1016/j.jallcom.2015.12.211
Gupta, 2016, Theoretical and experimental investigations on the magnetic and related properties of RAgSn2 (R=Ho, Er) compounds, J Mater Sci, 51, 6341, 10.1007/s10853-016-9930-7
Jang, 2015, Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn, Nat Commun, 6, 8680, 10.1038/ncomms9680
Gruner, 2014, Unusual weak magnetic exchange in two different structure types: YbPt2Sn and YbPt2In, J Phys Condens Matter, 26, 485002, 10.1088/0953-8984/26/48/485002
Bhattacharyya, 2011, Successive magnetic transitions and low temperature magnetocaloric effect in RE2Ni7 (RE=Dy, Ho), J Magn Magn Mater, 323, 1484, 10.1016/j.jmmm.2011.01.004
Ilyn, 2011, Magnetocaloric effect in single crystal Nd2Co7, J Appl Phys, 109, 083932, 10.1063/1.3563583
Li, 2016, Magnetic properties and magnetocaloric effect in metamagnetic RE2Cu2O5 (RE = Dy and Ho) cuprates, J Alloys Comp, 658, 500, 10.1016/j.jallcom.2015.10.289
Lemoine, 2011, Magnetic and magnetocaloric properties of R(6)Mn(23) (R=Y, Nd, Sm, Gd-Tm, Lu) compounds, J Magn Magn Mater, 323, 2690, 10.1016/j.jmmm.2011.06.012
Lemoine, 2010, Magnetocaloric properties of Gd-6(Mn1-xFex)(23) alloys (x <= 0.2), Solid State Commun, 150, 1556, 10.1016/j.ssc.2010.06.005
Lemoine, 2016, Magnetic and magnetocaloric properties of Gd-6(Mn1-xCox)(23) compounds (x <= 0.3), J Alloys Comp, 680, 612, 10.1016/j.jallcom.2016.04.198
Su, 2011, Large reversible magnetocaloric effect in HoTiO(3) single crystal, J Appl Phys, 110, 083912, 10.1063/1.3653838
Ben Amor, 2012, Synthesis, Magnetic Properties, Magnetic Entropy and Arrot Plot of Antiferromagnetic Frustrated Er2Ti2O7 Compound, J Supercond Nov Magn, 25, 1035, 10.1007/s10948-011-1344-9
Alho, 2014, Anisotropic magnetocaloric effect in antiferromagnetic systems: application to EuTiO3, J Appl Phys, 116, 113907, 10.1063/1.4895996
Midya, 2016, Large adiabatic temperature and magnetic entropy changes in EuTiO3, Phys Rev B, 93, 094422, 10.1103/PhysRevB.93.094422
Rubi, 2014, Giant magnetocaloric effect in magnetoelectric Eu1-xBaxTiO3, Appl Phys Lett, 104, 032407, 10.1063/1.4862981
Roy, 2016, Giant low-field magnetocaloric effect in single-crystalline EuTi0.85Nb0.15O3, APL Mater, 4, 026102, 10.1063/1.4940960
Mo, 2015, Observation of giant magnetocaloric effect in EuTi1-xCrxO3, J Alloys Comp, 649, 674, 10.1016/j.jallcom.2015.07.176
Alho, 2011, Theoretical investigation on the existence of inverse and direct magnetocaloric effect in perovskite EuZrO3, J Appl Phys, 109, 083942, 10.1063/1.3582144
Balli, 2015, Observation of large refrigerant capacity in the HoVO3 vanadate single crystal, J Appl Phys, 118, 073903, 10.1063/1.4929370
Cao, 2016, Magnetic phase transition and giant anisotropic magnetic entropy change in TbFeO3 single crystal, J Appl Phys, 119, 063904, 10.1063/1.4941105
Ke, 2016, Anisotropic magnetic entropy change in RFeO3 single crystals(R = Tb, Tm, or Y), Sci Rep, 6, 19775, 10.1038/srep19775
Ke, 2015, Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal, Chin Phys B, 24, 037501, 10.1088/1674-1056/24/3/037501
Yin, 2014, Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe0.5Cr0.5O3, Appl Phys Lett, 104, 032904, 10.1063/1.4862665
McDannald, 2015, Magnetocaloric properties of rare-earth substituted DyCrO3, J Appl Phys, 118, 043904, 10.1063/1.4927440
Yin, 2015, Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal, J Appl Phys, 117, 133901, 10.1063/1.4916701
Yin, 2016, Magnetic and magnetocaloric properties of iron substituted holmium chromite and dysprosium chromite, RSC Adv, 6, 9475, 10.1039/C5RA24323H
Ido, 1990, Effect of al substitution on the magnetic-properties of RCo5 (R = rare-earth), J Appl Phys, 67, 4638, 10.1063/1.344838
Nikitin, 2010, Giant rotating magnetocaloric effect in the region of spin-reorientation transition in the NdCo5 single crystal, Phys Rev Lett, 105, 137205, 10.1103/PhysRevLett.105.137205
Ma, 2010, The study of the magnetic and room-temperature magnetocaloric properties in spin-reorientation Nd1-xDyxCo4Al (x=0, 0.1) alloys, J Alloys Comp, 499, 7, 10.1016/j.jallcom.2010.01.104
Ao, 2010, Structural and magnetic properties of Dy(1-x)Nc(1-x)Co(4)Ga compounds, J Alloys Comp, 495, 13, 10.1016/j.jallcom.2010.01.122
Nouri, 2016, Structural, atomic Hirschfeld surface, magnetic and magnetocaloric properties of SmNi5 compound, J Alloys Comp, 672, 440, 10.1016/j.jallcom.2016.02.142
Coroian, 2008
Rocco, 2009, High refrigerant capacity of PrNi5-xCox magnetic compounds exploiting its spin reorientation and magnetic transition over a wide temperature zone, J Phys D-Appl Phys, 42, 055002, 10.1088/0022-3727/42/5/055002
Ma, 2011, Effect of partial Nd-substitution on the magnetic and magnetocaloric properties in spin-reorientation PrCo(4)Al alloy, Eur Phys J B, 84, 167, 10.1140/epjb/e2011-20121-3
Skokov, 2011, Magnetocaloric effect, magnetic domain structure and spin-reorientation transitions in HoCo5 single crystals, J Magn Magn Mater, 323, 447, 10.1016/j.jmmm.2010.09.044
Falkowski, 2012, Magnetocaloric effect in NdNi4Si compound, Acta Phys Pol A, 121, 1290, 10.12693/APhysPolA.121.1290
Laghrissi, 2016, Ab initio, theoretical and Monte Carlo approaches for the magnetocaloric effect in DyNi4Si, J Magn Magn Mater, 412, 259, 10.1016/j.jmmm.2016.04.009
Morozkin, 2015, Magnetism and magnetocaloric effect in YNi4Si-type RNi4Si (R=Ce, Gd, Tb and Dy) compounds, J Magn Magn Mater, 378, 221, 10.1016/j.jmmm.2014.11.036
Yao, 2015, Giant magnetic coercivity in CaCu5-type SmNi3TSi (T=Mn-Cu) solid solutions, J Solid State Chem, 232, 213, 10.1016/j.jssc.2015.09.024
Yao, 2015, Giant magnetic coercivity in orthorhombic YNi4Si-type SmNi4Si compound, J Solid State Chem, 230, 249, 10.1016/j.jssc.2015.07.012
Morozkin, 2015, Magnetic properties of CaCu5-type RNi3TSi (R = Gd and Tb, T = Mn, Fe, Co and Cu) compounds, J Solid State Chem, 232, 150, 10.1016/j.jssc.2015.09.023
Li, 2011, Study of the magnetic transition and large magnetocaloric effect in DyCo3B2 compound, J Appl Phys, 109, 083901, 10.1063/1.3572060
Li, 2011, Magnetic properties and magnetocaloric effect in GdCo3B2 compound, J Alloys Comp, 509, 4198, 10.1016/j.jallcom.2011.01.049
Tolinski, 2011, Magnetocaloric effect in the ternary DyCO3B2 compound, Solid State Sci, 13, 1865, 10.1016/j.solidstatesciences.2011.07.020
Gencer, 2008, Magnetocaloric effect in CeCo4B compound, J Alloys Comp, 466, 1, 10.1016/j.jallcom.2007.11.035
Kervan, 2009, Magnetic properties and magnetocaloric effect of Ce2GdCo11B4 boride, Mater Chem Phys, 116, 586, 10.1016/j.matchemphys.2009.04.041
Sharma, 2010, Pressure tuning the magnetocaloric effect in valence transition compound YbInCu4, J Appl Phys, 108, 083918, 10.1063/1.3481440
Midya, 2014, Mandal p. 3d–4f spin interaction and field-induced metamagnetism in RCrO4 (R=Ho, Gd, Lu) compounds, J Appl Phys, 115, 17E114, 10.1063/1.4861680
Dong, 2015, Ericsson-like giant magnetocaloric effect in GdCrO4-ErCrO4 composite oxides near liquid hydrogen temperature, Mater Lett, 161, 669, 10.1016/j.matlet.2015.09.070
Midya, 2014, Giant magnetocaloric effect in antiferromagnetic DyVO4 compound, Physica B, 448, 43, 10.1016/j.physb.2014.03.019
McMichael, 1993, Enhanced magnetocaloric effect in Gd3Ga5-xFexO12, J Appl Phys, 73, 6946, 10.1063/1.352443
Zhitomirsky, 2003, Enhanced magnetocaloric effect in frustrated magnets, Phys Rev B, 67, 104421, 10.1103/PhysRevB.67.104421
Provenzano, 2003, Enhanced magnetocaloric effects in R-3(Ga1-xFex)(5)O-12 (R = Gd, Dy, Ho; 0 < x < 1) nanocomposites, J Magn Magn Mater, 266, 185, 10.1016/S0304-8853(03)00470-0
Phan, 2009, Magnetocaloric effect in bulk and nanostructured Gd3Fe5O12 materials, J Phys D-Appl Phys, 42, 115007, 10.1088/0022-3727/42/11/115007
von Ranke, 2009, Theoretical investigation on the magnetocaloric effect in garnets R3Fe5O12 where (R=Y and Dy), J Appl Phys, 106, 053914, 10.1063/1.3213383
Nolas, 2001, Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications, 255, 10.1016/S0080-8784(01)80152-6
Srinath, 2006, Giant magnetocaloric effect in clathrates, J Appl Phys, 99, 08K902, 10.1063/1.2162035
Phan, 2008, Long-range ferromagnetism and giant magnetocaloric effect in type VIII Eu8Ga16Ge30 clathrates, Appl Phys Lett, 93, 252505, 10.1063/1.3055833
Phan, 2010, Magnetocaloric effect and refrigerant capacity in Sr-doped Eu8Ga16Ge30 type-I clathrates, J Appl Phys, 107, 09A910, 10.1063/1.3349409
Phan, 2011, Origin of the magnetic anomaly and tunneling effect of europium on the ferromagnetic ordering in Eu(8-x)Sr(x)Ga(16)Ge(30) (x=0,4) type-I clathrates, Phys Rev B, 84, 054436, 10.1103/PhysRevB.84.054436
Chaturvedi, 2011, Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials, Appl Phys Lett, 99, 162513, 10.1063/1.3654157
Biswas, 2015, Enhanced cryogenic magnetocaloric effect in Eu8Ga16Ge30 clathrate nanocrystals, J Appl Phys, 117, 033903, 10.1063/1.4906280
Zheng, 2011, Large magnetocaloric effect in a Wells-Dawson type Ni6Gd6P6 cage, Angew Chem-Int Ed, 50, 3692, 10.1002/anie.201008074
Pasturel, 2015, Magnetocaloric properties of a novel ferromagnet Gd3Co4+xAl12-x (x=0.50), Intermetallics, 60, 28, 10.1016/j.intermet.2015.01.003
Chattopadhyay, 2010, Magnetic transitions and thermomagnetic properties of GdCu6, J Magn Magn Mater, 322, 3142, 10.1016/j.jmmm.2010.05.049
Liu, 2015, Metamagnetic transition and magnetothermal properties of ErCo4Ge2, J Appl Phys, 118, 013904, 10.1063/1.4923414
Basso, 2011, Er2Fe14B single crystal as magnetic refrigerant at the spin reorientation transition, J Appl Phys, 109, 083910, 10.1063/1.3567925
Skokov, 2016, Rotational magnetocaloric effect in the Er2Fe14B single crystal, IEEE Trans Magn, 52, 2500304, 10.1109/TMAG.2016.2530138
Jin, 1991, Research for room-temperature magnetic refrigerants in RXCE2-XFE17 series, J Appl Phys, 70, 6275, 10.1063/1.349965
Gorria, 2009, Crystal structure, magnetocaloric effect and magnetovolume anomalies in nanostructured Pr2Fe17, Acta Mater, 57, 1724, 10.1016/j.actamat.2008.12.014
Pawlik, 2006, Phase structure and magnetocaloric effect in binary Pr-Fe alloys, J Magn Magn Mater, 304, E510, 10.1016/j.jmmm.2006.02.138
Guetari, 2014, Influence of Al substitution on magnetocaloric effect of Pr2Fe17-xAlx, J Alloys Comp, 588, 64, 10.1016/j.jallcom.2013.10.184
Zhong, 2014, Magnetocaloric effect of Pr2Fe17-x Mn (x) alloys, Rare Metals, 33, 552, 10.1007/s12598-013-0134-x
Alvarez, 2010, Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: crystal structure, microstructure and magnetic properties, J Phys-Condes Matter, 22, 216005, 10.1088/0953-8984/22/21/216005
Alvarez, 2011, Magnetic properties and magneto-caloric effect in pseudo-binary intermetallic (Ce, R)(2)Fe-17 compounds (R = Y, Pr and Dy), Intermetallics, 19, 982, 10.1016/j.intermet.2011.02.020
Kuchin, 2011, Magnetocaloric effect in the Ce2Fe17-xMnx helical magnets, J Alloys Comp, 509, 6763, 10.1016/j.jallcom.2011.04.043
Alvarez-Alonso, 2014, On the broadening of the magnetic entropy change due to Curie temperature distribution, J Appl Phys, 115, 17A929, 10.1063/1.4867346
Charfeddine, 2016, Structural, magnetic, magneto-caloric and Mossbauer spectral study of Tb2Fe17 compound synthesized by arc melting, J Solid State Chem, 238, 15, 10.1016/j.jssc.2016.03.001
Banerjee, 2007, Anomalous magnetic and magnetocaloric properties of Er2Ni17, J Phys D-Appl Phys, 40, 2691, 10.1088/0022-3727/40/9/001
Kuchin, 2010, Enhancement of the magnetocaloric effect in the Lu2Fe17-xMnx system, Solid State Commun, 150, 1580, 10.1016/j.ssc.2010.05.041
Kuchin, 2015, The magnetocaloric effect in R2Fe17 intermetallics with different types of magnetic phase transition, Low Temp Phys, 41, 985, 10.1063/1.4938182
Zhang, 2010, Coexistence of inverse and normal magnetocaloric effect in A-site ordered NdBaMn2O6, Appl Phys Lett, 96, 242506, 10.1063/1.3453657
Pani, 2016, RNi8Si3 (R= Gd, Tb): novel ternary ordered derivatives of the BaCd11 type, J Solid State Chem, 233, 397, 10.1016/j.jssc.2015.11.004
Tkáč, 2015, Giant reversible rotating cryomagnetocaloric effect inKEr(MoO4)2induced by a crystal-field anisotropy, Phys Rev B, 92, 024406, 10.1103/PhysRevB.92.024406
Snyman, 2010, Magnetocaloric effect in geometrically frustrated magnetic compound HoB12, Acta Phys Pol A, 118, 873, 10.12693/APhysPolA.118.873
Chandragiri, 2015, Magnetic and magnetotransport behavior ofRFe5Al7(R=GdandDy): observation of reentrant inverse-magnetocaloric phenomenon and asymmetric magnetoresistance behavior, Phys Rev B, 92, 7, 10.1103/PhysRevB.92.014407
Hill, 2012, Magnetic and magnetocaloric properties of the new rare-earth-transition-metal intermetallic compound Gd3Co29Ge4B10, J Appl Phys, 111, 07E333, 10.1063/1.3677658
Midya, 2014, Giant magnetocaloric effect in ferromagnetic superconductor RuSr2GdCu2O8, J Appl Phys, 116, 223905, 10.1063/1.4904084
Zhang, 2006, Large magnetic entropy changes in NdFe12B6 compound, Appl Phys Lett, 89, 122503, 10.1063/1.2355452
Huang, 2008, Structural properties and Mossbauer spectra of metastable NdFe12B6, Mater Lett, 62, 85, 10.1016/j.matlet.2007.04.085
Zhang, 2011, The magnetocaloric effect in Nd(Co1-xFex)(12)B-6 alloys, Physica B, 406, 2840, 10.1016/j.physb.2011.04.039
Wang, 2010, Magnetic properties and magnetocaloric effect in compound PrFe12B6, Chin Phys B, 19, 067501, 10.1088/1674-1056/19/6/067501
de Oliveira, 2005, Magnetocaloric effect in systems of itinerant electrons: application to Fe Co, Ni, YFe2 and YFe3 compounds, J Alloys Comp, 403, 45, 10.1016/j.jallcom.2005.05.014
Daniilidis, 2007, Magnetocaloric studies of the peak effect in Nb, Phys Rev B, 75, 174519, 10.1103/PhysRevB.75.174519
Ohtsuka, 1965, Reversible magnetocaloric effect in superconducting niobium, Phys Lett, 17, 194, 10.1016/0031-9163(65)90477-4
Wasim, 1965, Magnetocaloric effects and enthalpy in mixed state of superconducting niobium, Phys Lett, 19, 165, 10.1016/0031-9163(65)90043-0
Dong, 1997, Specific heat of superconducting indium in porous Vycor glass, Solid State Commun, 101, 929, 10.1016/S0038-1098(96)00686-2
Graf, 2011, Simple rules for the understanding of Heusler compounds, Prog Solid State Chem, 39, 1, 10.1016/j.progsolidstchem.2011.02.001
Planes, 2009, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, J Phys-Condes Matter, 21, 233201, 10.1088/0953-8984/21/23/233201
Planes, 2015, Caloric and multicaloric effects in shape memory alloys, Mater Today-Proc, 2, 477, 10.1016/j.matpr.2015.07.332
Buchelnikov, 2011, Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys, Phys Metals Metallogr, 112, 633, 10.1134/S0031918X11070052
Umetsu, 2016, NiMn-based metamagnetic shape memory alloys, Scr Mater, 116, 1, 10.1016/j.scriptamat.2016.01.006
Yu, 2015, Recent progress in Heusler-type magnetic shape memory alloys, Rare Metals, 34, 527, 10.1007/s12598-015-0534-1
Singh, 2016, Large magnetization and reversible magnetocaloric effect at the second-order magnetic transition in heusler materials, Adv Mater, 28, 3321, 10.1002/adma.201505571
Kokorin, 2009, Martensitic transformation temperature hysteresis narrowing and magnetocaloric effect in ferromagnetic shape memory alloys Ni-Mn-Ga, J Magn Magn Mater, 321, 782, 10.1016/j.jmmm.2008.11.077
Dutta, 2016, Ab initio prediction of martensitic and intermartensitic phase boundaries in Ni-Mn-Ga, Phys Rev Lett, 116, 025503, 10.1103/PhysRevLett.116.025503
D'Souza, 2014, Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys, J Phys Condens Matter, 26, 506001, 10.1088/0953-8984/26/50/506001
Hu, 2000, Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy, Appl Phys Lett, 76, 3460, 10.1063/1.126677
Fukuda, 2009, Influence of magnetocrystalline anisotropy on martensitic transformation under magnetic field of single-crystalline Ni2MnGa, Scr Mater, 60, 261, 10.1016/j.scriptamat.2008.10.016
Hu, 2001, Magnetic entropy change in Ni50.1Mn20.7Ga29.6 single crystal, J Appl Phys, 90, 5216, 10.1063/1.1410890
