Magnetocaloric effect: From materials research to refrigeration devices

Progress in Materials Science - Tập 93 - Trang 112-232 - 2018
V. Franco1, J.S. Blázquez1, J.J. Ipus1, J.Y. Law1, L.M. Moreno-Ramírez1, A. Conde1
1Dpto. Física de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla, Spain

Tài liệu tham khảo

Energy Flow Charts. Laurence Livermore National Laboratory. <https://flowcharts.llnl.gov/commodities/energy>. Gutfleisch, 2011, Magnetic materials and devices for the 21st Century: stronger, lighter, and more energy efficient, Adv Mater, 23, 821, 10.1002/adma.201002180 Gutfleisch, 2012, Preface to the viewpoint set on: magnetic materials for energy, Scr Mater, 67, 521, 10.1016/j.scriptamat.2012.07.012 International Energy Outlook. U.S. Energy Information Administration; 2016. <http://www.eia.gov/outlooks/ieo>. Sivak, 2013, Put a chill on the global energy supply?, Am Sci, 100, 330, 10.1511/2013.104.330 An EU Strategy on Heating and Cooling. European Commission; 2016. <https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf>. Pecharsky, 1997, Giant magnetocaloric effect in Gd-5(Si2Ge2), Phys Rev Lett, 78, 4494, 10.1103/PhysRevLett.78.4494 Yu, 2010, A review of magnetic refrigerator and heat pump prototypes built before the year 2010, Int J Refrig-Rev Int Froid, 33, 1029, 10.1016/j.ijrefrig.2010.04.002 Brown, 1976, Magnetic heat pumping near room temperature, J Appl Phys, 47, 3673, 10.1063/1.323176 Premiere of cutting-edge cooling appliance at CES; 2015. <https://www.basf.com/en/company/news-and-media/news-releases/2015/01/p-15-100.html>. Gschneidner, 2000, Magnetocaloric materials, Annu Rev Mater Sci, 30, 387, 10.1146/annurev.matsci.30.1.387 Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep Prog Phys, 68, 1479, 10.1088/0034-4885/68/6/R04 Bruck, 2005, Developments in magnetocaloric refrigeration, J Phys D-Appl Phys, 38, R381, 10.1088/0022-3727/38/23/R01 Gschneidner, 2008, Thirty years of near room temperature magnetic cooling: where we are today and future prospects, Int J Refrig-Rev Int Froid, 31, 945, 10.1016/j.ijrefrig.2008.01.004 Shen, 2009, Recent progress in exploring magnetocaloric materials, Adv Mater, 21, 4545, 10.1002/adma.200901072 de Oliveira, 2010, Theoretical aspects of the magnetocaloric effect, Phys Rep-Rev Sec Phys Lett, 489, 89 Nielsen, 2011, Review on numerical modeling of active magnetic regenerators for room temperature applications, Int J Refrig-Rev Int Froid, 34, 603, 10.1016/j.ijrefrig.2010.12.026 Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu Rev Mater Res, 42, 305, 10.1146/annurev-matsci-062910-100356 Smith, 2012, Materials challenges for high performance magnetocaloric refrigeration devices, Adv Energy Mater, 2, 1288, 10.1002/aenm.201200167 Gomez, 2013, A review of room temperature linear reciprocating magnetic refrigerators, Renew Sust Energ Rev, 21, 1, 10.1016/j.rser.2012.12.018 Brown, 2014, Review of alternative cooling technologies, Appl Therm Eng, 64, 252, 10.1016/j.applthermaleng.2013.12.014 Kitanovski, 2015 Tishin, 2003 Pecharsky, 1999, Magnetocaloric effect from indirect measurements: magnetization and heat capacity, J Appl Phys, 86, 565, 10.1063/1.370767 Pecharsky, 2001, Thermodynamics of the magnetocaloric effect, Phys Rev B, 64, 144406, 10.1103/PhysRevB.64.144406 Wood, 1985, General-analysis of magnetic refrigeration and its optimization using a new concept - maximization of refrigerant capacity, Cryogenics, 25, 667, 10.1016/0011-2275(85)90187-0 Gschneidner, 1999, Recent developments in magnetic refrigeration, Mater Sci Forum, 315–317, 69, 10.4028/www.scientific.net/MSF.315-317.69 Provenzano, 2004, Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron, Nature, 429, 853, 10.1038/nature02657 Ucar, 2012, Overview of amorphous and nanocrystalline magnetocaloric materials operating near room temperature, Jom, 64, 782, 10.1007/s11837-012-0349-6 Bruck, 2016, A universal metric for ferroic energy materials, Philos Trans R Soc A-Math Phys Eng Sci, 374, 20150303, 10.1098/rsta.2015.0303 Steyert, 1978, Stirling-cycle rotating magnetic refrigerators and heat engines for use near room-temperature, J Appl Phys, 49, 1216, 10.1063/1.325009 Tishin, 2016, A review and new perspectives for the magnetocaloric effect: new materials and local heating and cooling inside the human body, Int J Refrig-Rev Int Froid, 68, 177, 10.1016/j.ijrefrig.2016.04.020 Franco, 2009, Field dependence of the adiabatic temperature change in second order phase transition materials: application to Gd, J Appl Phys, 106, 103911, 10.1063/1.3261843 Liu, 2012, Giant magnetocaloric effect driven by structural transitions, Nat Mater, 11, 620, 10.1038/nmat3334 Law, 2011, Direct magnetocaloric measurements of Fe-B-Cr-X (X = La, Ce) amorphous ribbons, J Appl Phys, 110, 023907, 10.1063/1.3613666 Aliev, 2010, Magnetocaloric properties of manganites in alternating magnetic fields, Jetp Lett, 90, 663, 10.1134/S0021364009220068 Aliev, 2016, Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz, J Alloys Comp, 676, 601, 10.1016/j.jallcom.2016.03.238 Skokov, 2013, Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4, J Alloys Comp, 552, 310, 10.1016/j.jallcom.2012.10.008 Gottschall, 2016, On the S(T) diagram of magnetocaloric materials with first-order transition: kinetic and cyclic effects of Heusler alloys, Acta Mater, 107, 1, 10.1016/j.actamat.2016.01.052 Kohama, 2010, AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields, Rev Sci Instrum, 81, 104902, 10.1063/1.3475155 Kihara, 2013, Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T, Rev Sci Instrum, 84, 074901, 10.1063/1.4811798 Cugini, 2014, Non-contact direct measurement of the magnetocaloric effect in thin samples, Rev Sci Instrum, 85, 074902, 10.1063/1.4890394 Döntgen, 2015, Temperature dependent low-field measurements of the magnetocaloric ΔT with sub-mK resolution in small volume and thin film samples, Appl Phys Lett, 106, 032408, 10.1063/1.4906426 Cugini, 2016, Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect, Appl Phys Lett, 108, 012407, 10.1063/1.4939451 Marcos, 2003, A high-sensitivity differential scanning calorimeter with magnetic field for magnetostructural transitions, Rev Sci Instrum, 74, 4768, 10.1063/1.1614857 Casanova, 2005, Direct observation of the magnetic-field-induced entropy change in Gd-5(SixGe1-x)(4) giant magnetocaloric alloys, Appl Phys Lett, 86, 262504, 10.1063/1.1968431 Basso, 2008, A Peltier cell calorimeter for the direct measurement of the isothermal entropy change in magnetic materials, Rev Sci Instrum, 79, 063907, 10.1063/1.2940218 Basso, 2010, A Peltier cells differential calorimeter with kinetic correction for the measurement of c(p)(H, T) and Delta s(H, T) of magnetocaloric materials, Rev Sci Instrum, 81, 113904, 10.1063/1.3499253 Nielsen, 2015, Direct measurements of the magnetic entropy change, Rev Sci Instrum, 86, 103903, 10.1063/1.4932308 Tocado, 2009, Entropy determinations and magnetocaloric parameters in systems with first-order transitions: study of MnAs, J Appl Phys, 105, 093918, 10.1063/1.3093880 Wang, 2012 Palacios, 2010, Direct measurement of the magnetocaloric effect in Gd5Si2Ge1.9Ga0.1, J Phys: Conf Ser, 200, 092011 Wang, 2014, Comparative analysis of magnetic and caloric determinations of the magnetocaloric effect in Mn0.99Co0.01As, EPJ Web Conf, 75, 04003, 10.1051/epjconf/20147504003 Palacios, 2015, Analysis of the magnetocaloric effect in heusler alloys: study of Ni50CoMn36Sn13 by calorimetric techniques, Entropy, 17, 1236, 10.3390/e17031236 Caballero-Flores, 2009, Influence of the demagnetizing field on the determination of the magnetocaloric effect from magnetization curves, J Appl Phys, 105, 07A919, 10.1063/1.3067463 Carvalho, 2011, The isothermal variation of the entropy (Delta S-T) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples, J Alloys Comp, 509, 3452, 10.1016/j.jallcom.2010.12.088 Caron, 2009, On the determination of the magnetic entropy change in materials with first-order transitions, J Magn Magn Mater, 321, 3559, 10.1016/j.jmmm.2009.06.086 Franco Kaeswurm, 2016, Assessment of the magnetocaloric