Hu, 2001, Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal, Phys Rev B, 64, 132412, 10.1103/PhysRevB.64.132412
Mandal, 2008, Magnetocaloric effect in Ni-Mn-Ga alloys, IEEE Trans Magn, 44, 2993, 10.1109/TMAG.2008.2002481
Zhou, 2005, Influence of the nature of the magnetic phase transition on the associated magnetocaloric effect in the Ni-Mn-Ga system, J Magn Magn Mater, 293, 854, 10.1016/j.jmmm.2004.12.004
Zhou, 2006, Phase transitions and the magnetocaloric effect in Mn rich Ni-Mn-Ga Heusler alloys, J Magn Magn Mater, 305, 372, 10.1016/j.jmmm.2006.01.029
Singh, 2014, Inverse magnetocaloric effect in Mn2NiGa and Mn1.75Ni1.25Ga magnetic shape memory alloys, Appl Phys Lett, 104, 051905, 10.1063/1.4863742
Chatterjee, 2012, Effect of Sn doping on the martensitic and premartensitic transitions in Ni2MnGa, J Magn Magn Mater, 324, 1891, 10.1016/j.jmmm.2012.01.018
Marcos, 2002, Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys, Phys Rev B, 66, 224413, 10.1103/PhysRevB.66.224413
Marcos, 2003, Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys, Phys Rev B, 68, 094401, 10.1103/PhysRevB.68.094401
Pareti, 2003, Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2.19Mn0.81Ga Heusler alloy, Eur Phys J B, 32, 303, 10.1140/epjb/e2003-00102-y
Aliev, 2004, Magnetocaloric effect and magnetization in a Ni-Mn-Ga Heusler alloy in the vicinity of magnetostructural transition, J Magn Magn Mater, 272, 2040, 10.1016/j.jmmm.2003.12.1363
Pasquale, 2005, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals, Phys Rev B, 72, 094435, 10.1103/PhysRevB.72.094435
Duan, 2008, Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85-xCuxGa (x=0.05,0.07) alloys, J Appl Phys, 103, 063911, 10.1063/1.2899041
Khovaylo, 2008, Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study, Phys Rev B, 78, 060403, 10.1103/PhysRevB.78.060403
Li, 2011, Determination of the magnetocaloric effect associated with martensitic transition in Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloys, Chin Phys B, 20, 047502, 10.1088/1674-1056/20/4/047502
Zhang, 2011, Magnetocaloric effect in Ni-Mn-Ga thin films under concurrent magnetostructural and Curie transitions, J Appl Phys, 110, 013910, 10.1063/1.3602088
Sasso, 2008, Direct measurements of the entropy change and its history dependence in Ni-Mn-Ga alloys, J Appl Phys, 103, 07B306, 10.1063/1.2829011
Porcari, 2012, Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: the case of Ni-Co-Mn-Ga Heusler alloys, Phys Rev B, 86, 104432, 10.1103/PhysRevB.86.104432
Khovaylo, 2013, Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys, J Alloys Comp, 577, S362, 10.1016/j.jallcom.2012.03.035
Duan, 2007, Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy, J Magn Magn Mater, 309, 96, 10.1016/j.jmmm.2006.06.017
Gomes, 2006, Magnetocaloric properties of the Ni2Mn1-x(Cu, Co)(x)Ga heusler alloys, J Appl Phys, 99, 08Q106, 10.1063/1.2164415
Stadler, 2006, Magnetocaloric properties of Ni2Mn1-xCuxGa, Appl Phys Lett, 88, 192511, 10.1063/1.2202751
Gautam, 2009, Effect of small changes in Mn concentration on phase transition temperatures and magnetic entropy variations in Ni2Mn0.75Cu0.25Ga Heusler alloys, J Alloys Comp, 472, 35, 10.1016/j.jallcom.2008.05.021
Roy, 2009, Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa, Phys Rev B, 79, 235127, 10.1103/PhysRevB.79.235127
Khan, 2007, Phase transitions and corresponding magnetic entropy changes in Ni2Mn0.75Cu0.25-xCoxGa Heusler alloys, J Appl Phys, 102, 023901, 10.1063/1.2753587
Khan, 2007, Magnetocaloric properties of fe and ge doped Ni2Mn1-xCuxGa, J Appl Phys, 101, 09C515, 10.1063/1.2712304
Bao, 2008, Phase transition processes and magnetocaloric effect in Ni2.15Mn0.85-xCoxGa alloys, J Appl Phys, 103, 07B335, 10.1063/1.2838769
Fabbrici, 2011, From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys, Acta Mater, 59, 412, 10.1016/j.actamat.2010.09.059
Pathak, 2010, Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50-xCoxMn32-yFeyGa18, Appl Phys Lett, 97, 062505, 10.1063/1.3467460
Leitao, 2008, Influence of the magnetic anisotropy on the magnetic entropy change of Ni2Mn(Ga, Bi) memory shape alloy, IEEE Trans Magn, 44, 3036, 10.1109/TMAG.2008.2002794
Gao, 2010, Martensitic transformation and magnetocaloric properties of Sn doping Mn-Ni-Ga alloys, J Magn Magn Mater, 322, 2488, 10.1016/j.jmmm.2010.03.006
Mejia, 2012, A less expensive NiMnGa based Heusler alloy for magnetic refrigeration, J Appl Phys, 111, 07A923, 10.1063/1.3675064
Zhang, 2006, Magnetocaloric effect of Ni56Mn18.8Ga24.5Gd0.7 alloy, J Rare Earths, 24, 579, 10.1016/S1002-0721(06)60167-1
Recarte, 2006, Magnetocaloric effect in Ni-Fe-Ga shape memory alloys, Appl Phys Lett, 88, 1032503, 10.1063/1.2189665
Min, 2009, Magnetic entropy change of V substituted Ni-Mn-Ga Heusler alloy, J Appl Phys, 105, 07A929, 10.1063/1.3072819
Albertini, 2007, Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys, J Magn Magn Mater, 316, 364, 10.1016/j.jmmm.2007.03.020
Mandal, 2009, Effect of pressure on the magnetocaloric properties of nickel-rich Ni-Mn-Ga Heusler alloys, J Appl Phys, 105, 073509, 10.1063/1.3099596
Castillo-Villa, 2011, Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25-xGa25Cox magnetic shape memory alloy, Phys Rev B, 83, 174109, 10.1103/PhysRevB.83.174109
Krenke, 2005, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys, Nat Mater, 4, 450, 10.1038/nmat1395
Han, 2006, Large magnetic entropy changes in the Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy, Appl Phys Lett, 89, 182507, 10.1063/1.2385147
Khan, 2007, Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13-x Heusler alloys, J Appl Phys, 101, 053919, 10.1063/1.2710779
Du, 2007, Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni-Mn-Sb, J Phys D-Appl Phys, 40, 5523, 10.1088/0022-3727/40/18/001
Titov, 2012, Hysteresis effects in the inverse magnetocaloric effect in martensitic Ni-Mn-In and Ni-Mn-Sn, J Appl Phys, 112, 073914, 10.1063/1.4757425
Cakir, 2015, Intermartensitic transitions and phase stability in Ni50Mn50-xSnx Heusler alloys, Acta Mater, 99, 140, 10.1016/j.actamat.2015.07.072
Han, 2007, Low-field inverse magnetocaloric effect in Ni50-xMn39+xSn11 Heusler alloys, Appl Phys Lett, 90, 042507, 10.1063/1.2435593
Xuan, 2010, The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43-xSn10 ferromagnetic shape memory alloys, J Appl Phys, 108, 103920, 10.1063/1.3511748
Ingale, 2011, Phase Transformation, Microstructure and Magnetocaloric Properties in Polycrystalline Bulk Ni(50)Mn(50-z)Sn(z) Alloys, IEEE Trans Magn, 47, 3395, 10.1109/TMAG.2011.2152373
Ray, 2014, Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4-xSn0.6 alloy, J Alloys Comp, 600, 55, 10.1016/j.jallcom.2014.01.196
Krenke, 2007, Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn, J Appl Phys, 102, 033903, 10.1063/1.2761853
Gao, 2009, Field-induced structural transition and the related magnetic entropy change in Ni43Mn43Co3Sn11 alloy, J Magn Magn Mater, 321, 2571, 10.1016/j.jmmm.2009.03.047
Liu, 2009, The effect of Co doping on the magnetic entropy changes in Ni44-xCoxMn45Sn11 alloys, J Alloys Comp, 467, 27, 10.1016/j.jallcom.2007.11.137
Srivastava, 2010, Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni45Co5Mn40Sn10, Appl Phys Lett, 97, 014101, 10.1063/1.3456562
Das, 2011, Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy, J Appl Phys, 109, 07A901, 10.1063/1.3540327
Han, 2012, Phase diagram and magnetocaloric effect in Mn(2)Ni(1.64-x)Co(x)Sn(0.36) alloys, Scr Mater, 66, 121, 10.1016/j.scriptamat.2011.10.020
Yang, 2014, Magnetocaloric effect and martensitic transition in Ni50Mn36-xCoxSn14, J Alloys Comp, 588, 46, 10.1016/j.jallcom.2013.10.196
Passamani, 2009, Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn, J Appl Phys, 105, 033919, 10.1063/1.3075835
Yan, 2010, Martensitic transition and magnetocaloric properties in Ni45Mn44-xFexSn11 alloys, J Alloys Comp, 506, 516, 10.1016/j.jallcom.2010.07.076
Ghosh, 2015, Effect of Fe substitution on the magnetic and magnetocaloric properties of Mn-rich Mn-Ni-Fe-Sn off-stoichiometric Heusler alloys, J Appl Phys, 117, 093909, 10.1063/1.4913951
Gao, 2009, Magnetic properties and magnetic entropy change in Heusler alloys Ni50Mn35-x Cu (x) Sn-15, Appl Phys A-Mater Sci Process, 97, 443, 10.1007/s00339-009-5239-6
Dincer, 2010, Influence of irreversibility on inverse magnetocaloric and magnetoresistance properties of the (Ni, Cu)(50)Mn36Sn14 alloys, J Alloys Comp, 506, 508, 10.1016/j.jallcom.2010.07.066
Huu, 2015, Magnetic, magnetocaloric and critical properties of Ni50-xCuxMn37Sn13 rapidly quenched ribbons, J Alloys Comp, 622, 535, 10.1016/j.jallcom.2014.10.126
Zhang, 2007, Giant low-field magnetic entropy changes in Ni45Mn44-xCrxSn11 ferromagnetic shape memory alloys, J Phys D-Appl Phys, 40, 7287, 10.1088/0022-3727/40/23/005
Han, 2012, Martensitic transformation and magnetocaloric effect in Mn-Ni-Nb-Sn shape memory alloys: the effect of 4d transition-metal doping, J Alloys Comp, 515, 114, 10.1016/j.jallcom.2011.11.102
Xuan, 2007, The large low-field magnetic entropy changes in Ni43Mn46Sn11-xSbx alloys, Solid State Commun, 142, 591, 10.1016/j.ssc.2007.04.007
Chen, 2011, The influence of Al substitution on the phase transitions and magnetocaloric effect in Ni43Mn46Sn11-xAlx alloys, J Magn Magn Mater, 323, 248, 10.1016/j.jmmm.2010.09.015
Wang, 2011, Effect of Al doping on the martensitic transition and magnetic entropy change in Ni-Mn-Sn alloys, Solid State Commun, 151, 1196, 10.1016/j.ssc.2011.04.005
Han, 2009, Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni-Mn-Sn alloys, Mater Sci Eng B-Adv Funct Solid-State Mater, 157, 40, 10.1016/j.mseb.2008.12.006
Xuan, 2014, The influence of Ge substitution on the magnetostucture transition and magnetocaloric effect of Mn-Ni-Sn-Ge alloys, J Alloys Comp, 582, 369, 10.1016/j.jallcom.2013.08.053
Muthu, 2014, Hydrostatic pressure effects on martensitic transition, magnetic and magnetocaloric effect in Si doped Ni-Mn-Sn Heusler alloys, J Alloys Comp, 584, 175, 10.1016/j.jallcom.2013.09.007
Muthu, 2011, Hydrostatic pressure effect on the martensitic transition, magnetic, and magnetocaloric properties in Ni(50-x)Mn(37+x)Sn(13) Heusler alloys, J Appl Phys, 110, 083902, 10.1063/1.3651375
Xuan, 2008, Boron's effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys, Appl Phys Lett, 92, 102503, 10.1063/1.2895645
Czaja, 2014, Magnetocaloric properties and exchange bias effect in Al for Sn substituted Ni48Mn39.5Sn12.5 Heusler alloy ribbons, J Magn Magn Mater, 358, 142, 10.1016/j.jmmm.2014.01.069
Emre, 2014, Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys, Appl Phys Lett, 105, 231910, 10.1063/1.4903494
Stern-Taulats, 2015, Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys, Acta Mater, 96, 324, 10.1016/j.actamat.2015.06.026
Dubenko, 2015, Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys, J Magn Magn Mater, 383, 186, 10.1016/j.jmmm.2014.10.083
Guan, 2011, Large magnetocaloric effect at low magnetic field in Ni50-xCoxMn35In15 ribbons, J Appl Phys, 109, 07A903, 10.1063/1.3540649
Gottschall, 2016, Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials, Phys Rev B, 93, 184431, 10.1103/PhysRevB.93.184431
Sanchez-Alarcos, 2011, Structural and magnetic properties of Cr-doped Ni-Mn-In metamagnetic shape memory alloys, J Phys D-Appl Phys, 44, 395001, 10.1088/0022-3727/44/39/395001
Sharma, 2010, Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy, Phys Rev B, 82, 172411, 10.1103/PhysRevB.82.172411
Sokolovskiy, 2014, Tuning magnetic exchange interactions to enhance magnetocaloric effect in Ni50Mn34In16 Heusler alloy: Monte Carlo and ab initio studies, Int J Refrig-Rev Int Froid, 37, 273, 10.1016/j.ijrefrig.2013.05.017
Liu, 2009, Influence of Sb on the magnetic and magnetocaloric properties of ferromagnetic shape memory alloy NiMnIn, J Appl Phys, 105, 033913, 10.1063/1.3075821
Zhao, 2011, Magnetocaloric and electrical properties in annealed Si-doped Ni-Mn-In Heusler alloy ribbons, IEEE Trans Magn, 47, 2455, 10.1109/TMAG.2011.2160156
Pathak, 2009, The effect of partial substitution of In by X = Si, Ge and Al on the crystal structure, magnetic properties and resistivity of Ni50Mn35In15 Heusler alloys, J Phys D-Appl Phys, 42, 045004, 10.1088/0022-3727/42/4/045004
Quetz, 2014, Phase diagram and magnetocaloric effects in Ni50Mn35(In1-xCrx)(15) and (Mn1-xCrx)NiGe1.05 alloys, J Appl Phys, 115, 17A922, 10.1063/1.4866082
Pandey, 2015, Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys, J Appl Phys, 117, 183905, 10.1063/1.4921052
Dubenko, 2012, The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B, Appl Phys Lett, 100, 192402, 10.1063/1.4714539
Zhao, 2014, Martensitic transitions and magnetocaloric properties in Ni48Mn39In13-xGex (x=1–3) ribbons, IEEE Trans Magn, 50, 2500404
Singh, 2014, The influence of quench atomic disorder on the magnetocaloric properties of Ni-Co-Mn-In alloys, J Alloys Comp, 601, 108, 10.1016/j.jallcom.2014.02.069
Hu, 2009, Effect of the introduction of H atoms on magnetic properties and magnetic entropy change in metamagnetic Heusler alloys Ni-Mn-In, Appl Phys Lett, 95, 112503, 10.1063/1.3229890
Sharma, 2011, The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy, J Phys-Condes Matter., 23, 366001, 10.1088/0953-8984/23/36/366001
Pandey, 2016, The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys, AIP Adv, 6, 056213, 10.1063/1.4943763
Feng, 2009, Large low-field inverse magnetocaloric effect in Ni50-xMn38+xSb12 alloys, J Phys D-Appl Phys, 42, 125003, 10.1088/0022-3727/42/12/125003
Han, 2008, The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys, J Appl Phys, 104, 053906, 10.1063/1.2975146
Nayak, 2009, Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys, J Phys D-Appl Phys, 42, 035009, 10.1088/0022-3727/42/3/035009
Sahoo, 2011, Effect of Si and Ga substitutions on the magnetocaloric properties of NiCoMnSb quaternary Heusler alloys, J Appl Phys, 109, 07A921, 10.1063/1.3554219
Sahoo, 2012, Structural, magnetic, magnetocaloric and magnetotransport properties in Ge doped Ni-Mn-Sb Heusler alloys, J Magn Magn Mater, 324, 1267, 10.1016/j.jmmm.2011.11.025
Feng, 2011, Abnormal e/a-dependence of T-M and large inverse magnetocaloric effect in Ni49-xCuxMn39Sb12 alloys, Mater Sci Eng B-Adv Funct Solid-State Mater, 176, 621, 10.1016/j.mseb.2011.02.003
Sahoo, 2011, Effect of Fe substitution on the magnetic, transport, thermal and magnetocaloric properties in Ni(50)Mn(38-x)Fe(x)Sb(12) Heusler alloys, J Appl Phys, 109, 123904, 10.1063/1.3590398
Nong, 2011, Structural, magnetic and magnetocaloric properties of Heusler alloys Ni(50)Mn(38)Sb(12) with boron addition, Mater Sci Eng B-Adv Funct Solid-State Mater, 176, 1322, 10.1016/j.mseb.2011.07.013
Nayak, 2009, Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy, J Appl Phys, 106, 053901, 10.1063/1.3208064
Si, 2008, The effect of Ni-substitution on the magnetic properties of Ni2MnGe Heusler alloys, J Alloys Comp, 462, 1, 10.1016/j.jallcom.2007.08.012
Recarte, 2010, Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni-Fe-Ga ferromagnetic shape memory alloys, J Phys-Condes Matter, 22, 416001, 10.1088/0953-8984/22/41/416001
Pal, 2010, Magnetocaloric effect and magnetoresistance of Ni-Fe-Ga alloys, J Phys D-Appl Phys, 43, 455002, 10.1088/0022-3727/43/45/455002
Yu, 2009, Phase transformations and magnetocaloric effect in NiFeGa ferromagnetic shape memory alloy, J Alloys Comp, 477, 732, 10.1016/j.jallcom.2008.10.143
Liu, 2008, A high-temperature coupling of martensitic and magnetic transformations and magnetic entropy change in Ni-Fe-Ga-Co alloys, Scr Mater, 59, 1063, 10.1016/j.scriptamat.2008.07.019
Fu, 2009, Magnetic properties and magnetic entropy change of Co50Ni22Ga28 alloy, J Alloys Comp, 474, 595, 10.1016/j.jallcom.2008.07.028