effect in La, Pr(Fe, Si) under cycling, J Magn Magn Mater, 406, 259, 10.1016/j.jmmm.2016.01.045 Moore, 2009, Reducing extrinsic hysteresis in first-order La(Fe Co, Si)(13) magnetocaloric systems, Appl Phys Lett, 95, 252504, 10.1063/1.3276565 Hansen, 2010, Consequences of the magnetocaloric effect on magnetometry measurements, J Appl Phys, 108, 043923, 10.1063/1.3466977 Pecharsky, 1999, Heat capacity near first order phase transitions and the magnetocaloric effect: an analysis of the errors, and a case study of Gd-5(Si2Ge2) and Dy, J Appl Phys, 86, 6315, 10.1063/1.371734 Pecharsky, 1997, A 3–350 K fast automatic small sample calorimeter, Rev Sci Instrum, 68, 4196, 10.1063/1.1148367 Plackowski, 2002, Specific heat and magnetocaloric effect measurements using commercial heat-flow sensors, Rev Sci Instrum, 73, 2755, 10.1063/1.1480452 Jeppesen, 2008, Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field, Rev Sci Instrum, 79, 083901, 10.1063/1.2957611 Minakov, 2005, Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields, Rev Sci Instrum, 76, 10.1063/1.1889432 Morrison, 2012, A calorimetric method to detect a weak or distributed latent heat contribution at first order magnetic transitions, Rev Sci Instrum, 83, 033901, 10.1063/1.3690381 Moreno-Ramírez, 2016, Optimal temperature range for determining magnetocaloric magnitudes from heat capacity, J Phys D: Appl Phys, 49, 495001, 10.1088/0022-3727/49/49/495001 Moreno-Ramírez LM, Franco V, Conde A, Neves-Bez H, Mudryk Y, Pecharsky VK. Influence of the starting temperature of calorimetric measurements on the accuracy of determined magnetocaloric effect [submitted for publication]. Kuz'min, 2007, Factors limiting the operation frequency of magnetic refrigerators, Appl Phys Lett, 90, 251916, 10.1063/1.2750540 Ghorbani Zavareh, 2015, Direct measurements of the magnetocaloric effect in pulsed magnetic fields: the example of the Heusler alloy Ni50Mn35In15, Appl Phys Lett, 106, 071904, 10.1063/1.4913446 Gottschall, 2016, Dynamical effects of the martensitic transition in magnetocaloric heusler alloys from direct Delta T-ad measurements under different magnetic-field-sweep rates, Phys Rev Appl, 5, 024013, 10.1103/PhysRevApplied.5.024013 Basso, 2005, Theoretical approach to the magnetocaloric effect with hysteresis, J Magn Magn Mater, 290, 654, 10.1016/j.jmmm.2004.11.324 Kuz'min, 2008, Landau-type parametrization of the equation of state of a ferromagnet, Phys Rev B, 77, 184431, 10.1103/PhysRevB.77.184431 Arrott, 1967, Approximate equation of state for nickel near its critical temperature, Phys Rev Lett, 19, 786, 10.1103/PhysRevLett.19.786 Franco, 2006, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change, Appl Phys Lett, 89, 222512, 10.1063/1.2399361 Franco, 2008, Magnetocaloric response of FeCrB amorphous alloys: predicting the magnetic entropy change from the Arrott-Noakes equation of state, J Appl Phys, 104, 033903, 10.1063/1.2961310 Fan, 2011, Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence of magnetic entropy change, Appl Phys Lett, 98, 072508, 10.1063/1.3554390 Zhang, 2011, 3D-Heisenberg ferromagnetic characteristics in CuCr2Se4, J Appl Phys, 109, 113911, 10.1063/1.3594752 Franco, 2010, Scaling laws for the magnetocaloric effect in second order phase transitions: from physics to applications for the characterization of materials, Int J Refrig-Rev Int Froid, 33, 465, 10.1016/j.ijrefrig.2009.12.019 Bean, 1962, Magnetic disorder as a first-order phase transformation, Phys Rev, 126, 104, 10.1103/PhysRev.126.104 Romero-Muniz, 2017, Two different critical regimes enclosed in the Bean-Rodbell model and their implications for the field dependence and universal scaling of the magnetocaloric effect, Phys Chem Chem Phys, 19, 3582, 10.1039/C6CP06291A Tegus, 2005, A model description of the first-order phase transition in MnFeP1-xAsx, J Magn Magn Mater, 290, 658, 10.1016/j.jmmm.2004.11.325 Balli, 2007, Modelling of the magnetocaloric effect in Gd1-xTbx and MnAs compounds, J Magn Magn Mater, 316, E558, 10.1016/j.jmmm.2007.03.019 Palacios, 2016, Effect of Gd polarization on the large magnetocaloric effect of GdCrO4 in a broad temperature range, Phys Rev B, 93, 064420, 10.1103/PhysRevB.93.064420 Yahyaoui, 2016, Modeling the magnetic properties and magnetocaloric effect of La0.7Sr0.3Mn0.9Ti0.1O3, J Alloys Comp, 685, 633, 10.1016/j.jallcom.2016.05.318 Franco, 2016, First-Order Reversal Curve (FORC) analysis of magnetocaloric Heusler-Type alloys, IEEE Magn Lett, 7, 6602904, 10.1109/LMAG.2016.2541622 Harmon, 2002, Electronic structure, optical, and magneto-optical properties of Gd-5(Si2Ge2) compound, J Appl Phys, 91, 9815, 10.1063/1.1461896 Mihalik, 2004, Anisotropic magnetic properties and specific-heat study of a TbFe2Si2 single crystal, Phys Rev B, 70, 134405, 10.1103/PhysRevB.70.134405 Paudyal, 2006, Electron correlation effects on the magnetostructural transition and magnetocaloric effect in Gd5Si2Ge2, Phys Rev B, 73, 144406, 10.1103/PhysRevB.73.144406 Buchelnikov, 2010, First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1-xGa, Phys Rev B, 81, 094411, 10.1103/PhysRevB.81.094411 Entel, 2013, Optimization of smart Heusler alloys from first principles, J Alloys Comp, 577, S107, 10.1016/j.jallcom.2012.03.005 Korotana, 2013, A hybrid-exchange density functional study of Ca-doped LaMnO3, J Appl Phys, 113, 17A910, 10.1063/1.4794877 Li, 2016, Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy, J Phys-Condes Matter, 28, 216002, 10.1088/0953-8984/28/21/216002 Korotana, 2016, A combined thermodynamics and first principles study of the electronic, lattice and magnetic contributions to the magnetocaloric effect in La0.75Ca0.25MnO3, J Phys D-Appl Phys, 49, 285001, 10.1088/0022-3727/49/28/285001 Pindor, 1983, Disordered local moment state of magnetic transition metals: a self-consistent KKR CPA calculation, J Phys F: Metal Phys, 13, 979, 10.1088/0305-4608/13/5/012 Staunton, 2014, Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: compositional hypersensitivity of FeRh, Phys Rev B, 89, 054427, 10.1103/PhysRevB.89.054427 Zverev, 2016, Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6, Appl Phys Lett, 108, 192405, 10.1063/1.4949355 Petit, 2015, Complex magnetism of lanthanide intermetallics and the role of their valence electrons: ab initio theory and experiment, Phys Rev Lett, 115, 207201, 10.1103/PhysRevLett.115.207201 Fujita, 2016, Relation between paramagnetic entropy and disordered local moment in La(Fe0.88Si0.12)(13) magnetocaloric compound, Apl Mater, 4, 064108, 10.1063/1.4953434 Hou, 2010, Study on magnetocaloric effect of Gd0.95Nb0.05 alloys, Rare Metal Mater Eng, 39, 126 Min, 2013, Large magnetocaloric effect and application features of Gd99.75Fe0.25 alloy, Rare Metal Mater Eng, 42, 362 Wang, 2004, The magnetic entropy changes in Gd1-xBx alloys, Solid State Commun, 131, 97, 10.1016/j.ssc.2004.04.040 Jayaraman, 2011, Near room temperature magnetocaloric properties of melt-spun Gd100-xBx (x=0, 5, 10, 15, and 20 at%) alloys, J Magn Magn Mater, 323, 2037, 10.1016/j.jmmm.2011.03.006 GschneidnerJr, 1997, Some observations on the Gd-rich side of the Gd-C system, J Alloys Comp, 260, 107, 10.1016/S0925-8388(97)00146-1 Wang, 2005, The magnetic entropy changes in Gd1-xCx alloys, J Alloys Comp, 387, 6, 10.1016/j.jallcom.2004.06.031 Ma, 2009, Monte Carlo simulation of magnetic and magnetocaloric properties of binary alloy Gd1-xCx, J Magn Magn Mater, 321, L65, 10.1016/j.jmmm.2009.07.042 Chen, 2006, Magnetocaloric properties and solid solution strengthening of Gd-C and Gd-Dy-C alloys, J Alloys Comp, 422, 21, 10.1016/j.jallcom.2005.11.072 Burkhanov, 2014, Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity, Appl Phys Lett, 104, 242402, 10.1063/1.4883744 Jayaraman, 2011, Near room temperature magnetic entropy changes in as-cast Gd100-xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys, J Alloys Comp, 509, 1411, 10.1016/j.jallcom.2010.10.208 Wang, 2005, The reduced Curie temperature and magnetic entropy changes in Gd1-xInx alloys, J Alloys Comp, 396, 22, 10.1016/j.jallcom.2004.12.004 Ren, 