Vivas, 2016, Experimental evidences of enhanced magnetocaloric properties at room temperature and half-metallicity on Fe2MnSi-based Heusler alloys, Mater Chem Phys, 174, 23, 10.1016/j.matchemphys.2016.02.045
Amaral, 2009, The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements, Appl Phys Lett, 94, 042506, 10.1063/1.3075851
Buchelnikov, 2011, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni-Mn-X (X = Ga, In) Heusler alloys, J Phys D-Appl Phys, 44, 064012, 10.1088/0022-3727/44/6/064012
Bourgault, 2010, Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K, Appl Phys Lett, 96, 132501, 10.1063/1.3372633
Mukherjee, 2011, Overcoming the spin-multiplicity limit of entropy by means of lattice degrees of freedom: a minimal model, Phys Rev B, 83, 214413, 10.1103/PhysRevB.83.214413
Caballero-Flores, 2016, Latent heat contribution to the direct magnetocaloric effect in Ni-Mn-Ga shape memory alloys with coupled martensitic and magnetic transformations, J Phys D-Appl Phys, 49, 205004, 10.1088/0022-3727/49/20/205004
Recarte, 2010, Entropy change linked to the magnetic field induced martensitic transformation in a Ni-Mn-In-Co shape memory alloy, J Appl Phys, 107, 053501, 10.1063/1.3318491
Bourgault, 2015, Entropy change of a Ni45.5Co4.5Mn37In13 single crystal studied by scanning calorimetry in high magnetic fields: Field dependence of the magnetocaloric effect, Appl Phys Lett, 107, 092403, 10.1063/1.4929950
Blázquez, 2016, A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys, Appl Phys Lett, 109, 122410, 10.1063/1.4963319
Diestel, 2015, Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications, J Appl Phys, 118, 023908, 10.1063/1.4922358
Stonaha, 2015, Lattice vibrations boost demagnetization entropy in a shape-memory alloy, Phys Rev B, 92, 140406, 10.1103/PhysRevB.92.140406
Aguilar-Ortiz, 2016, Influence of Fe doping and magnetic field on martensitic transition in Ni-Mn-Sn melt-spun ribbons, Acta Mater, 107, 9, 10.1016/j.actamat.2016.01.041
Buchelnikov, 2015, First-principles study of the structural and magnetic properties of the Ni45Co5Mn39Sn11 Heusler alloy, J Magn Magn Mater, 383, 180, 10.1016/j.jmmm.2014.10.024
Entel, 2015, The metamagnetic behavior and giant inverse magnetocaloric effect in Ni-Co-Mn-(Ga, In, Sn) Heusler alloys, J Magn Magn Mater, 385, 193, 10.1016/j.jmmm.2015.03.003
Goncalves, 2014, Magnetovolume effects in heusler compounds via first-principles calculations, IEEE Trans Magn, 50, 1, 10.1109/TMAG.2014.2326892
Sokolovskiy, 2014, Ab Initio and Monte Carlo approaches for the magnetocaloric effect in Co- and In-doped Ni-Mn-Ga Heusler alloys, Entropy, 16, 4992, 10.3390/e16094992
Sokolovskiy, 2014, Monte Carlo and first-principles approaches for single crystal and polycrystalline Ni2MnGa Heusler alloys, J Phys D: Appl Phys, 47, 425002, 10.1088/0022-3727/47/42/425002
Sokolovskiy, 2015, Achieving large magnetocaloric effects in Co- and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies, Phys Rev B, 91, 220409, 10.1103/PhysRevB.91.220409
L'Vov, 2016, Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior, J Appl Phys, 119, 013902, 10.1063/1.4939556
Liu, 2002, Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa, J Appl Phys, 92, 5006, 10.1063/1.1511293
Hu, 2009, Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni51Mn49-xInx, J Appl Phys, 105, 07A940, 10.1063/1.3073951
Rao, 2009, Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons, J Alloys Comp, 478, 59, 10.1016/j.jallcom.2008.12.015
Cui, 2006, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater, 5, 286, 10.1038/nmat1593
Gottschall, 2015, Large reversible magnetocaloric effect in Ni-Mn-In-Co, Appl Phys Lett, 106, 021901, 10.1063/1.4905371
Sasso, 2011, Enhanced field induced martensitic phase transition and magnetocaloric effect in Ni55Mn20Ga25 metallic foams, Intermetallics, 19, 952, 10.1016/j.intermet.2011.02.015
Monroe, 2012, Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication, Scr Mater, 67, 116, 10.1016/j.scriptamat.2012.03.038
Pasquale, 2004, Magnetic entropy in Ni2MnGa single crystals, J Appl Phys, 95, 6918, 10.1063/1.1682784
Liu, 2008, Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co, Appl Phys Lett., 93, 102512, 10.1063/1.2981210
Chatterjee, 2009, Giant magnetoresistance and large inverse magnetocaloric effect in Ni2Mn1.36Sn0.64 alloy, J Phys D-Appl Phys, 42, 065001, 10.1088/0022-3727/42/6/065001
Khovaylo, 2010, Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys, Phys Rev B, 81, 214406, 10.1103/PhysRevB.81.214406
Niemann, 2010, Metamagnetic transitions and magnetocaloric effect in epitaxial Ni-Co-Mn-In films, Appl Phys Lett, 97, 222507, 10.1063/1.3517443
Dincer, 2011, The effect of the substitution of Cu for Ni on magnetoresistance and magnetocaloric properties of Ni50Mn34In16, J Alloys Comp, 509, 794, 10.1016/j.jallcom.2010.09.092
Basso, 2012, Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys, Phys Rev B, 85, 014430, 10.1103/PhysRevB.85.014430
Bennett, 2012, Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy, J Alloys Comp, 525, 34, 10.1016/j.jallcom.2012.02.062
Ghosh, 2016, Measurement protocol dependent magnetocaloric properties in a Si-doped Mn-rich Mn-Ni-Sn-Si off-stoichiometric Heusler alloy, J Appl Phys, 119, 183902, 10.1063/1.4948962
Sarkar, 2016, Giant magnetocaloric effect from reverse martensitic transformation in Ni-Mn-Ga-Cu ferromagnetic shape memory alloys, J Alloys Comp, 670, 281, 10.1016/j.jallcom.2016.02.039
Pal, 2014, Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy, J Magn Magn Mater, 360, 183, 10.1016/j.jmmm.2014.02.023
Salazar Mejía, 2015, Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys, J Appl Phys, 117, 17E710, 10.1063/1.4916556
Khovaylo, 2010, Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field, Appl Phys Lett, 97, 052503, 10.1063/1.3476348
Booth, 2012, The magnetocaloric effect in thermally cycled polycrystalline Ni-Mn-Ga, J Appl Phys, 111, 07A933, 10.1063/1.3676608
Kokorin, 2014, Effect of thermal cycling on the martensitic transformation in Ni-Mn-In alloys, J Appl Phys, 116, 103515, 10.1063/1.4895585
Kalbfleisch, 2016, On the influence of the cooling rate on the martensitic transformation of Ni-Mn-Sn Heusler alloys, Scr Mater, 114, 121, 10.1016/j.scriptamat.2015.12.005
Ma, 2015, Wheel speed-dependent martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn ferromagnetic shape memory alloy ribbons, Acta Mater, 90, 292, 10.1016/j.actamat.2015.03.011
Agarwal, 2015, Effect of low temperature annealing on magneto-caloric effect of Ni-Mn-Sn-Al ferromagnetic shape memory alloy, J Alloys Comp, 641, 244, 10.1016/j.jallcom.2015.04.069
Chen, 2015, Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon, J Magn Magn Mater, 377, 137, 10.1016/j.jmmm.2014.10.077
Crouïgneau, 2015, Annealing effect on the magnetic induced austenite transformation in polycrystalline freestanding Ni-Co-Mn-In films produced by co-sputtering, J Appl Phys, 117, 035302, 10.1063/1.4906224
Czaja, 2016, Effect of heat treatment on magnetostructural transformations and exchange bias in Heusler Ni48Mn39.5Sn9.5Al3 ribbons, Acta Mater, 103, 30, 10.1016/j.actamat.2015.10.001
Wang, 2015, Enhanced magnetocaloric properties in annealed Heusler Ni-Mn-Sn ribbons, J Magn Magn Mater, 374, 153, 10.1016/j.jmmm.2014.08.042
Czaja, 2016, Magnetostructural transition and magnetocaloric effect in highly textured Ni-Mn-Sn alloy, J Appl Phys, 119, 165102, 10.1063/1.4947503
Li, 2015, Large magnetocaloric effect related to martensitic transformation in Ni50Co2Mn33In15 textured alloy, Physica B, 476, 179, 10.1016/j.physb.2015.05.002
Sahoo, 2013, In-plane and out of plane magnetic properties in Ni46Co4Mn38Sb12 ribbons, J Appl Phys, 113, 17A940, 10.1063/1.4800505
Giri, 2013, Effect of crystallographic alignment on the magnetocaloric effect in alloys near the Ni2MnGa stoichiometry, J Appl Phys, 113, 17A907, 10.1063/1.4793608
Hernando, 2009, Magnetocaloric effect in preferentially textured Mn50Ni40In10 melt spun ribbons, Appl Phys Lett, 94, 222502, 10.1063/1.3147875
McLeod, 2015, Magnetocaloric response of non-stoichiometric Ni2MnGa alloys and the influence of crystallographic texture, Acta Mater, 97, 245, 10.1016/j.actamat.2015.06.059
Hernando, 2008, Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons, Appl Phys Lett, 92, 132507, 10.1063/1.2904625
Li, 2012, Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon, Appl Phys Lett, 100, 174102, 10.1063/1.4704780
Liu, 2009, Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons, Acta Mater, 57, 4911, 10.1016/j.actamat.2009.06.054
Zhang, 2015, Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method, Scr Mater, 104, 41, 10.1016/j.scriptamat.2015.04.004
Aliev, 2010, Magnetocaloric effect in ribbon samples of Heusler alloys Ni-Mn-M (M=In, Sn), Appl Phys Lett, 97, 212505, 10.1063/1.3521261
Zhao, 2010, Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni-Mn-In ribbons, Scr Mater, 63, 250, 10.1016/j.scriptamat.2010.03.067
Rostamnejadi, 2011, Magnetocaloric effect in La(0.67)Sr(0.33)MnO(3) manganite above room temperature, J Magn Magn Mater, 323, 2214, 10.1016/j.jmmm.2011.03.036
Llamazares, 2011, Magnetocaloric properties of as-quenched Ni50.4Mn34.9In14.7 ferromagnetic shape memory alloy ribbons, Appl Phys A-Mater Sci Process, 103, 1125, 10.1007/s00339-010-6053-x
Kumar, 2012, Structure, magneto-structural transitions and magnetocaloric properties in Ni(50-x)Mn(37+x)In(13) melt spun ribbons, J Magn Magn Mater, 324, 26, 10.1016/j.jmmm.2011.07.022
Llamazares, 2012, Refrigerant capacity of austenite in as-quenched and annealed Ni51.1Mn31.2In17.7 melt spun ribbons, J Appl Phys, 111, 07A932, 10.1063/1.3676606
Caballero-Flores, 2015, Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons, J Alloys Comp, 629, 332, 10.1016/j.jallcom.2014.12.099
Czaja, 2016, Effect of ball milling and thermal treatment on exchange bias and magnetocaloric properties of Ni48Mn39.5Sn10.5Al2 ribbons, J Magn Magn Mater, 401, 223, 10.1016/j.jmmm.2015.10.043
Dey, 2016, Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons, J Magn Magn Mater, 397, 342, 10.1016/j.jmmm.2015.08.102
Gonzalez-Legarreta, 2015, Magnetostructural phase transition in off-stoichiometric Ni-Mn-In Heusler alloy ribbons with low In content, J Magn Magn Mater, 383, 190, 10.1016/j.jmmm.2014.10.152
Li, 2015, Magnetostructural transitions in Mn-rich Heusler Mn-Ni-In melt-spun ribbons with enhanced magnetocaloric effect, J Magn Magn Mater, 391, 17, 10.1016/j.jmmm.2015.04.098
Varzaneh, 2014, Magnetocaloric effect in Ni47Mn40Sn13 alloy prepared by mechanical alloying, J Alloys Comp, 598, 6, 10.1016/j.jallcom.2014.01.249
Tang, 2005, Magnetocaloric effect in NiMnGa particles produced by spark erosion, J Appl Phys, 97, 10M309, 10.1063/1.1852451
Singh, 2015, Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys, Phys Rev B, 92, 020105, 10.1103/PhysRevB.92.020105
Khovaylo, 2014, Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys Status Solidi B-Basic Solid State Phys, 251, 2104, 10.1002/pssb.201451217
Varga, 2011, Magnetic and structural properties of Ni-Mn-Ga Heusler-type microwires, Scr Mater, 65, 703, 10.1016/j.scriptamat.2011.07.018
Zhang, 2016, Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires, Appl Phys Lett, 108, 052401, 10.1063/1.4941232
Recarte, 2009, Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni-Mn-Ga thin films, Appl Phys Lett, 95, 141908, 10.1063/1.3246149
Niemann, 2012, Growth of sputter-deposited metamagnetic epitaxial Ni-Co-Mn-In films, J Appl Phys, 111, 093909, 10.1063/1.4712310
Akkera, 2015, Martensitic phase transformation of magnetron sputtered nanostructured Ni-Mn-In ferromagnetic shape memory alloy thin films, J Alloys Comp, 642, 53, 10.1016/j.jallcom.2015.03.261
Teichert, 2015, Influence of film thickness and composition on the martensitic transformation in epitaxial Ni-Mn-Sn thin films, Acta Mater, 86, 279, 10.1016/j.actamat.2014.12.019
Akkera, 2015, Martensitic phase transformations and magnetocaloric effect in Al co-sputtered Ni-Mn-Sb alloy thin films, Mater Sci Eng B-Adv Funct Solid-State Mater, 198, 113, 10.1016/j.mseb.2015.04.007
Barman, 2015, Improved magnetocaloric effect in magnetron sputtered Ni-Mn-Sb-Al ferromagnetic shape memory alloy thin films, Vacuum, 120, 22, 10.1016/j.vacuum.2015.06.013
Dutta, 2015, Interplay of strain and interdiffusion in Heusler alloy bilayers, Phys Status Solidi-Rapid Res Lett, 9, 321, 10.1002/pssr.201510070
Teichert, 2015, Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films, Phys Rev B, 91, 184405, 10.1103/PhysRevB.91.184405
Schleicher, 2015, Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications, J Appl Phys, 118, 053906, 10.1063/1.4927850
Fang, 2007, Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy, Scr Mater, 57, 453, 10.1016/j.scriptamat.2007.05.036
Zhang, 2008, The magnetic and magnetocaloric effect of (Mn0.5Co0.5)(65)Ge-35 alloy in low magnetic field, J Magn Magn Mater, 320, 1671, 10.1016/j.jmmm.2008.01.023
Wang, 2006, Vacancy induced structural and magnetic transition in MnCo[sub 1−x]Ge, Appl Phys Lett, 89, 262504, 10.1063/1.2424273
Fang, 2009, Structures, magnetic properties, and magnetocaloric effect in MnCo1-xGe (0.02 <= x <= 0.2) compounds, J Magn Magn Mater, 321, 3053, 10.1016/j.jmmm.2009.05.006
Markin, 2009, Magnetic Properties and Structural Transitions in (MnCo)(1-x)Ge, 489
Liu, 2010, Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys, EPL, 91, 17003, 10.1209/0295-5075/91/17003
Ma, 2011, Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn(1+x)Co(1-x)Ge alloys, Chin Phys B, 20, 087502, 10.1088/1674-1056/20/8/087502
Liu, 2012, Magnetostructural transition and adiabatic temperature change in Mn-Co-Ge magnetic refrigerants, Scr Mater, 66, 642, 10.1016/j.scriptamat.2012.01.048
Lin, 2006, Structural and magnetic properties of MnFe1-xCoxGe compounds, IEEE Trans Magn, 42, 3776, 10.1109/TMAG.2006.884516
Dincer, 2014, The magnetic and magnetocaloric properties of CoMnGe1-xGax alloys, J Alloys Comp, 588, 332, 10.1016/j.jallcom.2013.10.194
Wu, 2014, Effect of substitution of In for Co on magnetostructural coupling and magnetocaloric effect in MnCo1-xInxGe compounds, J Appl Phys, 115, 17A911, 10.1063/1.4863255
Zhang, 2008, Magnetostructural phase transition and magnetocaloric effect in off-stoichiometric Mn1.9-xNixGe alloys, Appl Phys Lett, 93, 122505, 10.1063/1.2990649
Daniel-Perez, 2014, Magnetostructural transition and magnetocaloric effect in MnNiGe1.05 melt-spun ribbons, J Appl Phys, 115, 17A920, 10.1063/1.4864435
Zhang, 2010, The magnetostructural transformation and magnetocaloric effect in Co-doped MnNiGe1.05 alloys, J Phys D-Appl Phys, 43, 205003, 10.1088/0022-3727/43/20/205003
Zhang, 2011, The magnetic phase transitions and magnetocaloric effect in MnNi(1-x)Co(x)Ge alloys, Solid State Commun, 151, 1359, 10.1016/j.ssc.2011.06.017
Zhang, 2011, Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys, Chin Phys B, 20, 097501, 10.1088/1674-1056/20/9/097501
Liu, 2012, Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets, Nat Commun, 3, 873, 10.1038/ncomms1868
Zhang, 2009, Magnetocaloric effect in MnCo1-xAlxGe compounds, J Mater Sci Technol, 25, 781
Samanta, 2012, Magnetostructural phase transitions and magnetocaloric effects in MnNiGe1-xAlx, Appl Phys Lett, 100, 052404, 10.1063/1.3681798
Meng, 2010, Structural and magnetic properties of MnCo1-xVxGe compounds, J Alloys Comp, 497, 14, 10.1016/j.jallcom.2010.03.004
Ma, 2012, Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn(1-x)V(x)CoGe alloys, J Magn Magn Mater, 324, 135, 10.1016/j.jmmm.2011.07.047
Trung, 2010, From single- to double-first-order magnetic phase transition in magnetocaloric Mn1-xCrxCoGe compounds, Appl Phys Lett, 96, 162507, 10.1063/1.3399774
Caron, 2011, Pressure-tuned magnetocaloric effect in Mn(0.93)Cr(0.07)CoGe, Phys Rev B, 84, 020414, 10.1103/PhysRevB.84.020414
Hamer, 2009, Phase diagram and magnetocaloric effect of CoMnGe1-xSnx alloys, J Magn Magn Mater, 321, 3535, 10.1016/j.jmmm.2008.03.003
Sandeman, 2006, Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1-xGex, Phys Rev B, 74, 224436, 10.1103/PhysRevB.74.224436
Zhang, 2009, Large magnetic entropy change and broad working temperature span in CoMnSi0.88Ge0.12 alloy, J Phys D-Appl Phys, 42, 015007, 10.1088/0022-3727/42/1/015007
Trung, 2010, Giant magnetocaloric effects by tailoring the phase transitions, Appl Phys Lett, 96, 172504, 10.1063/1.3399773
Ma, 2014, Magnetostructural transformation and magnetocaloric effect in melt-spun and annealed Mni(1-x)Cu(x)CoGe ribbons, J Alloys Comp, 610, 15, 10.1016/j.jallcom.2014.04.204
Ma, 2014, Microstructure and magnetic properties in melt-spun MnV0.02CoGe0.99 ribbons, J Magn Magn Mater, 357, 41, 10.1016/j.jmmm.2014.01.022
Songlin, 2002, Magnetic phase transition and magnetocaloric effect in Mn5-xFexSi3, J Alloys Comp, 334, 249, 10.1016/S0925-8388(01)01776-5
Songlin, 2002, Magnetic and magnetocaloric properties of Mn5Ge3-xSbx, J Alloys Comp, 337, 269, 10.1016/S0925-8388(01)01935-1
Tegus, 2002, Magnetic-phase transitions and magnetocaloric effects, Physica B, 319, 174, 10.1016/S0921-4526(02)01119-5
Candini, 2004, Revised magnetic phase diagram for FexMn5-xSi3 intermetallics, J Appl Phys, 95, 6819, 10.1063/1.1688219
Wu, 2009, Magnetocaloric effects in Fe(4)MnSi(3)B(x) interstitial compounds, Acta Metall Sin-Engl Lett, 22, 397, 10.1016/S1006-7191(08)60114-3
Hering, 2015, Structure, magnetism, and the magnetocaloric effect of MnFe4Si3 Single crystals and powder samples, Chem Mater, 27, 7128, 10.1021/acs.chemmater.5b03123
Herlitschke, 2016, Elasticity and magnetocaloric effect in MnFe4Si3, Phys Rev B, 93, 094304, 10.1103/PhysRevB.93.094304
Zhang, 2007, Magnetic properties and enhanced magnetic refrigeration in (Mn1-xFex)(5)Ge-3 compounds, J Appl Phys, 101, 123911, 10.1063/1.2748723
Zhao, 2006, Magnetic-entropy change in Mn5Ge3-xSix alloys, J Alloys Comp, 416, 43, 10.1016/j.jallcom.2005.08.039
Liu, 2006, Magnetocaloric effect in Mn5Ge3-xSix pseudobinary compounds, J Appl Phys, 99, 08Q101, 10.1063/1.2148332
Liu, 2005, Magnetic properties and magnetocaloric effects of Mn5Ge2.7 M-0.3 (M = Ga, Al, Sn) compounds, Acta Phys Sin, 54, 5884, 10.7498/aps.54.5884
Liu, 2004, Magnetic properties and magnetocaloric effects of Mn5Ge3-xGax, Chin Phys, 13, 397, 10.1088/1009-1963/13/3/025
Tolinski, 2014, Specific heat and magnetocaloric effect of the Mn5Ge3 ferromagnet, Intermetallics, 47, 1, 10.1016/j.intermet.2013.12.005
Zhao, 2005, Magnetocaloric properties of Mn5Sn3-xGax alloys, IEEE Trans Magn, 41, 3754, 10.1109/TMAG.2005.854760
Zhang, 2010, Crystal structure and curie temperature of (Mn1-xFex)(5)Sn-3 alloy, Rare Metal Mater Eng, 39, 549
Kuhrt, 1985, Magnetic B-T phase-diagram of anion substituted MNAS - magnetocaloric experiments, Phys Status Solidi A-Appl Res, 91, 105, 10.1002/pssa.2210910114
Wada, 2001, Giant magnetocaloric effect of MnAs1-xSbx, Appl Phys Lett, 79, 3302, 10.1063/1.1419048
Zou, 2008, Giant magnetocaloric effect and soft-mode magneto-structural phase transition in MnAs, EPL, 81, 47002, 10.1209/0295-5075/81/47002
Franzen, 1974, Phase transitions between NiAs- and MnP-type phases, Phys Rev B, 10, 1248, 10.1103/PhysRevB.10.1248
Morikawa, 2004, Effect of concentration deviation from stoichiometry on the magnetism of Mn1+delta As0.75Sb0.25, J Magn Magn Mater, 283, 322, 10.1016/j.jmmm.2004.05.035
de Campos, 2011, Single crystal growth and characterization of MnAs, J Cryst Growth, 333, 54, 10.1016/j.jcrysgro.2011.08.001
Marangolo, 2014, Surface acoustic wave triggering of giant magnetocaloric effect in MnAs/GaAs devices, Appl Phys Lett, 105, 162403, 10.1063/1.4898387
de Campos, 2015, Investigations in MnAs1-xSbx: experimental validation of a new magnetocaloric composite, J Magn Magn Mater, 374, 342, 10.1016/j.jmmm.2014.08.069
Trassinelli, 2014, Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment, Appl Phys Lett, 104, 081906, 10.1063/1.4866663
Wada, 2009, Pressure dependence of magnetic entropy change and magnetic transition in MnAs1-xSbx, Phys Rev B, 79, 092407, 10.1103/PhysRevB.79.092407
Wada, 2002, Extremely large magnetic entropy change of MnAs1-xSbx near room temperature, Mater Trans, 43, 73, 10.2320/matertrans.43.73
Wada, 2003, Giant magnetocaloric effect of MnAs1-xSbx in the vicinity of first-order magnetic transition, Physica B, 328, 114, 10.1016/S0921-4526(02)01822-7
Morikawa, 2004, Effect of deviation from stoichiometry on magnetic and magnetocaloric properties in MnAs1-xSbx, J Magn Magn Mater, 272, E583, 10.1016/j.jmmm.2003.12.1036
Wada, 2006, Effects of heat treatment on the magnetic phase transition and magnetocaloric properties of Mn1+delta As1-xSbx, Mater Trans, 47, 486, 10.2320/matertrans.47.486
Wada, 2007, Direct measurements of magnetocaloric effects of Mn1+delta As1-xSbx, J Magn Magn Mater, 310, 2811, 10.1016/j.jmmm.2006.10.1060
Kim, 2010, Magnetization, magnetic transition and magnetic entropy changes of bulk MnAs1-xSbx fabricated by underwater shock compaction, Mater Sci Eng B-Adv Funct Solid-State Mater, 167, 114, 10.1016/j.mseb.2010.01.056
Rocco, 2016, Influence of chemical doping and hydrostatic pressure on the magnetic properties of Mn1-xFexAs magnetocaloric compounds, Phys Rev B, 93, 054431, 10.1103/PhysRevB.93.054431
Cui, 2009, Magnetocaloric effects and reduced thermal hysteresis in Si-doped MnAs compounds, J Alloys Comp, 479, 189, 10.1016/j.jallcom.2008.12.144
Cui, 2010, Interstitial-nitrogen effect on phase transition and magnetocaloric effect in Mn(As, Si) (invited), J Appl Phys, 107, 09A938, 10.1063/1.3358617
Cui, 2010, Carbon-doping effects on the metamagnetic transition and magnetocaloric effect in MnAsCx, J Magn Magn Mater, 322, 2223, 10.1016/j.jmmm.2010.02.014
Sun, 2011, Magnetocaloric effect and size-effect related thermal hysteresis reduction in MnAs(1-x)P(x) compounds, Phys Status Solidi A-Appl Mater, 208, 1950, 10.1002/pssa.201026735
Sun, 2012, Effect of microstrain on the magnetism and magnetocaloric properties of MnAs0.97P0.03, Appl Phys Lett, 100, 112407, 10.1063/1.3695039
Mitsiuk, 2013, Phase transitions and magnetocaloric effect in MnAs, MnAs0.99P0.01, and MnAs0.98P0.02 single crystals, Inorg Mater, 49, 14, 10.1134/S002016851301007X
De Campos, 2006, Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1-xFexAs, Nat Mater, 5, 802, 10.1038/nmat1732
Balli, 2008, Giant magnetocaloric effect in Mn1-x(Ti0.5V0.5)(x)As: experiments and calculations, J Appl Phys, 103, 103908, 10.1063/1.2917323
Cui, 2009, Beneficial effect of minor Al substitution on the magnetocaloric effect of Mn1-xAlxAs, Mater Lett, 63, 595, 10.1016/j.matlet.2008.11.056
Rocco, 2007, Ambient pressure colossal magnetocaloric effect in Mn1-xCuxAs compounds, Appl Phys Lett, 90, 242507, 10.1063/1.2746074
Xu, 2010, Co doping enhanced giant magnetocaloric effect in Mn1-xCoxAs films epitaxied on GaAs (001), Appl Phys Lett, 97, 042502, 10.1063/1.3467467
Sun, 2008, Giant room-temperature magnetocaloric effect in Mn1-xCrxAs, Appl Phys Lett, 92, 072504, 10.1063/1.2884524
Sun, 2011, Magnetism and magnetocaloric properties of Mn0.95Cr0.05As, Physica B, 406, 2731, 10.1016/j.physb.2011.04.016
Dung, 2012, Giant magnetocaloric effect of Mn0.92Ba0.08As thin film grown on Al2O3(0001) substrate, J Appl Phys, 111, 07C310, 10.1063/1.3675988
Mejia, 2011, Fe/Cr substitution in MnAs compound: Increase in the relative cooling power, Appl Phys Lett, 98, 102515, 10.1063/1.3560309
Gama, 2004, Pressure-induced colossal magnetocaloric effect in MnAs, Phys Rev Lett, 93, 237202, 10.1103/PhysRevLett.93.237202
von Ranke, 2005, Analytical model to understand the colossal magnetocaloric effect, Phys Rev B, 71, 054410, 10.1103/PhysRevB.71.054410
von Ranke, 2006, Theoretical description of the colossal entropic magnetocaloric effect: Application to MnAs, Phys Rev B, 73, 014415, 10.1103/PhysRevB.73.014415
Plaza, 2009, Magnetocaloric effect: Overcoming the magnetic limit, J Magn Magn Mater, 321, 446, 10.1016/j.jmmm.2008.10.001
Carvalho, 2009, Investigation of the first-order metamagnetic transitions and the colossal magnetocaloric effect using a Landau expansion applied to MnAs compound, Eur Phys J B, 68, 67, 10.1140/epjb/e2009-00083-9
Sharma, 2008, Irreversibility in cooling and heating processes in the magnetocaloric MnAs and alloys, Appl Phys Lett, 93, 261910, 10.1063/1.3058712
Alho, 2012, Theoretical investigation on the magnetocaloric effect in MnAs using a microscopic model to describe the magnetic and thermal hysteresis, Solid State Commun, 152, 951, 10.1016/j.ssc.2012.03.028
Balli, 2009, The, “colossal” magnetocaloric effect in Mn1-xFexAs: What are we really measuring?, Appl Phys Lett, 95, 072509, 10.1063/1.3194144
Bratko, 2012, History dependence of directly observed magnetocaloric effects in (Mn, Fe)As, Appl Phys Lett, 100, 252409, 10.1063/1.4729893
Niemann, 2014, Inapplicability of the Maxwell relation for the quantification of caloric effects in anisotropic ferroic materials, Int J Refrig-Rev Int Froid, 37, 281, 10.1016/j.ijrefrig.2013.07.029
Tegus, 2013, Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge), Chin Phys B, 22, 037506, 10.1088/1674-1056/22/3/037506
Tegus, 2002, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature, 415, 150, 10.1038/415150a
Koyama, 2005, Magnetic field effect on structural property of MnFeP0.5As0.5, Mater Trans, 46, 1753, 10.2320/matertrans.46.1753
Goraus, 2015, The effect of doping on magnetic properties of (Fe-1 (-) Mn-x(x))2P(1) (-) Si-y(y) series, Solid State Commun, 224, 41, 10.1016/j.ssc.2015.10.004
Gribanov, 2009, Magnetic and magnetocaloric properties of the alloys Mn2-xFexP0.5As0.5 (0 <= x <= 0.5), Low Temp Phys, 35, 786, 10.1063/1.3253401
Budzynski, 2014, Influence of Mn/Fe ratio on the magnetic properties of the Mn2-xFexP0.5As0.5, 0.5 <= x <= 1 alloys, Physica B, 452, 37, 10.1016/j.physb.2014.06.042
Hermann, 2004, Mossbauer spectral study of the magnetocaloric FeMnP1-xAsx compounds, Phys Rev B, 70, 214425, 10.1103/PhysRevB.70.214425
Szymczak, 2014, Comparison of magnetocaloric properties of the Mn2-xFexP0.5As0.5 (x=1.0 and 0.7) compounds, Solid State Sci, 36, 29, 10.1016/j.solidstatesciences.2014.06.015
Dung, 2011, From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)(1.95)P(0.50)Si(0.50) compounds, Appl Phys Lett, 99, 092511, 10.1063/1.3634016
Hudl, 2011, Order-disorder induced magnetic structures of FeMnP0.75Si0.25, Phys Rev B, 83, 134420, 10.1103/PhysRevB.83.134420
Geng, 2012, Magnetocaloric effects in Mn1.35Fe0.65P1-xSix compounds, Chin Phys B, 21, 037504, 10.1088/1674-1056/21/3/037504
Tegus, 2004, Tuning of the magneto-caloric effects in MnFe(P, As) by substitution of elements, J Magn Magn Mater, 272, 2389, 10.1016/j.jmmm.2003.12.974
Balli, 2014, Negative and conventional magnetocaloric effects of a MnRhAs single crystal, J Appl Phys, 115, 203909, 10.1063/1.4880397
Li, 2003, Magnetic properties of MnFeP0.5As0.5-xGex, IEEE Trans Magn, 39, 3148, 10.1109/TMAG.2003.816039
Tegus, 2005, Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex, J Alloys Comp, 396, 6, 10.1016/j.jallcom.2004.12.001
Dagula, 2005, Magnetic-entropy change in Mn1.1Fe0.9P1-xGex compounds, IEEE Trans Magn, 41, 2778, 10.1109/TMAG.2005.854774
Sougrati, 2008, A structural, magnetic and Mossbauer spectral study of the magnetocaloric Mn1.1Fe0.9P1-xGex compounds, J Phys-Condes Matter, 20, 475206, 10.1088/0953-8984/20/47/475206
Ou, 2006, Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1-xGex compounds, J Phys-Condes Matter, 18, 11577, 10.1088/0953-8984/18/50/012
Liu, 2016, A pathway to optimize the properties of magnetocaloric Mn2-xFexP1-yGey for magnetic refrigeration, J Alloys Comp, 666, 108, 10.1016/j.jallcom.2016.01.074
Liu, 2009, Origin and tuning of the magnetocaloric effect in the magnetic refrigerant Mn1.1Fe0.9(P0.8Ge0.2), Phys Rev B, 79, 014435, 10.1103/PhysRevB.79.014435
Yan, 2006, Magnetic entropy change in melt-spun MnFePGe (invited), J Appl Phys, 99, 08K903, 10.1063/1.2162807
Trung, 2009, Tunable thermal hysteresis in MnFe(P, Ge) compounds, Appl Phys Lett, 94, 102513, 10.1063/1.3095597
Yue, 2009, Crystal structure and magnetic transition of MnFePGe compound prepared by spark plasma sintering, J Appl Phys, 105, 07A915, 10.1063/1.3056157
Yue, 2013, Structural, thermal, and magnetic properties of MnFePSiGe compounds prepared by spark plasma sintering method, J Magn Magn Mater, 335, 114, 10.1016/j.jmmm.2013.01.035
Liu, 2010, Neutron diffraction study of the magnetic refrigerant Mn1.1Fe0.9P0.76Ge0.24, Powder Diffr, 25, S25, 10.1154/1.3478986
Yue, 2010, Effect of annealing on the structure and magnetic properties of Mn1.1Fe0.9P0.8Ge0.2 compound, J Appl Phys, 107, 09A939, 10.1063/1.3358620
Chen, 2016, Structural investigation of the crossover in the magnetic transition of Mn-Fe-P-Ge magnetocaloric powders, J Alloys Comp, 658, 104, 10.1016/j.jallcom.2015.10.195
Chen, 2015, The magnetic phase transition in Mn1.1Fe0.9P1−xGex magnetocaloric alloys, J Appl Phys, 117, 063909, 10.1063/1.4906568
Chen, 2015, Large magnetocaloric effect near room temperature in Mn-Fe-P-Ge nanostructured powders, J Alloys Comp, 652, 393, 10.1016/j.jallcom.2015.08.245
Liu, 2015, The effect of Al doping on the crystal structure and magnetocaloric behavior of Mn1.2Fe0.8P1-xGex compounds, J Alloys Comp, 633, 120, 10.1016/j.jallcom.2015.01.141
Wada, 2014, Tuning the Curie temperature and thermal hysteresis of giant magnetocaloric (MnFe)(2)PX (X = Ge and Si) compounds by the Ru substitution, Jpn J Appl Phys, 53, 063001, 10.7567/JJAP.53.063001
Dagula, 2006, Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5-xSix(x=0-0.3) compounds, J Appl Phys, 99, 08Q105, 10.1063/1.2158969
Thanh, 2008, Structure, magnetism, and magnetocaloric properties of MnFeP1-xSix compounds, J Appl Phys, 103, 07B318, 10.1063/1.2836958
Hoglin, 2015, Phase diagram, structures and magnetism of the FeMnP1-xSix-system, RSC Adv, 5, 8278, 10.1039/C4RA15419C
Hoglin, 2015, Irreversible structure change of the as prepared FeMnP1-xSix-structure on the initial cooling through the curie temperature, J Magn Magn Mater, 374, 455, 10.1016/j.jmmm.2014.08.088
Li, 2015, Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys, J Appl Phys, 118, 213903, 10.1063/1.4936835
Neish, 2015, Local observation of the site occupancy of Mn in a MnFePSi compound, Phys Rev Lett, 114, 106101, 10.1103/PhysRevLett.114.106101
Li, 2014, Kinetic arrest induced antiferromagnetic order in hexagonal FeMnP0.75Si0.25 alloy, Appl Phys Lett, 105, 262405, 10.1063/1.4905270
Bartok, 2016, Study of the first paramagnetic to ferromagnetic transition in as prepared samples of Mn-Fe-P-Si magnetocaloric compounds prepared by different synthesis routes, J Magn Magn Mater, 400, 333, 10.1016/j.jmmm.2015.08.045
Roy, 2016, Latent heat of the first-order magnetic transition of MnFeSi0.33P0.66, Phys Rev B, 93, 165101, 10.1103/PhysRevB.93.165101
Wada, 2015, Recent progress of magnetocaloric effect and magnetic refrigerant materials of Mn compounds (invited), J Appl Phys, 117, 172606, 10.1063/1.4914120
Thanh, 2006, Magnetocaloric effect in MnFe(P, Si, Ge) compounds, J Appl Phys, 99, 08Q107, 10.1063/1.2170589
Zhang, 2005, Neutron diffraction study of history dependence in MnFeP0.6Si0.4, J Magn Magn Mater, 290, 679, 10.1016/j.jmmm.2004.11.335
Thanh, 2007, Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe(P, Si, Ge), J Magn Magn Mater, 310, E1012, 10.1016/j.jmmm.2006.11.194
Song, 2009, Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5-xSix compounds, J Alloys Comp, 474, 388, 10.1016/j.jallcom.2008.06.098