2008, Magnetic property and magnetocaloric effect of Gd(In) solid solutions, J Appl Phys, 103, 07B323, 10.1063/1.2830684 Jayaraman, 2014, Near room-temperature magnetocaloric properties of Gd-Ga alloys, J Magn Magn Mater, 363, 201, 10.1016/j.jmmm.2014.03.082 Provenzano, 2015, Gd90Co2.5Fe7.5 alloy displaying enhanced magnetocaloric properties, J Alloys Comp, 622, 1061, 10.1016/j.jallcom.2014.10.169 Shao, 1996, Magnetic entropy in nanocomposite binary gadolinium alloys, J Appl Phys, 80, 76, 10.1063/1.362773 Pecharsky, 1999, Gd-Zn alloys as active magnetic regenerator materials for magnetic refrigeration, Cryocoolers, 10, 629 Xiao, 2016, Magnetic properties and magnetic exchange interactions in Gd1-xREx (RE=Pr, Nd) alloys, J Rare Earths, 34, 489, 10.1016/S1002-0721(16)60054-6 Xu, 2015, A GdxHo1-x-based composite and its performance characteristics in a regenerative Ericsson refrigeration cycle, J Alloys Comp, 639, 520, 10.1016/j.jallcom.2015.03.147 Perez, 2014, Magnetocaloric effect in as-cast Gd1-xYx alloys with x=0.0, 0.1, 0.2, 0.3, 0.4, J Appl Phys, 115, 17A910, 10.1063/1.4862086 Mathew, 2010, Magnetic irreversibility, spin-wave excitations and magnetocaloric effect in nanocrystalline Gadolinium, J Phys: Conference Series, 200, 072047 Miller, 2010, Magnetocaloric effect in Gd/W thin film heterostructures, J Appl Phys, 107, 09A903, 10.1063/1.3335515 Svalov, 2014, Magnetic properties and magnetic entropy change in Gd/Ti multilayers, IEEE Trans Magn, 50, 4, 10.1109/TMAG.2014.2326915 Doblas, 2017, Nanostructuring as a procedure to control the field dependence of the magnetocaloric effect, Mater Des, 114, 214, 10.1016/j.matdes.2016.11.085 Mello, 2006, Magnetocaloric effect of thin Dy films, Solid State Commun, 140, 447, 10.1016/j.ssc.2006.09.013 Medeiros, 2011, Giant magnetocaloric effect of thin Ho films, J Appl Phys, 109, 07A914, 10.1063/1.3549566 Liu, 2011, Magnetic properties of Dy nanoparticles and Al2O3-coated Dy nanocapsules, J Nanopart Res, 13, 1163, 10.1007/s11051-010-0108-y Shinde, 2015, Fabrication of Gd films by vacuum evaporation and its magnetocaloric properties, J Magn Magn Mater, 374, 144, 10.1016/j.jmmm.2014.08.007 Taskaev, 2015, Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets, J Appl Phys, 117, 5, 10.1063/1.4916377 Dudek, 2015, Colossal magnetocaloric effect in magnetoauxetic systems, Smart Mater Struct, 24, 5, 10.1088/0964-1726/24/8/085027 Crossley, 2015, New developments in caloric materials for cooling applications, AIP Adv, 5, 067153, 10.1063/1.4922871 Starkov, 2014, Multicaloric effect in a solid: new aspects, J Exp Theor Phys, 119, 258, 10.1134/S1063776114070097 Flerov, 2015, Caloric and multicaloric effects in oxygen ferroics and multiferroics, Phys Solid State, 57, 429, 10.1134/S1063783415030075 Balli, 2014, Search for the magnetocaloric effect in multiferroics oxides, 47 Szytula, 1993 Jagodzinski, 1979, Fritz H. Laves. Obituary, Acta Crystall A, 35, 343, 10.1107/S0567739479000747 Paufler, 2011, Early work on Laves phases in East Germany, Intermetallics, 19, 599, 10.1016/j.intermet.2010.11.032 Huang, 2005, Magnetic and magnetocaloric properties of quenched Hf1-xTaxFe2 materials, J Alloys Comp, 394, 80, 10.1016/j.jallcom.2004.10.047 Han, 2004, Low-field magnetic entropy changes in Hf1-xTaxFe2, J Alloys Comp, 377, 75, 10.1016/j.jallcom.2004.02.005 Dong, 2009, Magnetic entropy change and refrigerant capacity in GdFeAl compound, J Appl Phys, 105, 07A305, 10.1063/1.3059372 Chelvane, 2010, Magnetic structure and magnetic entropy change in the intermetallic compound DyCoAl, J Appl Phys, 107, 09A906, 10.1063/1.3335815 Li, 2014, Study of the critical behaviour and magnetocaloric effect in DyFeAl, Intermetallics, 46, 231, 10.1016/j.intermet.2013.11.019 Herbst, 1996, Structural, magnetic, and magnetocaloric properties of (Hf0.83Ta0.17)Fe-2+x materials, J Appl Phys, 79, 5998, 10.1063/1.362133 Diop, 2015, Magnetic and magnetocaloric properties of itinerant-electron system Hf1-xTaxFe2 (x=0.125 and 0.175), J Alloys Comp, 627, 446, 10.1016/j.jallcom.2014.11.234 Bag, 2016, Unconventional thermal effects across first-order magnetic transition in the Ta-doped HfFe2 intermetallic, Phys Rev B, 93, 014416, 10.1103/PhysRevB.93.014416 Dong, 2015, Magnetic properties and magnetocaloric effect of Hf-Ta-Fe-(CO) alloys, Physica B, 476, 171, 10.1016/j.physb.2015.04.019 Dong, 2015, Large low-field magnetic entropy changes in as-cast Hf0.83-xZrxTa0.17Fe2 compounds, Physica B, 466, 86, 10.1016/j.physb.2015.03.032 Herrero-Albillos, 2006, Nature and entropy content of the ordering transitions in RCo2, Phys Rev B, 73, 134410, 10.1103/PhysRevB.73.134410 Bonilla, 2010, Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions, Phys Rev B, 81, 224424, 10.1103/PhysRevB.81.224424 Gu, 2007, Magnetocaloric effect of GdCo2-xAlx compounds, Solid State Commun, 141, 548, 10.1016/j.ssc.2006.12.026 Imai, 1995, Calorimetric study on magnetism of ERCO2, J Magn Magn Mater, 140, 835, 10.1016/0304-8853(94)01471-X Burrola-Gandara, 2012, Magnetocaloric effect in Sm-Co2-xFex alloys, J Appl Phys, 111, 07A942, 10.1063/1.3679392 Mudryk, 2016, Balancing structural distortions via competing 4f and itinerant interactions: a case of polymorphism in magnetocaloric HoCo2, J Mater Chem C, 4, 4521, 10.1039/C6TC00867D Singh, 2007, Itinerant electron metamagnetism and magnetocaloric effect in RCo2-based Laves phase compounds, J Magn Magn Mater, 317, 68, 10.1016/j.jmmm.2007.04.009 Khmelevskyi, 2000, The order of the magnetic phase transitions in RCo2 (R = rare earth) intermetallic compounds, J Phys: Cond Matter, 12, 9453 Nikitin, 1991, Magnetocaloric effect in HoCo2 compound, Cryogenics, 31, 166, 10.1016/0011-2275(91)90171-R Tohei, 2004, Change in the character of magnetocaloric effect with Ni substitution in Ho(Co1-xNix)(2), J Magn Magn Mater, 280, 101, 10.1016/j.jmmm.2004.02.026 Dong, 2008, A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition, J Appl Phys, 103, 116101, 10.1063/1.2913166 Halder, 2010, Magnetocaloric effect and critical behavior near the paramagnetic to ferrimagnetic phase transition temperature in TbCo2-xFex, Phys Rev B, 81, 174402, 10.1103/PhysRevB.81.174402 Franco, 2007, Field dependence of the magnetocaloric effect in Gd and (Er1-xDyx)Al-2: does a universal curve exist?, Epl, 79, 47009, 10.1209/0295-5075/79/47009 von Ranke, 1998, Influence of the crystalline electrical field on the magnetocaloric effect of DyAl2, ErAl2, and DyNi2, Phys Rev B, 58, 12110, 10.1103/PhysRevB.58.12110 Nobrega, 2006, Monte Carlo calculations of the magnetocaloric effect in RAl2 (R=Dy, Er), J Appl Phys, 99, 08Q103, 10.1063/1.2150815 Alvarez, 2011, Influence of magnetic fluctuations in the magnetocaloric effect on rare-earth intermetallic compounds, Phys Rev B, 84, 024412, 10.1103/PhysRevB.84.024412 de Oliveira, 2002, Magnetocaloric effect in the intermetallic compounds RCo2 (R=Dy, Ho, Er), Phys Rev B, 66, 094402, 10.1103/PhysRevB.66.094402 Lima, 2002, Origin of anomalous magnetocaloric effect in (Dy1-zErz)Al-2 alloys, Phys Rev B, 65, 172411, 10.1103/PhysRevB.65.172411 de Sousa, 2012, Heat flow measurements and the order of the magnetic transition in (Dy, Gd)Co-2 solid solutions, J Alloys Comp, 513, 615, 10.1016/j.jallcom.2011.11.027 Zhu, 2011, Magnetocaloric effect of (Er(x)R(1-x))CO(2) (R = Ho, Dy) for magnetic refrigeration between 20 and 80 K, Cryogenics, 51, 494, 10.1016/j.cryogenics.2011.06.004 Balli, 2007, A study of magnetism and magnetocaloric effect in Ho1-xTbxCo2 compounds, J Magn Magn Mater, 314, 16, 10.1016/j.jmmm.2007.02.007 Balli, 2008, The influence of gadolinium on magnetism and magnetocaloric properties of HoCo2 alloy, J Alloys Comp, 455, 73, 10.1016/j.jallcom.2007.01.110 Balli, 2011, Magnetic behaviour and experimental study of the magnetocaloric effect in the pseudobinary Laves phase Er1-xDyxCo2, J Alloys Comp, 509, 3907, 10.1016/j.jallcom.2010.12.161 Cwik, 2011, The influence of Er substitution on magnetic and magnetocaloric properties of Dy(1-x)Er(x)Co(2) solid solutions, Intermetallics, 19, 1656, 10.1016/j.intermet.2011.07.012 Cwik, 2011, Magnetic properties and magnetocaloric effect in (Dy(0.6)Er(0.4))(1-x)Gd(x)Co(2) multicomponent compounds, 012025 de Oliveira, 2008, Magnetocaloric effect in the pseudobinaries (Ho1-cRc)Co-2 (R = Er and Dy), Eur Phys J B, 65, 207, 10.1140/epjb/e2008-00346-y Gu, 2007, The magnetocaloric effect in (Dy, Tb)Co-2 alloys, J Alloys Comp, 441, 39, 10.1016/j.jallcom.2006.09.125 Tereshina, 2010, Magnetocaloric and magnetoelastic effects in (Tb0.45Dy0.55)(1-x)ErxCo2 multicomponent compounds, J Phys: Conference Series, 200, 092012 Chen, 2009, Magnetocaloric effect of (Tb1-xCex)Co-2 alloys in low magnetic field, J Rare Earths, 27, 1027, 10.1016/S1002-0721(08)60382-8 de Oliveira, 2015, Magnetocaloric effect in (TbcR1-c)Co-2 (R = Er and Ho), J Alloys Comp, 618, 386, 10.1016/j.jallcom.2014.08.203 Liu, 2002, The magnetocaloric effect and magnetic phase transitions in Dy(Co1-xAlx)(2) compounds, J Alloys Comp, 346, 314, 10.1016/S0925-8388(02)00848-4 Ao, 2007, Magnetocaloric properties of DyCo2-xGax alloys, Solid State Commun, 141, 219, 10.1016/j.ssc.2006.10.035 Fu, 2014, Table-like magnetocaloric effect in the Gd-Co-Al alloys with multi-phase structure, Appl Phys Lett, 104, 072401, 10.1063/1.4865554 Ivanova, 2014, Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1-xAlx)(2) compounds, J Alloys Comp, 592, 271, 10.1016/j.jallcom.2013.12.171 Fu, 2014, Magnetocaloric effect in GdCoxAl2-x system for (0.15 <= x <= 1) compositions, J Appl Phys, 115, 17A914, 10.1063/1.4863167 Han, 2006, Magnetic properties and magnetocaloric effect in Dy(Co1-xFex)(2) alloys, J Magn Magn Mater, 302, 109, 10.1016/j.jmmm.2005.08.013 Tereshina, 2011, Magnetocaloric effect in (Tb, Dy, R)(Co, Fe)(2) (R = Ho, Er) multicomponent compounds, 012077 Liu, 2008, Magnetocaloric effect in co-rich Er(Co1-xFex)(2) laves phase, J Appl Phys, 103, 07B304, 10.1063/1.2829758 Balli, 2007, Effect of Ni substitution on the magnetic and magnetocaloric properties of the Dy(Co1-xNix)(2) Laves phase, J Phys D-Appl Phys., 40, 7601, 10.1088/0022-3727/40/24/001 Li, 2008, Structure, transport properties and the magnetocaloric effect in Gd(Co1-xNix)(2) pseudobinary compounds, Solid State Commun, 145, 427, 10.1016/j.ssc.2007.12.027 Zhang, 2007, Magnetocaloric effect of Gd(Co1-xMnx)(2) compounds, Solid State Commun, 143, 541, 10.1016/j.ssc.2007.07.006 Pathak, 2011, Magnetic, magnetocaloric, and magnetotransport properties of RCo1.8Mn0.2 (R = Er, Ho, Dy, and Tb) compounds, J Magn Magn Mater, 323, 2436, 10.1016/j.jmmm.2011.04.020 Gerasimov, 2016, Structure, magnetic and magnetothermal properties of the non-stoichiometric ErCo2Mnx alloys, J Alloys Comp, 680, 359, 10.1016/j.jallcom.2016.04.130 Wang, 2016, The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2, J Magn Magn Mater, 405, 122, 10.1016/j.jmmm.2015.12.062 Zou, 2015, Manipulation of the magnetic properties in Er1-xCo2 compounds by atomic vacancies, J Alloys Comp, 632, 30, 10.1016/j.jallcom.2015.01.122 Cwik, 2012, Magnetic and magnetocaloric properties of Gd(1-x)Sc(x)Ni(2) solid solutions, J Magn Magn Mater, 324, 677, 10.1016/j.jmmm.2011.08.060 Ibarra-Gaytán, 2015, Magnetic entropy table-like shape in RNi2 composites for cryogenic refrigeration, J Appl Phys, 117, 17C116, 10.1063/1.4915480 Yano, 2006, Detection of Ni magnetic moment in GdNi2 compound by magnetic Compton profile (MCP) method, J Phys: Cond Matter, 18, 6891 Gerasimov, 2013, Magnetic properties of the off-stoichiometric GdNi2Mnx alloys, J Alloys Comp, 571, 132, 10.1016/j.jallcom.2013.03.233 Aryal, 2016, Phase transitions and magnetocaloric and transport properties in off-stoichiometric GdNi2Mnx, J Appl Phys, 119, 043905, 10.1063/1.4940877 Wang, 2011, Critical magnetic transition in TbNi(2)Mn-magnetization and Mossbauer spectroscopy, J Phys-Cond Matter, 23, 216002, 10.1088/0953-8984/23/21/216002 Cwik, 2004, Some physical properties of YxHo1-xNi2 solid solutions, J Alloys Comp, 373, 78, 10.1016/j.jallcom.2003.11.016 Cwik, 2005, The effect of substitution of Lu for Ho on some physical properties of LuxHo1-xNi2 solid solutions, Physica B, 358, 323, 10.1016/j.physb.2005.01.468 Cwik, 2005, Magnetic, electrical, and thermodynamic properties of the LaxHo1-xNi2 solid solutions, J Alloys Comp, 399, 7, 10.1016/j.jallcom.2005.03.006 Cwik, 2005, The influence of Sc substitution on some physical properties of ScxHo1-xNi2 solid solutions, Phys Status Solidi B-Basic Solid State Phys, 242, 1969, 10.1002/pssb.200440037 Cwik, 2008, The effect of substitution of La for Tb on some physical properties of Tb1-xLaxNi2 solid solutions, J Alloys Comp, 460, 41, 10.1016/j.jallcom.2007.06.006 Xiong, 2005, Magnetocaloric effect of Gd(FexAl1-x)(2) compounds, Physica B, 369, 273, 10.1016/j.physb.2005.08.026 Xiong, 2006, The influence of boron atoms on the magnetocaloric effect of Laves compounds Gd(Fe, Al)(2), J Alloys Comp, 413, 7, 10.1016/j.jallcom.2005.06.066 Hermes, 2009, Ferromagnetism and magnetocaloric effect around 95 K in the Laves Phase EuRh1.2Zn0.8, Chem Mater, 21, 3325, 10.1021/cm900841t Gencer, 2011, Magnetic and magnetocaloric properties of (Gd(1-x)Ce(x))Al(2) (x=0, 0.25, 0.5, 0.75) compounds, J Magn, 16, 337, 10.4283/JMAG.2011.16.4.337 Alho, 2014, Magnetocaloric effect in Gd(1-y)DyyAl2, Int J Refrig-Rev Int Froid, 37, 297, 10.1016/j.ijrefrig.2013.07.012 Pathak, 2014, Low temperature crystal structure and magnetic properties of RAl2, J Appl Phys, 115, 17E109, 10.1063/1.4859096 Gil, 2016, Conventional and anisotropic magnetic entropy change in HoAl2 ferromagnetic compound, J Magn Magn Mater, 409, 45, 10.1016/j.jmmm.2016.02.085 Ribeiro, 2015, Theoretical investigations on magnetocaloric effect in Er1-yTbyAl2 series, J Magn Magn Mater, 379, 112, 10.1016/j.jmmm.2014.12.023 Ribeiro, 2013, Theoretical investigations on the magnetocaloric and barocaloric effects in TbyGd(1-y)Al2 series, J Alloys Comp, 563, 242, 10.1016/j.jallcom.2013.02.068 Pathak, 2015, The structural and magnetic properties of Pr1−xErxAl2, J Appl Phys, 117, 17C107, 10.1063/1.4906431 Pathak, 2015, Negative to positive magnetoresistance and magnetocaloric effect in Pr0.6Er0.4Al2, J Alloys Comp, 621, 411, 10.1016/j.jallcom.2014.09.227 Karmakar, 2015, Observation of large low temperature magnetocaloric effect in HoCu2, J Appl Phys, 117, 193904, 10.1063/1.4921360 Gao, 2012, Large magnetocaloric effect in Laves phase TbMn1.8Fe0.2 compound over a wide temperature range, J Alloys Comp, 530, 26, 10.1016/j.jallcom.2012.03.095 Ćwik, 2015, Magnetic properties and transformation of crystal structure in the ErFe2-ErAl2 system, J Appl Phys, 117, 123912, 10.1063/1.4916353 Rosca, 2010, Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds, J Alloys Comp, 490, 50, 10.1016/j.jallcom.2009.10.093 Wang, 2003, Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study, J Phys-Condes Matter, 15, 5269, 10.1088/0953-8984/15/30/309 Hu, 2001, Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6, Appl Phys Lett, 78, 3675, 10.1063/1.1375836 Ilyn, 2005, Magnetocaloric properties of the LaFe11.7Si1.3 and LaFe11.2Co0.7Si1.1 systems, J Magn Magn Mater, 290, 712, 10.1016/j.jmmm.2004.11.345 Liu, 2004, Magnetocaloric enect in La(Fe0.88Al0.12)(13)Cx interstitial compounds, J Phys D-Appl Phys, 37, 2469, 10.1088/0022-3727/37/18/001 Di, 2004, First-order magnetic phase transition in LaFe11.7Si1.3 studied using Mossbauer spectroscopy, Phys Rev B, 69, 224411, 10.1103/PhysRevB.69.224411 Fujita, 2009, Influence of hydrogenation on the electronic structure and the itinerant-electron metamagnetic transition in strong magnetocaloric compound La(Fe0.88Si0.12)(13), J Magn Magn Mater, 321, 3553, 10.1016/j.jmmm.2008.03.001 Wang, 2014, Magnetic transitions in LaFe13-x-yCoySix compounds, Hyperfine Interact, 226, 405, 10.1007/s10751-013-0972-9 Gruner, 2015, Element-resolved thermodynamics of magnetocaloric LaFe(13-x)Si(x), Phys Rev Lett, 114, 057202, 10.1103/PhysRevLett.114.057202 Gutfleisch, 2005, Large magnetocaloric effect in melt-spun LaFe13-xSix, J Appl Phys, 97, 10M305, 10.1063/1.1847871 Lyubina, 2010, Novel design of La(Fe, Si)(13) alloys towards high magnetic refrigeration performance, Adv Mater, 22, 3735, 10.1002/adma.201000177 