Tsunekawa, 2007, Temperature and magnetic. eld dependence of the soft X-ray magnetic circular dichroism intensity for the Mn-L-3 edge of MnFeP0.78Ge0.22, J Magn Magn Mater, 310, E1010, 10.1016/j.jmmm.2006.10.977
Takeda, 2010, Electronic states of magnetic refrigerator materials Mn0.9Fe1.1P0.55As0.45 using Soft X-ray magnetic circular dichroism, J Phys: Conference Series, 200, 012199
Liu, 2009, A first-principles study on the magnetocaloric compound MnFeP2/3Si1/3, J Appl Phys, 105, 07A902, 10.1063/1.3056408
Wang, 2013, Peculiar influence of Mn/Fe ratio on the magnetic and magnetocaloric properties of Mn2-xFexP0.6Si0.25Ge0.15 compounds, J Alloys Comp, 554, 208, 10.1016/j.jallcom.2012.11.075
Wang, 2013, Analysis of the first-order phase transition of (Mn, Fe)2(P, Si, Ge) using entropy change scaling, J Phys D: Appl Phys, 46, 295001, 10.1088/0022-3727/46/29/295001
Wang, 2011, Magnetocaloric effect in MnFeP0.63Ge0.12Si0.25Bx (x=0, 0.01, 0.02, 0.03) compounds, Acta Metall Sin, 47, 344
Guillou, 2015, Effect of boron substitution on the ferromagnetic transition of MnFe0.95P2/3Si1/3, J Alloys Comp, 632, 717, 10.1016/j.jallcom.2015.01.308
Guillou, 2014, Taming the first-order transition in giant magnetocaloric materials, Adv Mater, 26, 2671, 10.1002/adma.201304788
Guillou, 2015, Electronic and magnetic properties of phosphorus across the first-order ferromagnetic transition of (Mn, Fe)(2)(P, Si, B) giant magnetocaloric materials, Phys Rev B, 92, 224427, 10.1103/PhysRevB.92.224427
Yibole, 2015, Moment evolution across the ferromagnetic phase transition of giant magnetocaloric(Mn, Fe)2(P, Si, B)compounds, Phys Rev B, 91, 014429, 10.1103/PhysRevB.91.014429
Guillou, 2014, Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system, J Appl Phys, 116, 063903, 10.1063/1.4892406
Guillou, 2014, About the mechanical stability of MnFe(P, Si, B) giant-magnetocaloric materials, J Alloys Comp, 617, 569, 10.1016/j.jallcom.2014.08.061
Roy, 2016, Effect of doping and elastic properties in (Mn, Fe)(2)(Si, P), Phys Rev B, 93, 094110, 10.1103/PhysRevB.93.094110
Thang, 2016, Structural and magnetocaloric properties of (Mn, Fe)(2)(P, Si) materials with added nitrogen, J Alloys Comp, 670, 123, 10.1016/j.jallcom.2016.02.014
Yabuta, 2007, Pressure effects on the first order transition in MnFe(P, As) and MnFe(P, Ge), J Magn Magn Mater, 310, 1826, 10.1016/j.jmmm.2006.10.699
Sun, 2011, Room-temperature magnetocaloric effect in (Co0.35Mn0.65)(2)P compound, J Mater Sci Technol, 27, 382, 10.1016/S1005-0302(11)60078-9
Haj-Khlifa, 2015, Crystal and magnetic effects of selected substitutions of Ni for Fe and for Co in the orthorhombic MnFe0.35Co0.65P compound, J Alloys Comp, 652, 322, 10.1016/j.jallcom.2015.08.194
Ma, 2015, Structural, magnetic and magnetocaloric properties of (Mn, Co)(2)(Si, P) compounds, J Alloys Comp, 625, 95, 10.1016/j.jallcom.2014.11.072
Yu, 2003, Large magnetic entropy change in the metallic antiperovskite Mn3GaC, J Appl Phys, 93, 10128, 10.1063/1.1574591
Tohei, 2003, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC, J Appl Phys, 94, 1800, 10.1063/1.1587265
Tong, 2013, Mn-based antiperovskite functional materials: review of research, Chin Phys B, 22, 067501, 10.1088/1674-1056/22/6/067501
Kanomata, 1997, Field-induced magnetic transition of Mn3GaC, Solid State Commun, 101, 811, 10.1016/S0038-1098(96)00737-5
Burriel, 2005, Square-shape magnetocaloric effect in Mn3GaC, J Magn Magn Mater, 290, 715, 10.1016/j.jmmm.2004.11.346
Matsumoto, 2008, Electronic and magnetic states of Mn2.97Co0.03GaC studied by soft X-ray photoemission and magnetic circular dichroism, Jpn J Appl Phys, 47, 1567, 10.1143/JJAP.47.1567
Yu, 2006, Assessment of the magnetic entropy change in the metallic antiperovskite Mn3GaC1-delta (delta=0, 0.22), J Magn Magn Mater, 299, 317, 10.1016/j.jmmm.2005.04.020
Cakir, 2012, Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements, Appl Phys Lett, 100, 202404, 10.1063/1.4717181
Scheibel, 2015, Dependence of the inverse magnetocaloric effect on the field-change rate in Mn3GaC and its relationship to the kinetics of the phase transition, J Appl Phys, 117, 233902, 10.1063/1.4922722
Wang, 2009, Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds Ga1-xCMn3+x (x=0, 0.06, 0.07, and 0.08), J Appl Phys, 105, 083907, 10.1063/1.3108535
Dias, 2014, Effect of carbon content on magnetostructural properties of Mn3GaC, J Magn Magn Mater, 363, 140, 10.1016/j.jmmm.2014.03.052
Tohei, 2004, Large magnetocaloric effect of Mn3-xCoxGaC, J Magn Magn Mater, 272, E585, 10.1016/j.jmmm.2003.12.1035
Wang, 2010, Structural, magnetic properties and magnetocaloric effect in Ni-doped antiperovskite compounds GaCMn3-xNix (0 <= x <= 0.10), Physica B, 405, 2427, 10.1016/j.physb.2010.03.001
Lewis, 2006, Magnetism and the defect state in the magnetocaloric antiperovskite Mn3GaC1-delta, J Phys-Condes Matter, 18, 1677, 10.1088/0953-8984/18/5/020
Cakir, 2013, Adiabatic temperature change around coinciding first and second order magnetic transitions in Mn3Ga(C0.85N0.15), J Magn Magn Mater, 344, 207, 10.1016/j.jmmm.2013.05.057
Cakr, 2016, Magnetic correlations in the magnetocaloric materials Mn3GaC and Mn3GaC0.85N0.15 studied by neutron polarization analysis and neutron depolarization, J Phys-Condes Matter, 28, 13LT02, 10.1088/0953-8984/28/13/13LT02
Wang, 2011, Magnetic properties and room-temperature magnetocaloric effect in the doped antipervoskite compounds Ga1-xAlxCMn3 (0 <= x <= 0.15), J Magn Magn Mater, 323, 2017, 10.1016/j.jmmm.2011.02.046
Wang, 2010, Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3, J Appl Phys, 108, 093925, 10.1063/1.3505753
Shao, 2015, Low-field magnetocaloric effect in antiperovskite Mn3Ga1-xGexC compounds, J Magn Magn Mater, 396, 160, 10.1016/j.jmmm.2015.08.034
Dias, 2015, Effect of composition on magnetocaloric properties of Mn3Ga(1−x)SnxC, J Appl Phys, 117, 123901, 10.1063/1.4916095
Wang, 2009, Large magnetic entropy change near room temperature in antiperovskite SnCMn3, EPL, 85, 47004, 10.1209/0295-5075/85/47004
Wang, 2012, Magnetic/structural diagram, chemical composition-dependent magnetocaloric effect in self-doped antipervoskite compounds Sn(1-x)CMn(3+x) (0 <= x <= 0.40), J Magn Magn Mater, 324, 773, 10.1016/j.jmmm.2011.09.014
Wang, 2010, Magnetism, magnetocaloric effect and positive magnetoresistance in Fe-doped antipervoskite compounds SnCMn3-xFex (x=0.05–0.20), J Magn Magn Mater, 322, 163, 10.1016/j.jmmm.2009.09.009
Yan, 2014, Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3Sn1-xCoxC1.1 compounds, Acta Phys Sin, 63, 167502, 10.7498/aps.63.167502
Sun, 2013, Thermodynamic, electromagnetic, and lattice properties of antiperovskite Mn3SbN, Adv Condens Matter Phys, 286325
Yang, 2014, Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3, J Appl Phys, 116, 033902, 10.1063/1.4890223
Annaorazov, 1992, Alloys of the Fe-Rh system as a new class of working material for magnetic refrigerators, Cryogenics, 32, 867, 10.1016/0011-2275(92)90352-B
Nikitin, 1990, The magnetocaloric effect in FE49RH51 compound, Phys Lett A, 148, 363, 10.1016/0375-9601(90)90819-A
Shirane, 1963, Mössbauer study of hyperfine fields and isomer shifts in the Fe-Rh alloys, Phys Rev, 131, 183, 10.1103/PhysRev.131.183
Manekar, 2008, Reproducible room temperature giant magnetocaloric effect in Fe-Rh, J Phys D-Appl Phys, 41, 192004, 10.1088/0022-3727/41/19/192004
Annaorazov, 2002, Heat pump cycles based on the AF-F transition in Fe-Rh alloys induced by tensile stress, Int J Refrig-Rev Int Froid, 25, 1034, 10.1016/S0140-7007(02)00028-2
Annaorazov, 2003, An analysis of the process of adiabatic inducement of the F-AF transition in FeRh by pressure, J Alloys Comp, 354, 1, 10.1016/S0925-8388(02)01342-7
Annaorazov, 2002, Magnetocaloric heat-pump cycles based on the AF-F transition in Fe-Rh alloys, J Magn Magn Mater, 251, 61, 10.1016/S0304-8853(02)00477-8
Chirkova, 2016, Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions, Acta Mater, 106, 15, 10.1016/j.actamat.2015.11.054
Stern-Taulats, 2015, Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51, Appl Phys Lett, 107, 152409, 10.1063/1.4933409
Stern-Taulats, 2014, Barocaloric and magnetocaloric effects inFe49Rh51, Phys Rev B, 89, 214105, 10.1103/PhysRevB.89.214105
Liu, 2016, Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle, Nat Commun, 7, 11614, 10.1038/ncomms11614
Gruner, 2003, Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in alpha-FeRh, Phys Rev B, 67, 064415, 10.1103/PhysRevB.67.064415
Gruner, 2005, Simulation of the (p, T) phase diagram of the temperature-driven metamagnet alpha-FeRh, Phase Trans, 78, 209, 10.1080/01411590412331316582
Gu, 2005, Dominance of the spin-wave contribution to the magnetic phase transition in FeRh, Phys Rev B, 72, 012403, 10.1103/PhysRevB.72.012403
Sandratskii, 2011, Magnetic excitations and femtomagnetism of FeRh: a first-principles study, Phys Rev B, 83, 174408, 10.1103/PhysRevB.83.174408
Annaorazov, 1996, Anomalously high entropy change in FeRh alloy, J Appl Phys, 79, 1689, 10.1063/1.360955
de Vries, 2013, Hall-effect characterization of the metamagnetic transition in FeRh, New J Phys, 15, 013008, 10.1088/1367-2630/15/1/013008
Nishimura, 2008, Magnetocaloric effect of Fe(Rh1-xPdx) alloys, Mater Trans, 49, 1753, 10.2320/matertrans.MRA2008080
Barua, 2014, Towards tailoring the magnetocaloric response in FeRh-based ternary compounds, J Appl Phys, 115, 17A903, 10.1063/1.4854975
Kouvel, 1966, Unusual nature of the abrupt magnetic transition in FeRh and its pseudobinary variants, J Appl Phys, 37, 1257, 10.1063/1.1708424
Lu, 2009, First-order magnetic phase transition in FeRh-Pt thin films, J Appl Phys, 105, 07A904, 10.1063/1.3065973
Uebayashi, 2007, Structure and magnetism of pseudo-binary ordered alloys Fe(Rh, Pd), Mn(Rh, Pd), (Fe, Mn)Rh and (Fe, Mn)Pd, J Magn Magn Mater, 310, 1051, 10.1016/j.jmmm.2006.10.238
Manekar, 2011, Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh, J Phys D-Appl Phys, 44, 242001, 10.1088/0022-3727/44/24/242001
Caron, 2013, Magnetocrystalline anisotropy and the magnetocaloric effect in Fe2P, Phys Rev B, 88, 094440, 10.1103/PhysRevB.88.094440
Hudl, 2014, Thermodynamics around the first-order ferromagnetic phase transition ofFe2Psingle crystals, Phys Rev B, 90, 144432, 10.1103/PhysRevB.90.144432
Fruchart, 2005, On the magnetocaloric effect in d-metal pnictides, Physica A, 358, 123, 10.1016/j.physa.2005.06.013
Gruber, 2013, Electronic structure and the magneto-caloric effect, J Phys-Condes Matter, 25, 436002, 10.1088/0953-8984/25/43/436002
Wiendlocha, 2008, Magnetocaloric properties of Fe2-xTxP (T = Ru and Rh) from electronic structure calculations and magnetization measurements, J Phys D-Appl Phys, 41, 205007, 10.1088/0022-3727/41/20/205007
Zach, 2004, Magneto-elastic properties and electronic structure analysis of the (Fe1−xNix)2P system, J Alloys Comp, 383, 322, 10.1016/j.jallcom.2004.04.039
Balli, 2007, Magnetocaloric effect in ternary metal phosphides (Fe1-xNix)(2)P, J Magn Magn Mater, 316, 358, 10.1016/j.jmmm.2007.03.018
Delczeg-Czirjak, 2012, Magnetic exchange interactions in B-, Si-, and As-doped Fe2P from first-principles theory, Phys Rev B, 85, 224435, 10.1103/PhysRevB.85.224435
Florez, 2013, Magnetic entropy change plateau in a geometrically frustrated layered system: FeCrAs-like iron-pnictide structure as a magnetocaloric prototype, J Phys Condens Matter, 25, 226004, 10.1088/0953-8984/25/22/226004
Desautels, 2016, Dynamical freezing, magnetic ordering, and the magnetocaloric effect in nanostructured Fe/Cu thin films, Appl Phys Lett, 108, 172410, 10.1063/1.4948347
Rong, 2007, Temperature- and magnetic-field-induced phase transitions in Fe-rich FePt alloys, Appl Phys Lett, 90, 222504, 10.1063/1.2745255
Recarte, 2007, Magnetic study of the martensitic transformation in a Fe-Pd alloy, J Magn Magn Mater, 316, E614, 10.1016/j.jmmm.2007.03.044
Sanchez-Alarcos, 2009, Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys, Acta Mater, 57, 4224, 10.1016/j.actamat.2009.05.020
Prida, 2011, Magnetocaloric effect in melt-spun FePd ribbon alloy with second order phase transition, J Alloys Comp, 509, 190, 10.1016/j.jallcom.2010.09.060
Ipus, 2011, Near room temperature magnetocaloric response of an (FeNi)ZrB alloy, IEEE Trans Magn, 47, 2494, 10.1109/TMAG.2011.2159781
Ucar, 2013, Tuning the Curie temperature in gamma-FeNi nanoparticles for magnetocaloric applications by controlling the oxidation kinetics, J Appl Phys, 113, 17A918, 10.1063/1.4795012
Ucar, 2014, Effect of Mo addition on structure and magnetocaloric effect in gamma-FeNi nanocrystals, J Electron Mater, 43, 137, 10.1007/s11664-013-2725-6
Chaudhary, 2015, Magnetic and structural properties of high relative cooling power (Fe70Ni30)(92)Mn-8 magnetocaloric nanoparticles, J Phys D-Appl Phys, 48, 305003, 10.1088/0022-3727/48/30/305003
Chaudhary, 2014, Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles, J Appl Phys, 116, 163918, 10.1063/1.4900736
Chaudhary, 2015, High relative cooling power in a multiphase magnetocaloric Fe-Ni-B alloy, IEEE Magn Lett, 6, 6700104, 10.1109/LMAG.2015.2449259
Mandal, 2015, Investigation of the critical behaviour and magnetocaloric effect in gamma-Fe49Ni29Cr22 disordered austenitic stainless steel alloy by using the field dependence of magnetic entropy change, J Alloys Comp, 653, 453, 10.1016/j.jallcom.2015.09.035
Lucas, 2013, Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys, J Appl Phys, 113, 17A923, 10.1063/1.4798340
Zhong, 2014, Structure, magnetic properties and magnetocaloric effects of Fe50Mn15-x Co (x) Ni-35 alloys, Sci China-Phys Mech Astron, 57, 437, 10.1007/s11433-013-5383-z
Belyea, 2015, Tunable magnetocaloric effect in transition metal alloys, Sci Rep, 5, 15755, 10.1038/srep15755
Tan, 2013, Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements, J Am Chem Soc, 135, 9553, 10.1021/ja404107p
Cedervall, 2016, Magnetic structure of the magnetocaloric compound AlFe2B2, J Alloys Comp, 664, 784, 10.1016/j.jallcom.2015.12.111
Lewis, 2015, Developing magnetofunctionality: coupled structural and magnetic phase transition in AlFe2B2, J Alloys Comp, 650, 482, 10.1016/j.jallcom.2015.07.255
Chai, 2015, Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T=Fe, Mn, Cr) and AlFe2-xMnxB2, J Solid State Chem, 224, 52, 10.1016/j.jssc.2014.04.027
Du, 2015, Magnetic frustration and magnetocaloric effect in AlFe2-xMnxB2 (x=0-0.5) ribbons, J Phys D-Appl Phys, 48, 335001, 10.1088/0022-3727/48/33/335001
Kaeswurm, 2016, Direct measurement of the magnetocaloric effect in cementite, J Magn Magn Mater, 410, 105, 10.1016/j.jmmm.2016.02.080
Zhao, 2009, Magnetic properties of Fe(3(1-x))Cr(3x)C alloys, Int J Miner Metall Mater, 16, 314, 10.1016/S1674-4799(09)60056-X
Zhang, 2003, The crystallographic phases and magnetic properties of Fe2MnSi1-xGex, Physica B, 328, 295, 10.1016/S0921-4526(02)01853-7
Mazet, 2006, Mn3Sn2: a promising material for magnetic refrigeration, Appl Phys Lett, 89, 022503, 10.1063/1.2220541
Recour, 2009, Magnetocaloric properties of Mn(3)Sn(2) from heat capacity measurements, J Appl Phys, 105, 033905, 10.1063/1.3074093
Ma, 2014, Giant magnetocaloric and magnetoresistance effects in ferrimagnetic Mn1.9Co0.1Sb alloy, Appl Phys Lett, 104, 022410, 10.1063/1.4862332
Li, 2006, CoMnSb: a magnetocaloric material with a large low-field magnetic entropy change at intermediate temperature, J Appl Phys, 99, 063901, 10.1063/1.2179195
Li, 2006, Effect of annealing on the magnetic entropy change of CoMnSb alloy, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 428, 332, 10.1016/j.msea.2006.05.041
Li, 2007, Effect of Nb addition on the magnetic properties and magnetocaloric effect of CoMnSb alloy, J Alloys Comp, 427, 15, 10.1016/j.jallcom.2006.03.007