Lyubina, 2011, Recent advances in the microstructure design of materials for near room temperature magnetic cooling (invited), J Appl Phys, 109, 07A902, 10.1063/1.3540372 Franco, 2008, A universal curve for the magnetocaloric effect: an analysis based on scaling relations, J Phys-Condes Matter, 20, 285207, 10.1088/0953-8984/20/28/285207 de Medeiros, 2006, Theoretical calculations of the magnetocaloric effect in La(FexSi1-x)(13), J Magn Magn Mater, 306, 265, 10.1016/j.jmmm.2006.03.026 Jia, 2009, Magnetocaloric effects in the La(Fe, Si)(13) intermetallics doped by different elements, J Appl Phys, 105, 07A924, 10.1063/1.3072021 Passamani, 2007, Magnetic and magnetocaloric properties of La(Fe, Co)(11.4)SP1.6 compounds (SP = Al or Si), J Magn Magn Mater, 312, 65, 10.1016/j.jmmm.2006.09.010 Liu, 2005, Phase formation and magnetocaloric effect in rapidly quenched La(Fe1-xCox)(11.4)Si-1.6, J Appl Phys, 98, 113904, 10.1063/1.2137884 Hu, 2005, Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCox)(11.9)Si-1.1, J Appl Phys, 97, 10M303, 10.1063/1.1847071 Hu, 2002, Magnetic entropy change and its temperature variation in compounds La(Fe1-xCox)(11.2)Si-1.8, J Appl Phys, 92, 3620, 10.1063/1.1502919 Liu, 2003, Effect of Co content on magnetic entropy change and structure of La(Fe1-xCox)(11.4)Si-1.6, J Magn Magn Mater, 264, 209, 10.1016/S0304-8853(03)00207-5 Chen, 2014, The system study of 1:13 phase formation, the magnetic transition adjustment, and magnetocaloric property in La(Fe, Co)(13-x)Si-x alloys, J Magn Magn Mater, 368, 155, 10.1016/j.jmmm.2014.04.020 Pathak, 2010, Influence of the small substitution of Z=Ni, Cu, Cr, V for Fe on the magnetic, magnetocaloric, and magnetoelastic properties of LaFe11.4Si1.6, J Magn Magn Mater, 322, 692, 10.1016/j.jmmm.2009.10.043 Gercsi, 2015, Magnetic coupling in transition-metal–doped LaSiFe11.5 TM0.5 (TM=Cr, Mn, Co and Ni), EPL (Europhys Lett), 110, 47006, 10.1209/0295-5075/110/47006 Wang, 2003, The effect of Mn substitution in LaFe11.7Si1.3 compound on the magnetic properties and magnetic entropy changes, J Phys D-Appl Phys, 36, 1, 10.1088/0022-3727/36/1/301 Lin, 2010, Magnetocaloric effect of La0.8Ce0.2Fe11.4-xMnxSi1.6 compounds, J Alloys Comp, 489, 1, 10.1016/j.jallcom.2009.09.028 Fujieda, 2006, Control of working temperature of large isothermal magnetic entropy change in La(FexTMySi1-x-y)(13) (TM = Cr, Mn, Ni) and La1-zCez(FexMnySi1-x-y)(13), Mater Trans, 47, 482, 10.2320/matertrans.47.482 Gao, 2009, Influence of the substitution of Cu for Si on magnetic entropy change and hysteresis loss in LaFe11.7(Si1-xCux)(1.3) compounds, J Appl Phys, 105, 07A916, 10.1063/1.3063067 Fujieda, 2004, Enhancements of magnetocaloric effects in La(Fe0.90Si0.10)(13) and its hydride by partial substitution of Ce for La, Mater Trans, 45, 3228, 10.2320/matertrans.45.3228 Fujieda, 2005, Control of large magnetocaloric effects and hysteresis of La1-zCez(Fe0.86Si0.14)(13) compounds, IEEE Trans Magn, 41, 2787, 10.1109/TMAG.2005.854775 Fujieda, 2006, Large magnetocaloric effects enhanced by partial substitution of Ce for La in La(Fe0.88Si0.12)(13) compound, J Alloys Comp, 408, 1165, 10.1016/j.jallcom.2004.12.112 Fujieda, 2006, Strong magnetocaloric effects in La1-zCez(Fex-yMnySi1-x)(13) at low temperatures, Appl Phys Lett, 89, 062504, 10.1063/1.2227631 Fujita, 2011, Changes in electronic states and magnetic free energy in La1-zCez(FexSi1-x)(13) magnetic refrigerants, J Phys D-Appl Phys, 44, 064013, 10.1088/0022-3727/44/6/064013 Anh, 2003, Magnetism and magnetocaloric effect in La1-yNdy(Fe0.88Si0.12)(13) compounds, J Magn Magn Mater, 262, 427, 10.1016/S0304-8853(03)00073-8 Mican, 2012, Magnetic properties and magnetocaloric effect in La0.7Nd0.3Fe13-xSix compounds, J Solid State Chem, 187, 238, 10.1016/j.jssc.2012.01.030 Fujieda, 2007, Reduction of hysteresis loss in itinerant-electron metamagnetic transition by partial substitution of Pr for La in La(FexSi1-x)(13), J Magn Magn Mater, 310, E1004, 10.1016/j.jmmm.2006.10.960 Fujieda, 2007, Enhancement of magnetocaloric effects in La1-zPrz(Fe0.88Si0.12)(13) and their hydrides, J Appl Phys, 102, 023907, 10.1063/1.2753590 Fu, 2010, Effect of praseodymium and cobalt substitution on magnetic properties and structures in La(Fe1-xSix)(13) compounds, J Rare Earths, 28, 611, 10.1016/S1002-0721(09)60164-2 Ding, 2010, Magnetocaloric effect in NaZn13-type La(1-)PrxFe(11.44)Si(1.56) melt-spun ribbons, J Appl Phys, 107, 09A952, 10.1063/1.3359807 Huang, 2014, Effect of particle size on the hysteretic behavior and magnetocaloric effect of La0.5Pr0.5Fe11.4Si1.6 compound, Acta Metall Sin-Engl Lett, 27, 27, 10.1007/s40195-014-0031-9 Demuner, 2009, Magnetocaloric properties of the (La-Gd)Fe11.4Si1.6 metamagnetic compound, J Magn Magn Mater, 321, 1809, 10.1016/j.jmmm.2008.11.096 Balli, 2007, Magnetic and magnetocaloric properties of La1-xErxFe11.44Si1.56 compounds, J Magn Magn Mater, 313, 43, 10.1016/j.jmmm.2006.11.211 Fujita, 2014, Realization of small intrinsic hysteresis with large magnetic entropy change in La0.8Pr0.2(Fe0.88Si0.10Al0.02)(13) by controlling itinerant-electron characteristics, Appl Phys Lett, 104, 122410, 10.1063/1.4869957 Din, 2014, Effects of Cr substitution on structural and magnetic properties in La0.7Pr0.3Fe11.4Si1.6 compound, J Appl Phys, 115, 17A942, 10.1063/1.4868703 Zhang, 2011, Effect of Ca on the microstructure and magnetocaloric effects in the La1-xCaxFe11.5Si1.5 compounds, J Alloys Comp, 509, 3746, 10.1016/j.jallcom.2010.12.194 Bao, 2012, Magnetocaloric properties of La(Fe, Si)13-based material and its hydride prepared by industrial mischmetal, Appl Phys Lett, 101, 162406, 10.1063/1.4760262 Fujita, 2002, Giant magnetic entropy change in hydrogenated La(Fe0.88Si0.12)(13)H-y compounds, Mater Trans, 43, 1202, 10.2320/matertrans.43.1202 Chen, 2002, Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound, Chin Phys, 11, 741, 10.1088/1009-1963/11/7/318 Chen, 2003, Magnetic properties and magnetic entropy change of LaFe11.5Si1.5Hy interstitial compounds, J Phys-Condes Matter, 15, L161, 10.1088/0953-8984/15/7/102 Fujita, 2003, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)(13) compounds and their hydrides, Phys Rev B, 67, 104416, 10.1103/PhysRevB.67.104416 de Medeiros, 2006, Magnetocaloric effect in La(FexSi1-x)(13) doped with hydrogen and under external pressure, J Alloys Comp, 424, 41, 10.1016/j.jallcom.2005.12.071 Fujieda, 2007, Large isothermal magnetic entropy change after hydrogen absorption into La0.5Pr0.5(Fe0.88Si0.12)(13), 577 Fujieda, 2003, Large magnetocaloric effects in NaZn13-type La(FexSi1-x)(13) compounds and their hydrides composed of icosahedral clusters, Sci Technol Adv Mater, 4, 339, 10.1016/j.stam.2003.07.002 Zhao, 2010, Reduction of magnetic hysteresis loss in La0.5Pr0.5Fe11.4Si1.6Hx hydrides with large magnetocaloric effects, J Appl Phys, 107, 113911, 10.1063/1.3374635 Phejar, 2016, Investigation on structural and magnetocaloric properties of LaFe13-xSix(H, C)(y) compounds, J Solid State Chem, 233, 95, 10.1016/j.jssc.2015.10.016 Hai, 2016, In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1-x)(13) magnetocaloric alloys for room-temperature refrigeration application, J Magn Magn Mater, 400, 344, 10.1016/j.jmmm.2015.07.018 Makarov, 2015, Local electronic and magnetic properties of pure and Mn-containing magnetocaloric LaFe13−x Si x compounds inferred from Mössbauer spectroscopy and magnetometry, J Phys D: Appl Phys, 48, 305006, 10.1088/0022-3727/48/30/305006 Wang, 2014, Hydriding and dehydriding kinetics in magnetocaloric La(Fe, Si)(13) compounds, J Appl Phys, 115, 143903, 10.1063/1.4871194 Jia, 2011, Influence of interstitial and substitutional atoms on the crystal structure of La(FeSi)(13), J Alloys Comp, 509, 5804, 10.1016/j.jallcom.2011.02.124 Wang, 2009, The hydrogenation behavior of LaFe11.44Si1.56 magnetic refrigerating alloy, J Alloys Comp, 485, 313, 10.1016/j.jallcom.2009.06.110 Wang, 2011, The hydrogen absorption properties and magnetocaloric effect of La0.8Ce0.2(Fe1-xMnx)(11.5)Si1.5Hy, J Appl Phys, 109, 07A910, 10.1063/1.3549560 Ma, 2010, Study on the homogeneity of hydrogenation for LaFe11.5Si1.5 intermetallic compound, Mater Lett, 64, 2520, 10.1016/j.matlet.2010.07.077 Baumfeld, 2014, The dynamics of spontaneous hydrogen segregation in LaFe13-xSixHy, J Appl Phys, 115, 203905, 10.1063/1.4879099 Mandal, 2005, Effect of reactive milling in hydrogen on the magnetic and magnetocaloric properties of LaFe11.57Si1.43, J Magn Magn Mater, 290, 673, 10.1016/j.jmmm.2004.11.333 Mandal, 2007, Magnetocaloric effect in reactively-milled LaFe11.57Si1.43Hy intermetallic compounds, J Appl Phys, 102, 053906, 10.1063/1.2775877 Lyubina, 2012, Electrolytic hydriding of LaFe13-xSix alloys for energy efficient magnetic cooling, Adv Mater, 24, 2042, 10.1002/adma.201200112 Fujieda, 2011, Influence of homogenization of microstructual composition on hydrogen absorption into La(Fe(x)Si(1-x))(13) magnetic refrigerants, IEEE Trans Magn, 47, 2459, 10.1109/TMAG.2011.2157092 Bez, 2015, Magnetocaloric effect and H gradient in bulk La(Fe, Si)(13)H-y magnetic refrigerants obtained by HDSH, J Magn Magn Mater, 386, 125, 10.1016/j.jmmm.2015.03.068 Zheng, 2015, The high-temperature hydrogenation behavior of LaFe11.6Si1.4 and splitting of LaFe11.6Si1.4Hy magnetocaloric transition, J Alloys Comp, 646, 124, 10.1016/j.jallcom.2015.05.164 Teixeira, 2012, Effect of carbon on magnetocaloric effect of LaFe11.6Si1.4 compounds and on the thermal stability of its hydrides, J Appl Phys, 111, 07A927, 10.1063/1.3675985 Zhao, 2012, Hydrogenating process and magnetocaloric effect in La0.7Pr0.3Fe11.5Si1.5C0.2Hx hydrides, J Alloys Comp, 520, 277, 10.1016/j.jallcom.2012.01.042 Barcza, 2011, Stability and magnetocaloric properties of sintered La(Fe, Mn, Si)(13)H(z) alloys, IEEE Trans Magn, 47, 3391, 10.1109/TMAG.2011.2147774 Basso, 2015, Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)(13)-H compounds, J Appl Phys, 118, 6, 10.1063/1.4928086 Bez, 2016, Magneto-elastic coupling in La(Fe, Mn, Si)(13)Hy within the Bean-Rodbell model, AIP Adv., 6, 056217, 10.1063/1.4944400 Piazzi, 2016, Modeling specific heatandentropychangeinLa(Fe-Mn-Si)(13)-H compounds, J Magn Magn Mater, 400, 349, 10.1016/j.jmmm.2015.07.055 Wang, 2011, Hydrogenation, structure and magnetic properties of La(Fe0.91Si0.09)(13) hydrides and deuterides, Chin Phys B, 20, 067502, 10.1088/1674-1056/20/6/067502 Lyubina, 2008, Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, Si)(13)H-x, Phys Rev Lett, 101, 177203, 10.1103/PhysRevLett.101.177203 Balli, 2009, Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound, J Magn Magn Mater, 321, 123, 10.1016/j.jmmm.2008.08.081 Chen, 2003, Magnetism and magnetic entropy change of LaFe11.6Si1.4Cx (x=0-0.6) interstitial compounds, J Appl Phys, 93, 1323, 10.1063/1.1532930 Shen, 2007, Reduction of hysteresis loss and large magnetic entropy change in the NaZn13-type LaPrFeSiC interstitial compounds, Appl Phys Lett, 91, 142504, 10.1063/1.2794412 Balli, 2010, Refrigerant capacity and direct measurements of the magnetocaloric effect on LaFe11.2Co0.7Si1.1Cx materials, J Appl Phys, 107, 09A933, 10.1063/1.3349372 Shen, 2012, Magnetocaloric effect in La0.5Pr0.5Fe11.5Si1.5 compounds with a combined addition of Co and C, J Appl Phys, 111, 07A908, 10.1063/1.3670598 Shen, 2010, Reduction in hysteresis losses and large magnetic entropy change in the B-doped La(Fe, Si)(13) compounds, J Appl Phys, 107, 09A909, 10.1063/1.3349325 Xie, 2007, Influence of boron on the giant magnetocaloric effect of La(Fe0.9Si0.1)(13), J Magn Magn Mater, 311, 589, 10.1016/j.jmmm.2006.08.021 Chen, 2011, Phase, structural, and magnetocaloric properties of high temperature annealed LaFe11.6Si1.4BX, J Alloys Comp, 509, 2864, 10.1016/j.jallcom.2010.11.144 Lin, 2011, The magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6Bx compounds prepared by copper-mold casting, J Magn Magn Mater, 323, 1741, 10.1016/j.jmmm.2010.12.038 Hu, 2000, Magnetic entropy change in La(Fe0.98C0.02)(11.7)A(1)l(1.3), J Phys-Condes Matter, 12, L691, 10.1088/0953-8984/12/46/101 Wu, 1996, The magnetic entropy change properties of La(1-z)R(z)(Fe1-x-yCoxAly)(13) compounds, J Appl Phys, 79, 982, 10.1063/1.360883 Hu, 2007, Magnetic properties and magnetocaloric effect around phase boundary in La(FexAl1-x)(13) compounds, J Appl Phys, 101, 09C525, 10.1063/1.2713219 Bao, 2009, Enhancement of magnetocaloric effects in La0.8R0.2(Fe0.919Co0.081)(11.7) Al-1.3 (R = Pr, Nd) compounds, J Magn Magn Mater, 321, 786, 10.1016/j.jmmm.2008.11.081 Zhao, 2010, Enhancement of the magnetocaloric effect and magnetic transition temperature in LaFe11.5Al1.5 by hydrogenation, Solid State Commun, 150, 2329, 10.1016/j.ssc.2010.10.006 Xu, 2015, The effects of interstitial atoms C and B on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound, J Alloys Comp, 651, 8, 10.1016/j.jallcom.2015.07.133 Zhang, 2014, The magnetic properties and magnetocaloric effect in LaFe11.5Al1.5Bx compounds, J Alloys Comp, 591, 143, 10.1016/j.jallcom.2013.12.193 Zhang, 2014, The effects of interstitial atoms H and B on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound, J Appl Phys, 115, 183908, 10.1063/1.4876261 Palstra, 1983, Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe, Si)13 compounds, J Magn Magn Mater, 36, 290, 10.1016/0304-8853(83)90128-2 Blazquez, 2015, Effect of alpha-Fe impurities on the field dependence of magnetocaloric response in LaFe11.5Si1.5, J Alloys Comp, 646, 101, 10.1016/j.jallcom.2015.06.085 Xu, 2006, Itinerant-electron metamagnetic transition and giant magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6 compound, Chin Sci Bull, 51, 2046, 10.1007/s11434-006-2078-0 Krautz, 2014, Systematic investigation of Mn substituted La(Fe, Si)(13) alloys and their hydrides for room-temperature magnetocaloric application, J Alloys Comp, 598, 27, 10.1016/j.jallcom.2014.02.015 Zhang, 2012, Simultaneous enhancements of Curie temperature and magnetocaloric effects in the La(1-x)Ce(x)Fe(11.5)Si(1.5)C(y) compounds, J Magn Magn Mater, 324, 484, 10.1016/j.jmmm.2011.08.028 Zhang, 2012, Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)(13) compounds around room temperature, J Appl Phys, 111, 07A909, 10.1063/1.3670608 Liu, 2011, Influence of H and extra La on magnetocaloric effect of La(0.5+x)Pr(0.5)Fe(11.4)Si(1.6) melt-spun ribbons, IEEE Trans Magn, 47, 2478, 10.1109/TMAG.2011.2147295 Bao, 2014, A novel preparation method and magnetic properties of NaZn13-type La(Fe, Si)(13) compounds, J Alloys Comp, 589, 416, 10.1016/j.jallcom.2013.11.173 Fujita, 2014, Improvement of low-field magnetic entropy change by increasing Fe concentration in solid-state reactive sintered La(FexSi1-x)(13), J Alloys Comp, 601, 158, 10.1016/j.jallcom.2014.02.163 Chen, 2011, Influence of iron on phase and magnetic property of the LaFe11.6Si1.4 compound, J Rare Earths, 29, 354, 10.1016/S1002-0721(10)60459-0 Lai, 2015, Magnetocaloric effect of nonstoichiometric La1-xFe11.4+xSi1.6 alloys with first-order and second-order magnetic transitions, Intermetallics, 63, 7, 10.1016/j.intermet.2015.03.012 Zhang, 2014, Novel microstructure and large magnetocaloric effect in La2Fe11Si2 magnetic refrigerant, Mater Lett, 134, 87, 10.1016/j.matlet.2014.07.060 Zhang, 2015, Influence of extra La and annealing temperature on microstructure and magnetocaloric properties of La-Fe-Co-Si alloys, Physica B, 476, 167, 10.1016/j.physb.2015.03.012 Liu, 2011, Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La-Fe-Si alloys, Acta Mater, 59, 3602, 10.1016/j.actamat.2011.02.033 Liu, 2009, Structure and magnetic properties of shortly high temperature annealing LaFe11.6Si1.4 compound, J Alloys Comp, 475, 672, 10.1016/j.jallcom.2008.07.139 Kolat, 2009, Production of LaFe11.4Si1.6 compound at high temperature with a very short annealing time, J Optoelectron Adv Mater, 11, 1106 Xiang, 2011, The effect of different temperature annealing on phase relation of LaFe(11.5)Si(1.5) and the magnetocaloric effects of La(0.8)Ce(0.2)Fe(11.5-x)Co(x)Si(1.5) alloys, J Magn Magn Mater, 323, 3177, 10.1016/j.jmmm.2011.05.041 Zhang, 2008, Phase formation with NaZn13 structure in metamagnetic