Tekgul, 2015, The structural, magnetic, and magnetocaloric properties of In-doped Mn2-xCrxSb, J Appl Phys, 118, 153903, 10.1063/1.4934253
Xie, 2010, Reversible room-temperature magnetocaloric effect in Mn[sub 5]PB[sub 2], Appl Phys Lett, 97, 202504, 10.1063/1.3518064
Du, 2007, Giant magnetocaloric effect in epsilon-(Mn0.83Fe0.17)(3.25)Ge antiferromagnet, Appl Phys Lett, 90, 042510, 10.1063/1.2432274
Mamiya, 2010, Influence of random substitution on magnetocaloric effect in a spinel ferrite, J Magn Magn Mater, 322, 1561, 10.1016/j.jmmm.2009.09.023
Anwar, 2014, Enhanced relative cooling power of Ni1-xZnxFe2O4 (0.0 <= x <= 0.7) ferrites, Acta Mater, 71, 100, 10.1016/j.actamat.2014.03.002
Gass, 2008, Magnetization and magnetocaloric effect in ball-milled zinc ferrite powder, J Appl Phys, 103, 07B309, 10.1063/1.2829754
Gopalan, 2010, Inverse magnetocaloric effect in sol-gel derived nanosized cobalt ferrite, Appl Phys A-Mater Sci Process, 99, 497, 10.1007/s00339-010-5573-8
Luo, 2009, Observation of the large magnetocaloric effect in an orbital-spin-coupled system MnV(2)O(4), J Phys-Condes Matter, 21, 436010, 10.1088/0953-8984/21/43/436010
Luo, 2010, Observation of the large orbital entropy in Zn-doped orbital-spin-coupled system MnV2O4, Appl Phys Lett, 96, 211903, 10.1063/1.3303982
Luo, 2012, Large reversible magnetocaloric effect in spinel MnV2O4 with minimal Al substitution, J Magn Magn Mater, 324, 766, 10.1016/j.jmmm.2011.09.013
Fu, 2013, Critical behavior of spinel vanadate MnV1.95Al0.05O4, J Magn Magn Mater, 326, 205, 10.1016/j.jmmm.2012.08.013
Huang, 2014, Observation of the large magnetocaloric effect and suppression of orbital entropy change in Fe-doped MnV2O4, J Appl Phys, 115, 034903, 10.1063/1.4861630
Yan, 2007, Large magnetocaloric effect in spinel CdCr2S4, Appl Phys Lett, 90, 262502, 10.1063/1.2751576
Zhang, 2010, Spin-lattice coupling studied by magnetic entropy and EPR in the CdCr2S4 system, Solid State Commun, 150, 2109, 10.1016/j.ssc.2010.09.017
Shen, 2008, Magnetic properties and magnetic entropy change in spinels (Cd, M)Cr(2)S(4) with M=Cu or Fe, J Appl Phys, 103, 07B315, 10.1063/1.2830973
Zhang, 2012, Scaling of the magnetic entropy change in spinel selenide CuCr2Se4, Physica B, 407, 3543, 10.1016/j.physb.2012.05.020
Li, 2012, Study of magnetic entropy and ESR in ferromagnet CuCr2Te4, J Magn Magn Mater, 324, 3133, 10.1016/j.jmmm.2012.05.017
Bebenin, 2015, Magnetocaloric effect and inhomogeneity of CdCr2Se4 and HgCr2Se4 single crystals, J Magn Magn Mater, 387, 127, 10.1016/j.jmmm.2015.03.093
Zhang, 2006, A potential oxide for magnetic refrigeration application: CrO2 particles, J Phys-Condes Matter, 18, L559, 10.1088/0953-8984/18/44/L01
Jiang, 2012, Large magnetocaloric effect in CrO2/TiO2 epitaxial films above room temperature, Mater Lett, 76, 25, 10.1016/j.matlet.2012.02.057
Ren, 2014, Tunable magnetic transition and reversible magnetocaloric effects at room temperature in transition-metal-oxyfluorides CrO2-xFx, J Alloys Comp, 596, 69, 10.1016/j.jallcom.2014.01.198
Zhong, 2013, Review of magnetocaloric effect in perovskite-type oxides, Chin Phys B, 22, 057501, 10.1088/1674-1056/22/5/057501
Zhong, 2004, Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6, J Magn Magn Mater, 282, 151, 10.1016/j.jmmm.2004.04.036
Zhong, 2004, Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry, Eur Phys J B, 41, 213, 10.1140/epjb/e2004-00312-9
El-Hagary, 2010, Effect of partial substitution of Cr3+ for Fe3+ on magnetism, magnetocaloric effect and transport properties of Ba2FeMoO6 double perovskites, J Alloys Comp, 502, 376, 10.1016/j.jallcom.2010.04.172
Alvarez-Serrano, 2011, Tunable ferrites as environmentally friendly materials for energy-efficient processes, Adv Mater, 23, 5237, 10.1002/adma.201101727
Kurniawan, 2016, Curie temperature engineering in high entropy alloys for magnetocaloric applications, IEEE Magn Lett, 7, 6105005, 10.1109/LMAG.2016.2592462
Pedro, 2014, Cs2NaAl1-xCrxF6: a family of compounds presenting magnetocaloric effect, Phys Rev B, 90, 064407, 10.1103/PhysRevB.90.064407
Alisultanov, 2014, Oscillating magnetocaloric effect of a multilayer graphene, Appl Phys Lett, 105, 232406, 10.1063/1.4903833
Reis, 2011, Oscillating magnetocaloric effect, Appl Phys Lett, 99, 052511, 10.1063/1.3615296
Reis, 2015, Magnetocaloric cycle with six stages: Possible application of graphene at low temperature, Appl Phys Lett, 107, 102401, 10.1063/1.4930577
Caballero-Flores, 2011, Optimization of the refrigerant capacity in multiphase magnetocaloric materials, Appl Phys Lett, 98, 102505, 10.1063/1.3560445
Paticopoulos, 2012, Enhancement of the magnetocaloric effect in composites: experimental validation, Solid State Commun, 152, 1590, 10.1016/j.ssc.2012.05.015
Luo, 2009, Rare earth based bulk metallic glasses, J Non-Cryst Solids, 355, 759, 10.1016/j.jnoncrysol.2009.02.006
Wang, 2009, Bulk metallic glasses with functional physical properties, Adv Mater, 21, 4524, 10.1002/adma.200901053
Zhang, 2013, Magnetic behavior of Gd4Co3 metallic glass, J Magn Magn Mater, 326, 157, 10.1016/j.jmmm.2012.09.002
Zheng, 2013, Magnetocaloric effect and critical behavior of amorphous (Gd4Co3)(1-x)Si-x alloys, J Magn Magn Mater, 343, 184, 10.1016/j.jmmm.2013.04.087
Zhong, 2013, Amorphous and crystallized (Gd4Co3)(100-x)B-x alloys for magnetic refrigerants working in the vicinity of 200 K, J Alloys Comp, 553, 152, 10.1016/j.jallcom.2012.11.086
Zheng, 2012, The magnetocaloric effect and critical behavior in amorphous Gd60Co40-xMnx alloys, J Appl Phys, 111, 07A922, 10.1063/1.3673860
Foldeaki, 1997, Composition dependence of magnetic properties in amorphous rare-earth-metal-based alloys, J Magn Magn Mater, 174, 295, 10.1016/S0304-8853(97)00140-6
Fang, 2011, Structures and magnetocaloric effects of Gd65-xRExFe20Al15 (x=0-20; RE=Tb, Dy, Ho, and Er) ribbons, J Appl Phys, 109, 07A933, 10.1063/1.3561447
Zheng, 2011, Magnetic properties and large magnetocaloric effects in amorphous Gd-Al-Fe alloys for magnetic refrigeration, Sci China-Phys Mech Astron, 54, 1267, 10.1007/s11433-011-4363-4
Zhao, 2011, The influence of Si addition on the glass forming ability, magnetic and magnetocaloric properties of the Gd-Fe-Al glassy ribbons, J Appl Phys, 109, 07A911, 10.1063/1.3540666
Min, 2014, Magnetic properties and magnetocaloric effects of Gd-Mn-Si ribbons in amorphous and crystalline states, J Alloys Comp, 606, 50, 10.1016/j.jallcom.2014.04.014
de Paula, 2016, Magnetocaloric effect and evidence of superparamagnetism in GdAl2 nanocrystallites: a magnetic-structural correlation, Phys Rev B, 93, 094427, 10.1103/PhysRevB.93.094427
Phan, 2013, Ferromagnetic order in rapidly cooled Nd-Fe-Co-Al alloy ribbons, IEEE Trans Magn, 49, 3375, 10.1109/TMAG.2013.2242853
Zhang, 2014, Tunable magnetic and magnetocaloric properties in heavy rare-earth based metallic glasses through the substitution of similar elements, J Appl Phys, 115, 133903, 10.1063/1.4870286
Xia, 2014, Large magnetic entropy change and adiabatic temperature rise of a Gd55Al20Co20Ni5 bulk metallic glass, J Appl Phys, 115, 223904, 10.1063/1.4882735
Liu, 2016, Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon, J Phys D-Appl Phys, 49, 055004, 10.1088/0022-3727/49/5/055004
Chevalier, 2005, Magnetocaloric properties of amorphous GdNiAl obtained by mechanical grinding, Appl Phys A-Mater Sci Process, 80, 601, 10.1007/s00339-003-2239-9
Si, 2002, Magnetic properties and magnetic entropy change of amorphous and crystalline GdNiAl ribbons, Appl Phys A-Mater Sci Process, 75, 535, 10.1007/s003390101034
Shen, 2014, Enhanced magnetocaloric and mechanical properties of melt-extracted Gd55Al25Co20 micro-fibers, J Alloys Comp, 603, 167, 10.1016/j.jallcom.2014.03.053
Biswas, 2014, Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires, J Appl Phys, 115, 17A318, 10.1063/1.4864143
Costa, 2016, Theoretical investigation on the magnetocaloric effect in amorphous Eu80Au20 system, J Magn Magn Mater, 414, 78, 10.1016/j.jmmm.2016.04.044
von Ranke, 2014, Theoretical investigations on magnetic entropy change in amorphous and crystalline systems: applications to RAg (R=Tb, Dy, Ho) and GdCuAl, J Magn Magn Mater, 369, 34, 10.1016/j.jmmm.2014.06.026
von Ranke, 2014, Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: applications to Dy70Zr30 and DyCo3.4 alloys, J Appl Phys, 116, 143903, 10.1063/1.4897911
McHenry, 1999, Amorphous and nanocrystalline materials for applications as soft magnets, Progr Mater Sci, 44, 291, 10.1016/S0079-6425(99)00002-X
Franco, 2012, Magnetic refrigerants with continuous phase transitions: amorphous and nanostructured materials, Scr Mater, 67, 594, 10.1016/j.scriptamat.2012.05.004
Blázquez, 2015, Analysis of the magnetocaloric effect in powder samples obtained by ball milling, Metall Mater Trans E, 2, 131
Maeda, 1983, Fe-Zr amorphous-alloys for magnetic refrigerants near room-temperature, J Jpn Inst Met, 47, 688, 10.2320/jinstmet1952.47.8_688
Belova, 1984, Temperature-dependence of magnetocaloric effect in amorphous ferromagnets, Fiz Tverd Tela, 26, 851
Franco, 2006, Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys, Appl Phys Lett, 88, 132509, 10.1063/1.2188385
Shen, 2002, Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy, J Appl Phys, 91, 5240, 10.1063/1.1456957
Podmiljsak, 2014, Influence of Ni on the magnetocaloric effect in Nanoperm-type soft-magnetic amorphous alloys, J Alloys Comp, 591, 29, 10.1016/j.jallcom.2013.12.150
Shao, 1996, Preparation of nanocomposite working substances for room-temperature magnetic refrigeration, J Magn Magn Mater, 163, 103, 10.1016/S0304-8853(96)00337-X
Ipus, 2009, Microstructural evolution characterization of Fe-Nb-B ternary systems processed by ball milling, Philos Mag, 89, 1415, 10.1080/14786430902984566
Ipus, 2010, Influence of Co addition on the magnetic properties and magnetocaloric effect of Nanoperm (Fe(1-x)Co(x))(75)Nb(10)B(15) type alloys prepared by mechanical alloying, J Alloys Comp, 496, 7, 10.1016/j.jallcom.2009.12.029
Blazquez, 2012, Enhancement of the magnetic refrigerant capacity in partially amorphous Fe70Zr30 powders obtained by mechanical alloying, Intermetallics, 26, 52, 10.1016/j.intermet.2012.03.011
Ipus, 2014, Milling effects on magnetic properties of melt spun Fe-Nb-B alloy, J Appl Phys, 115, 17B518, 10.1063/1.4866700
Moreno, 2014, Magnetocaloric effect of Co62Nb6Zr2B30 amorphous alloys obtained by mechanical alloying or rapid quenching, J Appl Phys, 115, 17A302, 10.1063/1.4857595
Moreno-Ramirez, 2015, Analysis of magnetocaloric effect of ball milled amorphous alloys: demagnetizing factor and Curie temperature distribution, J Alloys Comp, 622, 606, 10.1016/j.jallcom.2014.10.134
Ipus, 2015, Influence of hot compaction on microstructure and magnetic properties of mechanically alloyed Fe(Co)-based amorphous compositions, J Alloys Comp, 653, 546, 10.1016/j.jallcom.2015.09.074
Ipus, 2014, A procedure to extract the magnetocaloric parameters of the single phases from experimental data of a multiphase system, Appl Phys Lett, 105, 172405, 10.1063/1.4900790
Franco, 2006, A Finemet-type alloy as a low-cost candidate for high-temperature magnetic refrigeration, Appl Phys Lett, 88, 042505, 10.1063/1.2167803
Swierczek, 2014, Nanocrystallization and magnetocaloric effect in amorphous Fe-Mo-Cu-B alloy, J Alloys Comp, 615, 255, 10.1016/j.jallcom.2014.06.162
Thanveer, 2016, Magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys, AIP Adv, 6, 055322, 10.1063/1.4952969
Luo, 2016, Size-dependent structure and magnetocaloric properties of Fe-based glass-forming alloy powders, AIP Adv, 6, 045002, 10.1063/1.4945754
Moubah, 2016, Enhanced magnetocaloric properties of FeZr amorphous films by C ion implantation, Mater Lett, 175, 5, 10.1016/j.matlet.2016.03.124
Alvarez, 2011, Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite, Appl Phys Lett, 99, 232501, 10.1063/1.3665941
Tian, 2015, Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78-xCexSi4Nb5B12Cu1 (x=0-10) composite materials, Mater Lett, 138, 64, 10.1016/j.matlet.2014.09.127
Lai, 2015, Table-like magnetocaloric effect of Fe88-xNdxCr8B4 composite materials, J Magn Magn Mater, 390, 87, 10.1016/j.jmmm.2015.04.046
Chau, 2007, The discovery of the colossal magnetocaloric effect in a series of amorphous ribbons based on Finemet, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 449, 360, 10.1016/j.msea.2006.02.354
Hoa, 2007, The crystallization and properties of alloys with Fe partly substituted by Cr and Cu fully substituted by Au in Finemet, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 449, 364, 10.1016/j.msea.2006.03.139
Hoa, 2007, The crystallization, magnetic and magnetocaloric properties in Fe76.5-xNbxSi15.5B7Au1 ribbons, J Magn Magn Mater, 310, 2483, 10.1016/j.jmmm.2006.11.088
Huu, 2008, Giant magnetocaloric effect at room temperature and low-field change in Fe78-xCrxSi4Nb5B12Cu1 amorphous alloys, J Korean Phys Soc, 53, 763, 10.3938/jkps.53.763
Duong, 2009, The existence of large magnetocaloric effect at low field variation and the anti-corrosion ability of Fe-rich alloy with Cr substituted for Fe, 012067
Min, 2006, The substitution effect of Cr about large magnetocaloric effect in amorphous Fe-Si-B-Nb-Au ribbons, J Magn Magn Mater, 300, E385, 10.1016/j.jmmm.2005.10.125
Moreno-Ramirez, 2016, Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys, J Magn Magn Mater, 409, 56, 10.1016/j.jmmm.2016.02.087
Franco, 2012, Magnetic materials for energy applications, JOM, 64, 750, 10.1007/s11837-012-0348-7
Liu, 2014, Optimizing and fabricating magnetocaloric materials, Chin Phys B, 23, 047503, 10.1088/1674-1056/23/4/047503
Smaili, 1997, Composite materials for Ericsson-like magnetic refrigeration cycle, J Appl Phys, 81, 824, 10.1063/1.364166
de Oliveira, 2003, Understanding the table-like magnetocaloric effect, J Magn Magn Mater, 261, 112, 10.1016/S0304-8853(02)01447-6
Hashimoto, 1987, New application of complex magnetic-materials to the magnetic refrigerant in an ericsson magnetic refrigerator, J Appl Phys, 62, 3873, 10.1063/1.339232
Engelbrecht, 2011, Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators, Int J Refrig-Rev Int Froid, 34, 1132, 10.1016/j.ijrefrig.2010.11.014
Yan, 2005, Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons, J Appl Phys, 97, 036102, 10.1063/1.1844605
Liu, 2013, A new approach to prepare spherical La-Fe-Si-Co magnetocaloric refrigerant particles, Scr Mater, 69, 485, 10.1016/j.scriptamat.2013.06.009
Katter, 2008, Magnetocaloric properties of La(Fe Co, Si)(13) bulk material prepared by powder metallurgy, IEEE Trans Magn, 44, 3044, 10.1109/TMAG.2008.2002523
Lowe, 2012, The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe, Si, Co)(13), Acta Mater, 60, 4268, 10.1016/j.actamat.2012.04.027
Franco, 2008, Tailoring of magnetocaloric response in nanostructured materials: role of anisotropy, Phys Rev B, 77, 104434, 10.1103/PhysRevB.77.104434
Baldomir, 2007, Magnetocaloric effects in magnetic nanoparticle systems: a Monte Carlo study, J Non-Cryst Solids, 353, 790, 10.1016/j.jnoncrysol.2006.12.041
Skomski, 2008, Temperature- and field-induced entropy changes in nanomagnets, J Appl Phys, 103, 07B329, 10.1063/1.2835094
Serantes, 2009, Magnetocaloric effect in dipolar chains of magnetic nanoparticles with collinear anisotropy axes, Phys Rev B, 80, 134421, 10.1103/PhysRevB.80.134421
Alvarez, 2010, Magnetocaloric effect in nanostructured Pr2Fe17 and Nd2Fe17 synthesized by high-energy ball-milling, Acta Phys Pol A, 118, 867, 10.12693/APhysPolA.118.867
Belova, 1973, Magnetocaloric effect in superparamagnetic substances, Zhurnal Eksperimentalnoi Teor Fiz, 64, 1746
Bennett, 1992, Monte-Carlo and mean-field calculations of the magnetocaloric effect of ferromagnetically interacting clusters, J Magn Magn Mater, 104, 1094, 10.1016/0304-8853(92)90504-H