La(Fe1-xCox)(11.9)Si-1.1 compounds, J Rare Earths, 26, 727, 10.1016/S1002-0721(08)60171-4 Xie, 2004, Large magnetic entropy change in melt-spun LaFe11.5Si1.5 ribbons, J Phys D-Appl Phys, 37, 3063, 10.1088/0022-3727/37/22/001 Liu, 2005, Phase formation and structure in rapidly quenched La(Fe0.88Co0.12)(13-x)Si-x alloys, J Alloys Comp, 397, 120, 10.1016/j.jallcom.2005.01.022 Lyubina, 2008, La(Fe, Si)(13)-based magnetic refrigerants obtained by novel processing routes, J Magn Magn Mater, 320, 2252, 10.1016/j.jmmm.2008.04.116 Lyubina, 2009, La(Fe, Si)(13)-based magnetic refrigerants obtained by novel processing routes (vol 320, pg 2252, 2008), J Magn Magn Mater, 321, 3571, 10.1016/j.jmmm.2008.03.063 Hou, 2015, Formation mechanisms of NaZn13-type phase in giant magnetocaloric La-Fe-Si compounds during rapid solidification and annealing, J Alloys Comp, 646, 503, 10.1016/j.jallcom.2015.05.173 Hou, 2016, Formation of tree-like and vortex magnetic domains of nanocrystalline alpha-(Fe, Si) in La-Fe-Si ribbons during rapid solidification and subsequent annealing, J Alloys Comp, 669, 205, 10.1016/j.jallcom.2016.01.211 Zhang, 2015, Large entropy change, adiabatic temperature change, and small hysteresis in La(Fe, Mn)(11.6)Si-1.4 strip-cast flakes, J Magn Magn Mater, 377, 90, 10.1016/j.jmmm.2014.10.035 Zhang, 2015, Microstructure and magnetocaloric properties of LaFe11.8−xCoxSi1.2 strip-cast flakes, IEEE Trans Magn, 51, 2502404 Dong, 2014, Microstructure and magnetocaloric properties of melt-extracted La-Fe-Si microwires, J Magn Magn Mater, 357, 73, 10.1016/j.jmmm.2014.01.031 Phejar, 2010, Structural and magnetic properties of magnetocaloric LaFe13-xSix compounds synthesized by high energy ball-milling, Intermetallics, 18, 2301, 10.1016/j.intermet.2010.07.022 Passamani, 2007, Magnetocaloric properties of (La, RE)Fe11.4Si1.6 compounds (RE=Y, Gd), J Appl Phys, 102, 093906, 10.1063/1.2803658 Patissier, 2015, Fast synthesis of LaFe13-xSix magnetocaloric compounds by reactive Spark Plasma Sintering, J Alloys Comp, 645, 143, 10.1016/j.jallcom.2015.04.199 Waske, 2015, Asymmetric first-order transition and interlocked particle state in magnetocaloric La(Fe, Si)(13), Phys Stat Solidi-Rapid Res Lett, 9, 136, 10.1002/pssr.201409484 Yuan, 2015, Influence of microstructural changes on magnetic refrigeration performance for La(Fe0.94Co0.06)(11.8)Si-1.2 alloys during magnetic field cycling, J Appl Phys, 117, 4, 10.1063/1.4906765 Zhang, 2014, Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)(13)-based magnetic refrigeration materials, Appl Phys Lett, 104, 062407, 10.1063/1.4865236 Pulko, 2015, Epoxy-bonded La-Fe-Co-Si magnetocaloric plates, J Magn Magn Mater, 375, 65, 10.1016/j.jmmm.2014.08.074 Xia, 2015, Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe, Mn)(11.7)Si1.3H1.8, J Alloys Comp, 635, 124, 10.1016/j.jallcom.2015.02.131 Zhang, 2015, Mechanical properties and magnetocaloric effects in La(Fe, Si)(13) hydrides bonded with different epoxy resins, J Appl Phys, 117, 4 Skokov, 2014, Heat exchangers made of polymer-bonded La(Fe, Si)(13), J Appl Phys, 115, 17A941, 10.1063/1.4868707 Radulov, 2015, On the preparation of La(Fe, Mn, Si)(13)H-x polymer-composites with optimized magnetocaloric properties, J Magn Magn Mater, 396, 228, 10.1016/j.jmmm.2015.08.044 Lanzarini, 2015, Thermoplastic filled with magnetocaloric powder, Mater Des, 87, 1022, 10.1016/j.matdes.2015.08.057 Krautz, 2015, A new type of La(Fe, Si)(13)-based magnetocaloric composite with amorphous metallic matrix, Scr Mater, 95, 50, 10.1016/j.scriptamat.2014.10.002 Zhang, 2016, LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing, Scr Mater, 120, 58, 10.1016/j.scriptamat.2016.04.021 Shao, 2015, Enhanced thermal conductivity in off-stoichiometric La-(Fe, Co)-Si magnetocaloric alloys, Appl Phys Lett, 107, 152403, 10.1063/1.4933261 You, 2016, Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders, AIP Adv, 6, 055321, 10.1063/1.4952757 Fujieda, 2014, Suppression of aqueous corrosion of La(Fe0.88Si0.12)(13) by reducing dissolved oxygen concentration for high-performance magnetic refrigeration, J Alloys Comp, 600, 67, 10.1016/j.jallcom.2014.01.229 Hu, 2014, Corrosion and latent heat in thermal cycles for La(Fe, Mn, Si)(13) magnetocaloric compounds, J Magn Magn Mater, 354, 336, 10.1016/j.jmmm.2013.11.025 Forchelet, 2014, Corrosion behavior of gadolinium and La-Fe-Co-Si compounds in various heat conducting fluids, Int J Refrig-Rev Int Froid, 37, 307, 10.1016/j.ijrefrig.2013.09.021 Hu, 2015, Corrosion behavior and Delta S-T-c relation of LaFe13-x-yCoxSiyCz compounds near room temperature, J Magn Magn Mater, 377, 368, 10.1016/j.jmmm.2014.10.133 Pecharsky, 2002, The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4-Gd5Ge4 system, J Alloys Comp, 338, 126, 10.1016/S0925-8388(02)00226-8 Pecharsky, 2001, Gd-5(SixGe1-x)(4): an extremum material, Adv Mater, 13, 683, 10.1002/1521-4095(200105)13:9<683::AID-ADMA683>3.0.CO;2-O Pecharsky, 2003, The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4-x alloys for 1.4 <= x <= 2.2, J Magn Magn Mater, 267, 60, 10.1016/S0304-8853(03)00305-6 Pecharsky, 2003, The effect of varying the crystal structure on the magnetism, electronic structure and thermodynamics in the Gd-5(SixGe1-x)(4) system near x=0.5, J Solid State Chem, 171, 57, 10.1016/S0022-4596(02)00146-9 Miller, 2006, Complex rare-earth tetrelides, RE5(SixGe1-x)(4): new materials for magnetic refrigeration and a superb playground for solid state chemistry, Chem Soc Rev, 35, 799, 10.1039/B208133B Pecharsky, 2009, Making the most of the magnetic and lattice entropy changes, J Magn Magn Mater, 321, 3541, 10.1016/j.jmmm.2008.03.013 Mudryk, 2005, Polymorphism of Gd5Si2Ge2: the equivalence of temperature, magnetic field, and chemical and hydrostatic pressures, Phys Rev B, 71, 174104, 10.1103/PhysRevB.71.174104 Melikhov, 2015, Gd-5(SixGe1-x)(4) system - updated phase diagram, J Magn Magn Mater, 395, 143, 10.1016/j.jmmm.2015.07.062 Pecharsky, 1997, Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from similar to 20 to similar to 290 K, Appl Phys Lett, 70, 3299, 10.1063/1.119206 Pecharsky, 2003, Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect, Phys Rev Lett, 91, 197204, 10.1103/PhysRevLett.91.197204 Kouvel, 1962, Anomalous magnetic moments and transformations in the ordered FeRh, J Appl Phys, 33, 1343, 10.1063/1.1728721 Melikhov, 2014, Phenomenological modelling of first order phase transitions in magnetic systems, J Appl Phys, 115, 183902, 10.1063/1.4875678 Alvaranega, 2014, Theoretical investigation on the barocaloric and magnetocaloric properties in the Gd5Si2Ge2 compound, J Appl Phys, 116, 243908, 10.1063/1.4904959 Pires, 2014, Phase competitions behind the giant magnetic entropy variation: Gd5Si2Ge2 and Tb5Si2Ge2 case studies, Entropy, 16, 3813, 10.3390/e16073813 von Moos, 2015, The influence of hysteresis on the determination of the magnetocaloric effect in Gd5Si2Ge2, J Phys D: Appl Phys, 48, 025005, 10.1088/0022-3727/48/2/025005 Giguere, 1999, Direct measurement of the “giant” adiabatic temperature change in Gd5Si2Ge2, Phys Rev Lett, 83, 2262, 10.1103/PhysRevLett.83.2262 Gschneidner, 2000, Comment on “Direct measurement of the 'giant' adiabatic temperature change in Gd5Si2Ge2”, Phys Rev Lett, 85, 4190, 10.1103/PhysRevLett.85.4190 Sun, 2000, Comment on “Direct measurement of the 'giant' adiabatic temperature change in Gd5Si2Ge2”, Phys Rev Lett, 85, 4191, 10.1103/PhysRevLett.85.4191 Casanova, 2002, Entropy change and magnetocaloric effect in Gd-5(SixGe1-x)(4), Phys Rev B, 66, 100401, 10.1103/PhysRevB.66.100401 Pecharsky, 1997, Effect of alloying on the giant magnetocaloric effect of Gd-5(Si2Ge2), J Magn Magn Mater, 167, L179, 10.1016/S0304-8853(96)00759-7 Shull, 2006, The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy, J Appl Phys, 99, 08K908, 10.1063/1.2173632 Aksoy, 2008, The influence of gallium on the magnetocaloric properties of Gd5Si2Ge2, J Alloys Comp, 460, 94, 10.1016/j.jallcom.2007.06.060 Provenzano, 2008, Magnetocaloric properties and structure of the Gd(5)Ge(1.8)Si(1.8)Sn(0.4)compund, IEEE Trans