Franco, 2002, High-temperature evolution of coercivity in nanocrystalline alloys, Phys Rev B, 66, 224418, 10.1103/PhysRevB.66.224418
McMichael, 1992, Magnetocaloric effect in superparamagnets, J Magn Magn Mater, 111, 29, 10.1016/0304-8853(92)91049-Y
Skorvanek, 2007, Magnetocaloric effect in amorphous and nanocrystalline Fe81-xCrxNb7B12 (x=0 and 3.5) alloys, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 449, 460, 10.1016/j.msea.2006.02.353
Shen, 2016, Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure, Appl Phys Lett, 108, 092403, 10.1063/1.4943137
Thanh, 2015, Critical behavior in double-exchange ferromagnets of Pr0.6Sr0.4MnO3 nanoparticles, IEEE Trans Magn, 51, 2501004, 10.1109/TMAG.2015.2424978
Turcaud, 2015, Influence of manganite powder grain size and Ag-particle coating on the magnetocaloric effect and the active magnetic regenerator performance, Acta Mater, 97, 413, 10.1016/j.actamat.2015.06.058
Wang, 2012, Magnetocaloric effect in perovskite manganite La0.65Nd0.05Ba0.3MnO3 with double metal-insulator peaks, J Supercond Nov Magn, 25, 533, 10.1007/s10948-011-1329-8
Keshri, 2016, Studies on characteristic properties of superparamagnetic La0.67Sr0.33-xKxMnO3 nanoparticles, J Alloys Comp, 656, 245, 10.1016/j.jallcom.2015.09.176
Fatnassi, 2015, Structural and magnetic properties of nanosized La0.8Ca0.2Mn1-xFexO3 particles (0 <= x <= 0.2) prepared by sol-gel method, J Supercond Nov Magn, 28, 2401, 10.1007/s10948-015-3030-9
Gharsallah, 2016, Effect of the annealing temperature on the structural and magnetic behaviors of 0.875La(0.6)Ca(0.4)MnO(3)/0.125La(0.6)Sr(0.4)MnO(3) composition, J Magn Magn Mater, 401, 56, 10.1016/j.jmmm.2015.09.082
Shinde, 2012, Glycine-assisted combustion synthesis and magnetocaloric properties of polycrystalline La0.8Ca0.2MnO3, J Korean Phys Soc, 61, 2000, 10.3938/jkps.61.2000
Poddar, 2006, Magnetocaloric effect in ferrite nanoparticles, J Magn Magn Mater, 307, 227, 10.1016/j.jmmm.2006.04.007
Li, 2014, Enhanced cryogenic magnetocaloric effect induced by small size GdNi5 nanoparticles, J Mater Sci Technol, 30, 973, 10.1016/j.jmst.2014.01.009
Phong, 2016, Particle size effects on La0.7Ca0.3MnO3: Griffiths phase-like behavior and magnetocaloric study, J Alloys Comp, 662, 557, 10.1016/j.jallcom.2015.12.052
Hueso, 2002, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3-delta nanoparticles synthesized by sol-gel techniques, J Appl Phys, 91, 9943, 10.1063/1.1476972
Poddar, 2007, Magnetic transition and large magnetocaloric effect associated with surface spin disorder in Co and CocoreAgshell nanoparticles, J Phys Chem C, 111, 14060, 10.1021/jp073274i
Franco, 2010, Field dependence of the magnetocaloric effect in core-shell nanoparticles, J Appl Phys, 107, 09A902, 10.1063/1.3335514
Zeleňáková, 2016, Large magnetocaloric effect in fine Gd2O3 nanoparticles embedded in porous silica matrix, Appl Phys Lett, 109, 122412, 10.1063/1.4963267
Wang, 2016, Multifunctional hydrogels with temperature, ion, and magnetocaloric stimuli-responsive performances, Macromol Rapid Commun, 37, 759, 10.1002/marc.201500748
Yuzuak, 2013, Inverse magnetocaloric effect of epitaxial Ni-Mn-Sn thin films, Appl Phys Lett, 103, 222403, 10.1063/1.4834357
Caballero-Flores, 2012, Magnetic multilayers as a way to increase the magnetic field responsiveness of magnetocaloric materials, J Nanosci Nanotechnol, 12, 7432, 10.1166/jnn.2012.6521
Wang, 2007, The study of low-field positive and negative magnetic entropy changes in Ni43Mn46-xCuxSn11 alloys, J Appl Phys, 102, 013909, 10.1063/1.2752140
Barati, 2014, Extraordinary induction heating effect near the first order Curie transition, Appl Phys Lett, 105, 162412, 10.1063/1.4900557
Xuan, 2015, Enhancement of the martensitic transformation and magnetocaloric effect of Ni-Mn-V-Sn ribbons by annealing treatment, Phys Status Solidi A-Appl Mater, 212, 1954, 10.1002/pssa.201532024
Belov, 1972, Determination of exchange interaction of sublattices in gadolinium iron-garnet on basis of magnetocaloric effect, Soviet Physics Jetp-Ussr, 34, 588
Belov, 1977, Observation of spin reorientation based on measurements of magnetocaloric effect, Zhurnal Eksperimentalnoi Teor Fiz, 72, 586
Franco, 2010, Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn, Fe, Co), J Magn Magn Mater, 322, 218, 10.1016/j.jmmm.2009.08.039
Kouvel, 1964, Detailed magnetic behavior of nickel near its curie point, Phys Rev a-Gen Phys, 136, 1626, 10.1103/PhysRev.136.A1626
Sanchez-Perez, 2016, Influence of nanocrystallization on the magnetocaloric properties of Ni-based amorphous alloys: determination of critical exponents in multiphase systems, J Alloys Comp, 686, 717, 10.1016/j.jallcom.2016.06.057
Franco, 2007, A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios, J Appl Phys, 101, 093903, 10.1063/1.2724804
Smith, 2014, Scaling and universality in magnetocaloric materials, Phys Rev B, 90, 104422, 10.1103/PhysRevB.90.104422
Romero-Muñiz, 2016, Applicability of scaling behavior and power laws in the analysis of the magnetocaloric effect in second-order phase transition materials, Phys Rev B, 94, 134401, 10.1103/PhysRevB.94.134401
Alvarez, 2011, Magneto-caloric effect in the pseudo-binary intermetallic YPrFe17 compound, Mater Chem Phys, 131, 18, 10.1016/j.matchemphys.2011.09.062
Zhong, 2012, Critical behavior and magnetocaloric effect of Gd65Mn35-xGex (x=0, 5, and 10) melt-spun ribbons, J Appl Phys, 112, 033903, 10.1063/1.4740062
Debnath, 2013, Investigation of the critical behavior in Mn0.94Nb0.06CoGe alloy by using the field dependence of magnetic entropy change, J Appl Phys, 113, 093902, 10.1063/1.4794100
Pelka, 2013, Magnetic systems at criticality: different signatures of scaling, Acta Phys Pol A, 124, 977, 10.12693/APhysPolA.124.977
Mahjoub, 2015, Critical behavior and the universal curve for magnetocaloric effect in Pr0.6Ca0.1Sr0.3Mn1-xFexO3 (x=0, 0.05 and 0.075) manganites, J Alloys Comp, 633, 207, 10.1016/j.jallcom.2015.02.011
Li, 2016, Critical behavior in polycrystalline La0.7Sr0.3CoO3 from bulk magnetization study, J Alloys Comp, 659, 203, 10.1016/j.jallcom.2015.11.060
Sattibabu, 2016, Studies on the magnetoelastic and magnetocaloric properties of Yb1-xMgxMnO3 using neutron diffraction and magnetization measurements, RSC Adv, 6, 48636, 10.1039/C6RA08791D
Han, 2017, Critical phenomenon in the itinerant ferromagnet Cr11Ge19 studied by scaling of the magnetic entropy change, J Alloys Comp, 693, 389, 10.1016/j.jallcom.2016.09.210
Franco, 2009, The influence of a minority magnetic phase on the field dependence of the magnetocaloric effect, J Magn Magn Mater, 321, 1115, 10.1016/j.jmmm.2008.10.034
Law, 2012, The magnetocaloric effect of partially crystalline Fe-B-Cr-Gd alloys, J Appl Phys, 111, 113919, 10.1063/1.4723644
Romero-Muniz, 2014, Influence of the demagnetizing factor on the magnetocaloric effect: critical scaling and numerical simulations, Appl Phys Lett, 104, 252405, 10.1063/1.4885110
Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys Lett, 12, 16, 10.1016/0031-9163(64)91158-8
Ge, 2015, Scaling investigation of the magnetic entropy change in helimagnet MnSi, J Alloys Comp, 649, 46, 10.1016/j.jallcom.2015.07.130
Collins, 1953, Cyclic adiabatic demagnetization, Phys Rev, 90, 991, 10.1103/PhysRev.90.991.2
Rosenblum, 1976, Continuous refrigeration at 10 mK using adiabatic demagnetization, Cryogenics, 16, 245, 10.1016/0011-2275(76)90270-8
Pratt, 1977, A continuous demagnetization refrigerator operating near 2 K and a study of magnetic refrigerants, Cryogenics, 17, 689, 10.1016/0011-2275(77)90225-9
Steyert, 1978, Rotating carnot-cycle magnetic refrigerators for use near 2K, J Appl Phys, 49, 1227, 10.1063/1.325010
Barclay, 1979, Reciprocating magnetic refrigerator for 2-4-K operation - initial results, J Appl Phys, 50, 5870, 10.1063/1.326683
Barclay, 1980, A 4-K to 20-K rotational-cooling magnetic refrigerator capable of 1 mW to greater-than 1 W operation, Cryogenics, 20, 467, 10.1016/0011-2275(80)90081-8
Delpuech, 1981, Double acting reciprocating magnetic refrigerator - 1st experiments, Cryogenics, 21, 579, 10.1016/0011-2275(81)90225-3
Numazawa, 1984, The helium magnetic refrigerator. II - Liquefaction process and efficiency, Adv Cryogenics Eng, 29, 589, 10.1007/978-1-4613-9865-3_67
Mastumoto, 1988, An ericsson magnetic refrigerator for low temperature, Adv Cryogenics Eng, 33, 743
Nakagome, 1985
Hakuraku, 1985, A static magnetic refrigerator for superfluid-helium with new heat switches and a superconducting pulse coil, Jpn J Appl Phys Part 1 - Regul Pap Short Notes Rev Pap, 24, 1538, 10.1143/JJAP.24.1538
Barclay, 1986, Experimental results on a low-temperature magnetic refrigerator, Adv Cryogenics Eng, 31, 743, 10.1007/978-1-4613-2213-9_84
Hakuraku, 1986, A rotary magnetic refrigerator for superfluid-helium production, J Appl Phys, 60, 3266, 10.1063/1.337716
Hakuraku, 1986, A magnetic refrigerator for superfluid-helium equipped with a rotating superconducting magnet system, Jpn J Appl Phys Part 1 - Regul Pap Short Notes Rev Pap, 25, 140, 10.1143/JJAP.25.140
Taussig, 1986, Magnetic refrigeration based on magnetically active
Nakagome, 1986, Reciprocating magnetic refrigerator for helium liquefaction, Adv Cryogenics Eng, 31, 753, 10.1007/978-1-4613-2213-9_85
Nakagome, 1988, A parasitic magnetic refrigerator for cooling superconducting magnet, IEEE Trans Magn, 24, 1113, 10.1109/20.11425
Kuz'min, 1991, Magnetic refrigerants for the 4.2-20 K region: garnets or perovskites?, J Phys D: Appl Phys, 24, 2039, 10.1088/0022-3727/24/11/020
Filin, 1992, Development and study of magnetic refrigerators of the static type, IEEE Trans Magn, 28, 953, 10.1109/20.120037
DeGregoria, 1992, Modeling the active magnetic regenerator, Adv Cryogenics Eng, 37, 867, 10.1007/978-1-4615-3368-9_13
Bezaguet, 1994, Design and construction of a static magnetic refrigerator operating between 1.8-K and 4.5-K, Cryogenics, 34, 227, 10.1016/S0011-2275(05)80049-9
Jeong, 1994, Tandem magnetic refrigerator for 1.8-K, Cryogenics, 34, 263, 10.1016/0011-2275(94)90105-8
Zimm, 1995
Kashani, 1996
Kashani, 1995, Development of a magnetic refrigerator operating between 2 K and 10 K, Cryocoolers, 8, 637, 10.1007/978-1-4757-9888-3_63
Satoh, 1996
Zimm, 1996
Ohira, 1996, The characteristics of magnetic refrigeration operating at the temperature of 20 K
Hall, 1998, Analyzing magnetic refrigeration efficiency: a rotary AMR - Reverse Brayton case study, vol. 43 Pts a and B, 1719
Yayama, 2000, Hybrid cryogenic refrigerator: combination of brayton magnetic-cooling and Gifford-McMahon gas-cooling system, Jpn J Appl Phys, 39, 4220, 10.1143/JJAP.39.4220
Hepburn, 2001, Cooling system for ultra low temperature cryogenic detector cameras, 72
Kamiya, 2006, Design and build of magnetic refrigerator for hydrogen liquefaction, vol. 51A and B, 591
Numazawa, 2008, Development of a magnetic refirgerator for hydrogen liquefaction, vol. 53a and 53b, 1183
Matsumoto, 2009, Magnetic refrigerator for hydrogen liquefaction, 012028
Numazawa, 2013, Magnetic refrigerator for hydrogen liquefaction, Progr Supercond Cryogen, 15, 1, 10.9714/psac.2013.15.2.001
Kim, 2013, Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77 K and 20 K, Cryogenics, 57, 113, 10.1016/j.cryogenics.2013.06.002
Brown, 1978
Steyert, 1978
Kirol, 1987, Rotary recuperative magnetic heat pump
Green, 1990, A Gadolinium-Terbium Active Regenerator, Adv Cryogenics Eng, 35, 1165
Zimm, 1998, Description and performance of a near-room temperature magnetic refrigerator, vol. 43 Pts a and B, 1759
Lawton, 1999
Bohigas, 2000, Room-temperature magnetic refrigerator using permanent magnets, IEEE Trans Magn, 36, 538, 10.1109/20.846216
Hirano, 2002, Development of magnetic refrigerator for room temperature application, vol. 47, Pts a and B, 1027
Rowe, 2002, Design of an active magnetic regenerator test apparatus, vol 47, Pts a and B, 995
Zimm, 2003
Zimm, 2005, Design and performance of a permanent magnet rotary refrigerator, 367
Zimm, 2006, Design and performance of a permanent-magnet rotary refrigerator, Int J Refrig-Rev Int Froid, 29, 1302, 10.1016/j.ijrefrig.2006.07.014
Blumenfeld, 2002, High temperature superconducting magnetic refrigeration, vol. 47, Pts a and B, 1019
Lu, 2005, A permanent magnet magneto-refrigerator study on using Gd/Gd-Si-Ge/Gd-Si-Ge-Ga alloys, 291
Okamura, 2006, Performance of a room-temperature rotary magnetic refrigerator, Int J Refrig-Rev Int Froid, 29, 1327, 10.1016/j.ijrefrig.2006.07.020
Clot, 2003, A magnet-based device for active magnetic regenerative refrigeration, IEEE Trans Magn, 39, 3349, 10.1109/TMAG.2003.816253
Allab, 2005, A magnetic field source system for magnetic refrigeration and its interaction with magnetocaloric material, 309
Richard, 2004, Magnetic refrigeration: single and multimaterial active magnetic regenerator experiments, J Appl Phys, 95, 2146, 10.1063/1.1643200
Rowe, 2006, Experimental investigation of a three-material layered active magnetic regenerator, Int J Refrig-Rev Int Froid, 29, 1286, 10.1016/j.ijrefrig.2006.07.012
Shir, 2005, Transient response in magnetocaloric regeneration, IEEE Trans Magn, 41, 2129, 10.1109/TMAG.2005.848786
Vasile, 2006, Innovative design of a magnetocaloric system, Int J Refrig-Rev Int Froid, 29, 1318, 10.1016/j.ijrefrig.2006.07.016
Yu, 2005, Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration, 375
Gao, 2006, Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration, Int J Refrig-Rev Int Froid, 29, 1274, 10.1016/j.ijrefrig.2005.12.015
Kawanami, 2005, Optimization of a magnetic refrigerator at room temperature for air cooling systems, 275
Kim, 2005, 763
Yao, 2006, Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets, Int J Refrig-Rev Int Froid, 29, 1267, 10.1016/j.ijrefrig.2006.07.010
Hirano, 2007, Development o room temperature magnetic refrigerator-overall plan
Okamura, 2007, Improvement o 100 W class room temperature magnetic refrigerator
Egolf, 2006
Huang, 2006, Development of permanent magnetic refrigerator at room temperature, Rare Metals, 25, 641, 10.1016/S1001-0521(07)60164-8
Huang, 2007, Research on the magneto-caloric effect in LaFe11.17-XCo0.78Si1.05BX alloys
Zimm, 2007, Design and initial performance of a magnetic refrigerator with a rotating permanent magnet
Tura, 2007, Design and testing of a permanent magnet magnetic refrigerator
Buchelnikov, 2007, The prototype of effective device for magnetic refrigeration
Chen, 2007, A permanent magnet rotary magnetic refrigerator
Petersen, 2007, A numerical analysis of a reciprocating active magnetic regenerator with a parallel-plate regenerator geometry
Muller, 2007, Study of a efficiency of a magnetothermal system according to the permeability of the magnetocaloric material around its Curie temperature
Nakamura, 2008
Bahl, 2008, A versatile magnetic refrigeration test device, Rev Sci Instrum, 79, 093906, 10.1063/1.2981692
Hirano, 2009, A development of spherical-shaped magnetocaloric materials using power coating method
Zheng, 2009, Design and performance study of the active magnetic refrigerator for room-temperature application, Int J Refrig-Rev Int Froid, 32, 78, 10.1016/j.ijrefrig.2008.06.004
Bour, 2009, Experimental and numerical analysis of a reciprocating room temperature active magnetic regenerator
Coelho, 2009, Prototype of a Gd-based rotaring magnetic refrigerator for work around room temperature
Dupuis, 2009, New investigations in magnetic refrigeration device, AMR cycle and refrigerant bed performance evaluation
Kim, 2009, Investigation on the room temperature active magnetic regenerative refrigerator with permanent magnetic array
Pryds, 2009, Do simple magnetic refrigeration test devices lead to more successful prototypes?
Sari, 2009, Initial results of a tests-bed magnetic refrigeration machine with practical running conditions
Tagliafico, 2009, Design and assembly of a linear reciprocating magnetic refrigerator
Tagliafico, 2013, Preliminary experimental results from a linear reciprocating magnetic refrigerator prototype, Appl Therm Eng, 52, 492, 10.1016/j.applthermaleng.2012.12.022
Tura, 2009, Progress in the characterization and optimization of a permanent magnet magnetic refrigerator
Tusek, 2009, Magnetic cooling - development of magnetic refrigerator, Strojniski Vestn-J Mech Eng, 55, 293
Trevizoli, 2011, Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus, Int J Refrig-Rev Int Froid, 34, 1518, 10.1016/j.ijrefrig.2011.05.005
Kim, 2011, Numerical simulation and its verification for an active magnetic regenerator, Int J Refrig-Rev Int Froid, 34, 204, 10.1016/j.ijrefrig.2010.07.003
Balli, 2012, A pre-industrial magnetic cooling system for room temperature application, Appl Energy, 98, 556, 10.1016/j.apenergy.2012.04.034
Tura, 2011, Permanent magnet magnetic refrigerator design and experimental characterization, Int J Refrig-Rev Int Froid, 34, 628, 10.1016/j.ijrefrig.2010.12.009
Park, 2012, Development of the active magnetic regenerative refrigerator for room temperature application, Progr Supercond Cryogenics, 14, 60, 10.9714/sac.2012.14.3.060
Engelbrecht, 2012, Experimental results for a novel rotary active magnetic regenerator, Int J Refrig-Rev Int Froid, 35, 1498, 10.1016/j.ijrefrig.2012.05.003
Arnold, 2014, Design improvements of a permanent magnet active magnetic refrigerator, Int J Refrig-Rev Int Froid, 37, 99, 10.1016/j.ijrefrig.2013.09.024
Park, 2013, Development of the tandem reciprocating magnetic regenerative refrigerator and numerical simulation for the dead volume effect, Int J Refrig-Rev Int Froid, 36, 1741, 10.1016/j.ijrefrig.2013.03.012
He, 2013, Design and performance of a room-temperature hybrid magnetic refrigerator combined with Stirling gas refrigeration effect, Int J Refrig-Rev Int Froid, 36, 1465, 10.1016/j.ijrefrig.2013.03.014
Romero Gómez, 2013, Experimental analysis of a reciprocating magnetic refrigeration prototype, Int J Refrig, 36, 1388, 10.1016/j.ijrefrig.2013.01.008
Aprea, 2014, Initial experimental results from a rotary permanent magnet magnetic refrigerator, Int J Refrig-Rev Int Froid, 43, 111, 10.1016/j.ijrefrig.2014.03.014
Eriksen, 2015, Design and experimental tests of a rotary active magnetic regenerator prototype, Int J Refrig-Rev Int Froid, 58, 14, 10.1016/j.ijrefrig.2015.05.004
Kolano, 2016, Magnetocaloric cooling device with reciprocating motion of the magnetic field source, Acta Phys Pol A, 129, 1205, 10.12693/APhysPolA.129.1205
Lozano, 2016, Development of a novel rotary magnetic refrigerator, Int J Refrig-Rev Int Froid, 68, 187, 10.1016/j.ijrefrig.2016.04.005
Abdelmessih, 2016, Design of a Magnetic Cooling Device Using Gadolinium Alloy and Permanent Magnets
Benedict, 2016, Design and performance of a novel magnetocaloric heat pump, Sci Technol Built Environ, 22, 520, 10.1080/23744731.2016.1185889
von Ranke, 2008, The giant anisotropic magnetocaloric effect in DyAl2, J Appl Phys, 104, 093906, 10.1063/1.3009974
Lorusso, 2016, Rotating magnetocaloric effect in an anisotropic molecular dimer, Angew Chem-Int Ed, 55, 3360, 10.1002/anie.201510468
Phan, 2016, Cooling achieved by rotating an anisotropic superconductor in a constant magnetic field: a new perspective, AIP Adv, 6, 125022, 10.1063/1.4972124
Ujihara, 2007, Thermal energy harvesting device using ferromagnetic materials, Appl Phys Lett, 91, 10.1063/1.2775096
Kitanovski, 2010, Innovative ideas for future research on magnetocaloric technologies, Int J Refrig-Rev Int Froid, 33, 449, 10.1016/j.ijrefrig.2009.11.005
Moya, 2014, Caloric materials near ferroic phase transitions, Nat Mater, 13, 439, 10.1038/nmat3951
Gough, 1805, A description of a property of caoutchouc or Indian rubber; with some reflections on the cause of the elasticity of this substance, Mem Lit Phil Soc Manch, 1, 288
Joule, 1859, On some thermo-dynamic properties of solids, Philos Trans R Soc Lond, 149, 91, 10.1098/rstl.1859.0005
Manosa, 2017, Materials with giant mechanocaloric effects: cooling by strength, Adv Mater, 29, 1603607, 10.1002/adma.201603607
Scott, 2011, Electrocaloric materials, Annu Rev Mater Res, 41, 229, 10.1146/annurev-matsci-062910-100341
Kitanovski, 2015, Present and future caloric refrigeration and heat-pump technologies, Int J Refrig, 57, 288, 10.1016/j.ijrefrig.2015.06.008
Bruederlin, 2017, SMA foil-based elastocaloric cooling: from material behavior to device engineering, J Phys D: Appl Phys, 50, 10.1088/1361-6463/aa87a2
de Vries, 2017, Application of Peltier thermal diodes in a magnetocaloric heat pump, Appl Therm Eng, 111, 377, 10.1016/j.applthermaleng.2016.09.103
Cwik, 2009, Magnetic properties and specific heat of Dy1-xLaxNi2 compounds, J Magn Magn Mater, 321, 2821, 10.1016/j.jmmm.2009.04.014
Marcos, 2004, Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2, J Magn Magn Mater, 272, 579, 10.1016/j.jmmm.2003.11.225
de Oliveira, 2008, Magnetocaloric effect in the Laves phase pseudobinaries (Dy1-c R-c)Al-2 (R = Er and Ho), J Magn Magn Mater, 320, 386, 10.1016/j.jmmm.2007.06.014
Troper, 2004, Magnetocaloric effect in the pseudobinary Ho(Co1-cRhc)(2), J Magn Magn Mater, 272, 583, 10.1016/j.jmmm.2003.11.230
Singh, 2005, Anomalous magnetocaloric effect and magnetoresistance in Ho(Ni, Fe)(2) compounds, Phys Rev B, 72, 014452, 10.1103/PhysRevB.72.014452
de Oliveira, 2004, Magnetocaloric effect in rare-earth pseudobinary Er(Co1-cNic)(2), Phys Rev B, 69, 064421, 10.1103/PhysRevB.69.064421
Gomes, 2006, La(Fe1-xCox)(11.44)Al-1.56: a composite system for Ericsson-cycle-based magnetic refrigerators, J Appl Phys, 99, 116107, 10.1063/1.2203389
Balli, 2007, Optimization of La(Fe, Co)(13-x)Si-x based compounds for magnetic refrigeration, J Phys-Condes Matter, 19, 236230, 10.1088/0953-8984/19/23/236230
Shen, 2008, Large magnetic entropy change and low hysteresis loss in the Nd- and Co-doped La(Fe, Si)(13) compounds, J Appl Phys, 103, 07B317, 10.1063/1.2829035
Kumar, 2009, Magnetic and magnetocaloric effect in melt spun La1-xRxFe(13-y)Al(y)C(z) (R = Pr and Nd) compounds, J Phys D-Appl Phys, 42, 205003, 10.1088/0022-3727/42/20/205003
Pathak, 2009, Magnetic, magnetocaloric, and magnetoelastic properties of LaFe11.57Si1.43Bx compounds, J Appl Phys, 106, 063917, 10.1063/1.3225995
Sun, 2009
Balli, 2008, The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature, Appl Phys Lett, 92, 232505, 10.1063/1.2939098
Zeng, 2012, Direct measurements of magneto-caloric effect of Gd5Si2Ge2 alloys in low magnetic field, J Supercond Nov Magn, 25, 487, 10.1007/s10948-011-1307-1
Kumar, 2008, Microstructure and magnetocaloric effect in Gd5Si2(Ge1-xGax)(2) alloys, J Alloys Comp, 461, 14, 10.1016/j.jallcom.2007.07.023
Hou, 2011, The magentocaloric effect of Gd5Si2Ge2-xZnx alloy, 525
Chen, 2011, The studies of phase relation, microstructure, magnetic transition, magnetocaloric effect in (Gd(1-x)Er(x))(5)Si(1.7)Ge(2.3) compounds, J Alloys Comp, 509, 9604, 10.1016/j.jallcom.2011.07.004
Yucel, 2006, Changes in the phase structure and magnetic characteristics of Gd5Si2Ge2 when alloyed with Mn, J Alloys Comp, 420, 182, 10.1016/j.jallcom.2005.10.078
Yuzuak, 2012, Effects of manganese doping on magnetocaloric effect in Ge-rich Gd5Ge2.05Si1.95 alloy, J Rare Earths, 30, 217, 10.1016/S1002-0721(12)60026-X
Campoy, 2007, Magnetocaloric effect and transport properties of Gd5Ge2(Si1-xSnx)(2) (x=0.23 and 0.40) compounds, J Magn Magn Mater, 316, 368, 10.1016/j.jmmm.2007.03.023
Misra, 2009, Structural, magnetic, and thermal characteristics of the phase transitions in Gd5GaxGe4-x magnetocaloric materials, J Solid State Chem, 182, 3031, 10.1016/j.jssc.2009.08.016
Ryan, 2003, Field and temperature induced magnetic transition in Gd5Sn4: a giant magnetocaloric material, Phys Rev Lett, 90, 117202, 10.1103/PhysRevLett.90.117202
Campoy, 2004, Experimental study of the magnetocaloric effect in Gd5Sn2Si2 compound, J Magn Magn Mater, 272, 2375, 10.1016/j.jmmm.2003.12.1010
Svitlyk, 2010, Structural, magnetic and magnetocaloric properties of the Gd5Si4-xSbx (x=0.5-3.5) phases, J Magn Magn Mater, 322, 2558, 10.1016/j.jmmm.2010.03.020
Tegus, 2002, Magnetic and magneto-caloric properties of Tb5Ge2Si2, J Appl Phys, 91, 8534, 10.1063/1.1450830
Yao, 2012, Tuning magnetic and structural transitions through valence electron concentration in the giant magnetocaloric Gd5-xEuxGe4 phases, Chem Mater, 24, 552, 10.1021/cm203148e
Yuzuak, 2010, Giant magnetocaloric effect in Tb5Ge2-xSi2-xMn2x compounds, Chin Phys B, 19, 057501, 10.1088/1674-1056/19/5/057501
Wada, 2000, Magnetic phase transition and magnetocaloric effect of DyMn2Ge2, J Magn Magn Mater, 218, 203, 10.1016/S0304-8853(00)00410-8
Kumar, 2007, Magnetic and magnetocaloric properties of SmxGd1-xMn2Si2, J Alloys Comp, 427, 42, 10.1016/j.jallcom.2006.03.025
Kumar, 2007, Heat capacity and magnetocaloric effect in polycrystalline Gd1-xSmxMn2Si2, J Magn Magn Mater, 319, 1, 10.1016/j.jmmm.2007.04.029
Kumar, 2007, Effect of Ge substitution for Si on the anomalous magnetocaloric and magnetoresistance properties of GdMn2Si2 compounds, J Appl Phys, 101, 013908, 10.1063/1.2402975
Kumar, 2007, Multiple magnetic transitions and the magnetocaloric effect in Gd1-xSmxMn2Ge2 compounds, J Phys-Condes Matter, 19, 386210, 10.1088/0953-8984/19/38/386210
Samanta, 2009, Contribution of energy-gap in the ferromagnetic spin-wave spectrum on magnetocaloric parameters of CeRu2Ge2, J Phys-Condes Matter, 21, 026010, 10.1088/0953-8984/21/2/026010
Wang, 2009, Re-entrant ferromagnet PrMn2Ge0.8Si1.2: magnetocaloric effect, J Appl Phys, 105, 07A909, 10.1063/1.3059610
Dincer, 2010, Magnetoresistance and magnetocaloric properties of the Pr0.1Gd0.9Mn2Ge2 compound, Phys Scr, 81, 025703, 10.1088/0031-8949/81/02/025703
Li, 2011, Effect of Fe substitution on magnetic and magnetocaloric effect in Gd(Co(1-x)Fe(x))(2)B(2) compounds, J Appl Phys, 110, 083915, 10.1063/1.3654013
Li, 2012, Giant reversible magnetocaloric effect in ErMn2Si2 compound with a second order magnetic phase transition, Appl Phys Lett, 100, 152403, 10.1063/1.4704155
Li, 2012, Effect of Fe substitution on magnetocaloric effect in borocarbide superconductor Dy(Ni1-xFex)(2)B2C, 44
Li, 2012, Study of the magnetic properties and magnetocaloric effect in RCo2B2 (R = Tb, Dy and Ho) compounds, Intermetallics, 23, 101, 10.1016/j.intermet.2011.12.002
Yusuf, 2012, Magnetic properties and magnetocaloric effect in intermetallic compounds NdMn2-xCoxSi2, J Appl Phys, 111, 093914, 10.1063/1.4709761
Peña, 2008, Structural, magnetic and magnetotransport properties of La0.7Pb0.3(Mn1–xNix)O3 (0.1 ≤x ≤ 0.3) CMR manganites, Eur J Inorg Chem, 2008, 2569, 10.1002/ejic.200701173
Li, 2008, Large magnetocaloric effect in La2/3Ca1/3Mn1-xSixO3 (x=0.05-0.20) manganites, J Phys D-Appl Phys, 41, 175002, 10.1088/0022-3727/41/17/175002
Dhahri, 2008, Effect of Sn-doping on the structural, magnetic and magnetocaloric properties of La0.67Ba0.33Mn1-xSnxO3 compounds, J Magn Magn Mater, 320, 2613, 10.1016/j.jmmm.2008.05.030
Kolat, 2007, Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds, Mater Sci Eng B-Solid State Mater Adv Technol, 140, 212, 10.1016/j.mseb.2007.05.002
Cabeza, 1999, Magnetization and resistivity in chromium doped manganites, J Phys: Condens Matter, 11, 2569
Cao, 2001, Local distortions in La0.7Ca0.3Mn1-bAbO3 (A=Ti and Ga) colossal magnetoresistance samples: Correlations with magnetization and evidence for cluster formation, Phys Rev B, 64, 184409, 10.1103/PhysRevB.64.184409
Liu, 2000, Effect of Ti dopant on the carrier density collapse in colossal magnetoresistance material La0.7Ca0.3Mn1-yTiyO3, Phys Rev B, 62, 15112, 10.1103/PhysRevB.62.15112
Rivadulla, 2000, Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compound La2/3Ca1/3Mn1-xAxO3 (A=Co, Cr; x<0.1), Phys Rev B, 62, 5678, 10.1103/PhysRevB.62.5678
Sun, 2000, Effects of Cr doping in La0.67Ca0.33MnO3: magnetization, resistivity, and thermopower, Phys Rev B, 63, 054404, 10.1103/PhysRevB.63.054404
Turilli, 1996, Relationship between spin order and transport and magnetotransport properties in La0.67Ca0.33Mn1-xAlxOy compounds, Phys Rev B., 54, 13052, 10.1103/PhysRevB.54.13052
Zhao, 2008, Magnetic, transport and microstructural properties of polycrystalline samples with nominal composition of La0.7Ca0.3Mn1−xVxO3 (0<x<0.2), J Magn Magn Mater, 320, 924, 10.1016/j.jmmm.2007.09.016
Zhou, 2005, Relationship between the magnetocaloric effect and sequential magnetic phase transitions in Ni-Mn-Ga alloys, J Appl Phys, 97, 10M515, 10.1063/1.1853891
Albertini, 2004, Composition dependence of magnetic and magnetothermal properties of Ni-Mn-Ga shape memory alloys, J Magn Magn Mater, 272, 2111, 10.1016/j.jmmm.2003.12.883
Albertini, 2006, Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys, J Appl Phys, 100, 023908, 10.1063/1.2218470
Khan, 2006, The overlap of first- and second-order phase transitions and related magnetic entropy changes in Ni2+xMn1-xGa Heusler alloys, IEEE Trans Magn, 42, 3108, 10.1109/TMAG.2006.879632
Babita, 2007, Phase transformation and magnetic properties in Ni-Mn-Ga Heusler alloys, J Alloys Comp, 432, 23, 10.1016/j.jallcom.2006.06.003
Muthu, 2010, Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50-xMn37+xSn13 Heusler alloys, J Phys D-Appl Phys, 43, 425002, 10.1088/0022-3727/43/42/425002
Phan, 2012, Magnetocaloric effect in Ni0.5Mn0.5-xSnx alloys, IEEE Trans Magn, 48, 1381, 10.1109/TMAG.2011.2171478
Ma, 2010, Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni-Mn-Co-Sn alloy, Appl Phys Lett, 97, 052506, 10.1063/1.3476351
Podgornykh, 2011, Heat capacity of the Ni50Mn37(In0.2Sn0.8)(13) alloy, 012004
Pathak, 2007, Large magnetic entropy change in Ni50Mn50-xInx Heusler alloys, Appl Phys Lett, 90, 262504, 10.1063/1.2752720
Gao, 2009, Tuning the magnetic entropy change of Ni50-xMn35+xIn15 alloys by varying the Mn content, J Appl Phys, 105, 083902, 10.1063/1.3098229
Rao, 2010, Large low-field inverse magnetocaloric effect near room temperature in Ni50-x Mn37+x In-13 Heusler alloys, Appl Phys A-Mater Sci Process, 99, 265, 10.1007/s00339-009-5517-3
Xuan, 2011, Martensitic transformation and magnetic properties in high-Mn content Mn50Ni50-xInx ferromagnetic shape memory alloys, J Alloys Comp, 509, 5761, 10.1016/j.jallcom.2011.01.073
Liu, 2012, Magnetocaloric effect in high Ni content Ni(52)Mn(48-x)In(x) alloys under low field change, J Magn Magn Mater, 324, 514, 10.1016/j.jmmm.2011.08.031
Pathak, 2010, Magnetism and magnetocaloric effects in Ni50Mn35-xCoxIn15 Heusler alloys, J Appl Phys, 107, 09A907, 10.1063/1.3335893
Pathak, 2008, The effect of partial substitution of In by Si on the phase transitions and respective magnetic entropy changes of Ni50Mn35In15 Heusler alloy, J Phys D-Appl Phys, 41, 202004, 10.1088/0022-3727/41/20/202004
Takeuchi, 2012, Enhancement of magnetocaloric properties near room temperature in Ga-doped Ni50Mn34.5In15.5 Heusler-type alloy, J Appl Phys, 111, 103902, 10.1063/1.4716033
Dubenko, 2009, Magnetocaloric effects in Ni-Mn-X based Heusler alloys with X = Ga, Sb, In, J Magn Magn Mater, 321, 754, 10.1016/j.jmmm.2008.11.043
Nayak, 2010, Magneto-thermal and magneto-transport behavior around the martensitic transition in Ni50-xCoxMn40Sb10 (x=9, 9.5) Heusler alloys, J Alloys Comp, 499, 140, 10.1016/j.jallcom.2010.03.190
Pathak, 2011, Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15 Heusler alloy, J Appl Phys, 109, 07A916, 10.1063/1.3540696
Pathak, 2010, Magnetoresistance and magnetocaloric effect at a structural phase transition from a paramagnetic martensitic state to a paramagnetic austenitic state in Ni50Mn36.5In13.5 Heusler alloys, Appl Phys Lett, 96, 172503, 10.1063/1.3422483
Ma, 2011, Magnetic and magnetocaloric properties in melt-spun and annealed Ni42 7Mn40 8Co5 2Sn113 ribbons, J Alloys Comp, 509, 1111, 10.1016/j.jallcom.2010.09.205
Bruck, 2003, Magnetic refrigeration towards room-temperature applications, Physica B, 327, 431, 10.1016/S0921-4526(02)01769-6