Magn, 44, 3048, 10.1109/TMAG.2008.2002789 Zhuang, 2006, Giant magnetocaloric effect enhanced by Pb-doping in Gd5Si2Ge2 compound, J Alloys Comp, 421, 49, 10.1016/j.jallcom.2005.11.052 Li, 2006, The giant magnetocaloric effect of Gd5Si1.95Ge2.05 enhanced by Sn doping, J Appl Phys, 100, 073904, 10.1063/1.2355430 Aghababyan, 2015, Magnetocaloric effect of compounds in the Gd5Si2-xGe2-xSn2x system, J Contemp Phys-Armenian Acad Sci, 50, 200, 10.3103/S1068337215020152 Yuzuak, 2010, Magnetocaloric properties of the Gd5Si2.05-xGe1.95-xMn2x compounds, J Rare Earths, 28, 477, 10.1016/S1002-0721(09)60114-9 Yuzuak, 2010, Giant magnetocaloric effect in the Gd5Ge2.025Si1.925In0.05 compound, Chin Phys B, 19, 037502, 10.1088/1674-1056/19/3/037502 Prabahar, 2010, Solidification behaviour and microstructural correlations in magnetocaloric Gd-Si-Ge-Nb alloys, Mater Sci Eng B-Adv Funct Solid-State Mater, 172, 294, 10.1016/j.mseb.2010.06.002 Podmiljsak, 2009, Magnetocaloric properties and nanoscale structure of Fe-doped Gd5Ge2Si2 alloys, J Appl Phys, 105, 07A941, 10.1063/1.3074779 Podmiljsak, 2009, Microstructural changes in Fe-doped Gd5Si2Ge2, J Magn Magn Mater, 321, 300, 10.1016/j.jmmm.2008.09.001 Nirmala, 2005, Magnetocaloric effect in the intermetallic compound Gd5Si2Sb2, Europhys Lett, 72, 652, 10.1209/epl/i2005-10268-x Svitlyk, 2009, Magnetic transitions in the Gd5Si4-xPx (x=0.5, 0.75, 1.25) phases. Magnetocaloric effect of the Gd5Si2.75P1.25 phase, Solid State Sci, 11, 1941, 10.1016/j.solidstatesciences.2009.07.010 Chernyshov, 2006, Structural and magnetothermal properties of the Gd5SbxGe4-x system, J Appl Phys, 99, 08Q102, 10.1063/1.2150811 Wu, 2005, Influence of oxygen on the giant magnetocaloric effect of Gd5Si1.95Ge2.05, J Alloys Comp, 403, 118, 10.1016/j.jallcom.2005.06.001 Alves, 2004, Influence of hydrogen on the magnetic behaviour of Gd5Ge2Si2Hx, 0.1 <= x <= 2.5, J Magn Magn Mater, 272, 2391, 10.1016/j.jmmm.2004.01.054 Carvalho, 2007, Effect of hydrogen on the structural, magnetic and magnetocaloric properties of the Gd5Ge2.1Si1.9 compound, J Alloys Comp, 432, 11, 10.1016/j.jallcom.2006.05.121 Belo, 2012, Phase control studies in Gd5Si2Ge2 giant magnetocaloric compound, J Alloys Comp, 529, 89, 10.1016/j.jallcom.2012.02.164 Pecharsky, 2003, The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2, J Appl Phys, 93, 4722, 10.1063/1.1558210 Yan, 2004, Effect of composition and cooling rate on the structure and magnetic entropy change in Gd5SixGe4-x, J Appl Phys, 95, 7064, 10.1063/1.1667852 Lograsso, 2005, Synthesis and characterization of single crystalline Gd-5(Si, Ge1-x)(4) by the Bridgman method, J Alloys Comp, 393, 141, 10.1016/j.jallcom.2004.09.068 Gschneidner, 1999, Magnetic refrigeration materials (invited), J Appl Phys, 85, 5365, 10.1063/1.369979 Fu, 2005, Phase analysis of Gd-5(SixGe1-x)(4) alloys prepared from different purity Gd with x=0.475 and 0.43, Acta Mater, 53, 2377, 10.1016/j.actamat.2005.01.045 Spichkin, 2001, Preparation, crystal structure, magnetic and magnetothermal properties of (GdxR5-x)Si-4, where R=Pr and Tb, alloys, J Appl Phys, 89, 1738, 10.1063/1.1335821 Yang, 2003, Crystal structure and magnetic properties of Pr5Si4-Ge-x(x) compounds, J Magn Magn Mater, 263, 146, 10.1016/S0304-8853(02)01548-2 Magen, 2004, Evidence for a coupled magnetic-crystallographic transformation in Nd-5(Si0.6Ge0.4)(4), Phys Rev B, 70, 224429, 10.1103/PhysRevB.70.224429 Yang, 2003, Structure dependence of magnetic properties of Nd5Si4-xGex (x=1.2 and 2), Physica B, 325, 293, 10.1016/S0921-4526(02)01542-9 Ahn, 2007, Phase relationships, and the structural, magnetic, and thermodynamic properties in the Sm5SixGe4-x pseudobinary system, Phys Rev B, 76, 014415, 10.1103/PhysRevB.76.014415 Morellon, 2001, Magnetocaloric effect in Tb-5(SixGe1-x)(4), Appl Phys Lett, 79, 1318, 10.1063/1.1399007 Thuy, 2002, Magnetic properties and magnetocaloric effect of Tb-5(SixGe1-x)(4) compounds, J Magn Magn Mater, 242, 841, 10.1016/S0304-8853(01)01092-7 Deng, 2007, Magnetic phase transition and magnetocaloric effect in (Gd1-xTbx)(5)Si1.72Ge2.28 compounds, J Alloys Comp, 428, 28, 10.1016/j.jallcom.2006.03.078 Deng, 2007, The magnetocaloric effect in (Gd0.74Tb0.26)(5)(SixGe1-x)(4) alloys, Mater Lett, 61, 2359, 10.1016/j.matlet.2006.09.033 Min, 2015, Structure, magnetic properties and giant magnetocaloric effect of Tb4Gd1Si2.035Ge1.935Mn0.03 alloy, Intermetallics, 57, 68, 10.1016/j.intermet.2014.10.002 Xie, 2004, Magnetic entropy change in (Gd1-xDyx)Si-4 compounds, J Alloys Comp, 372, 49, 10.1016/j.jallcom.2003.10.016 Gschneidner, 2000, The nonpareil R-5(SixGe1-x)(4) phases, J Alloys Comp, 303, 214, 10.1016/S0925-8388(00)00747-7 Singh, 2010, Magnetostructural properties of Ho(5)(Si(0.8)Ge(0.2))(4), Phys Rev B, 81, 184414, 10.1103/PhysRevB.81.184414 Singh, 2010, Magnetic and magnetothermodynamic properties of Ho5Si4, J Appl Phys, 107, 09A921, 10.1063/1.3365515 Pecharsky, 2004, Phase relationships and structural, magnetic, and thermodynamic properties of alloys in the pseudobinary Er5Si4-Er5Ge4 system, Phys Rev B, 70, 144419, 10.1103/PhysRevB.70.144419 Singh, 2008, Unusual magnetic properties of (Er1-xGdx)(5)Si-4 compounds, Phys Rev B, 77, 054414, 10.1103/PhysRevB.77.054414 Zou, 2015, The structural and magnetic properties of the compound Tm5Ge4, RSC Adv, 5, 26850, 10.1039/C5RA02620B Zhang, 2010, Phase relationships, and structural, magnetic, and magnetocaloric properties in the Ce5Si4-Ce5Ge4 system, J Appl Phys, 107, 013909, 10.1063/1.3276211 Uthaman, 2015, Tuning the structural and magnetocaloric properties of Gd5Si2Ge2 with Nd substitution, J Appl Phys, 117, 013910, 10.1063/1.4905544 Vecchini, 2004, Dynamic magnetic susceptibility of Gd5Si2Ge2 and Gd4YSi1.9Ge2.1, J Appl Phys, 95, 7207, 10.1063/1.1652371 Prabahar, 2011, Phase analysis and magnetocaloric properties of Zr substituted Gd-Si-Ge alloys, J Magn Magn Mater, 323, 1755, 10.1016/j.jmmm.2011.01.029 Zhong, 2011, Crystal structure and magnetic properties of R5Sn4 alloys, where R is Tb, Dy, Ho, and Er, J Appl Phys, 109, 07A917, 10.1063/1.3549562 Carvalho, 2005, The magnetic and magnetocaloric properties of Gd5Ge2Si2 compound under hydrostatic pressure, J Appl Phys, 97, 10M320, 10.1063/1.1860932 Zou, 2012, Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound, Chin Phys B, 21, 037503, 10.1088/1674-1056/21/3/037503 Morellon, 2004, Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2, Phys Rev Lett, 93, 137201, 10.1103/PhysRevLett.93.137201 Arnold, 2009, Pressure effect on phase transitions and magnetocaloric effect in Gd5Ge4, J Appl Phys, 105, 07A934, 10.1063/1.3070661 Hadimani, 2015, Gd5(Si, Ge)4 thin film displaying large magnetocaloric and strain effects due to magnetostructural transition, Appl Phys Lett, 106, 032402, 10.1063/1.4906056 Pires, 2015, Annealing influence on the magnetostructural transition in Gd5Si1.3Ge2.7 thin films, Mater Lett, 159, 301, 10.1016/j.matlet.2015.05.029 Lewis, 2003, Simple enhancement of the magnetocaloric effect in giant magnetocaloric materials, Appl Phys Lett, 83, 515, 10.1063/1.1593821 Yue, 2007, Magnetocaloric effect in layer structural Gd-5(SixGe1-x)(4)/Gd composite material, J Appl Phys, 101, 09C520, 10.1063/1.2712298 Hadimani, 2014, Growth and characterization of Pt-protected Gd5Si4 thin films, J Appl Phys, 115, 17C113, 10.1063/1.4865322 Hadimani, 2015, Investigation of room temperature ferromagnetic nanoparticles of Gd5Si4, IEEE Trans Magn, 51, 2504104, 10.1109/TMAG.2015.2446774 Rajkumar, 2008, Magnetocaloric effect in high-energy ball-milled Gd5Si2Ge2 and Gd5Si2Ge2/Fe nanopowders, J Magn Magn Mater, 320, 1479, 10.1016/j.jmmm.2007.12.005 Zhang, 2008, Magnetic properties of a high energy ball-milled amorphous Gd5Si1.8Ge1.8Sn0.4 alloy, Solid State Commun, 147, 107, 10.1016/j.ssc.2008.05.009 Trevizoli, 2008, Powder metallurgy influences on the magnetic properties of Gd5.09Ge2.03Si1.88 alloy, J Magn Magn Mater, 320, 1582, 10.1016/j.jmmm.2008.01.007 Pires, 2015, Influence of short time milling in R-5(Si, Ge)(4), R = Gd and Tb, magnetocaloric materials, Mater Des, 85, 32, 10.1016/j.matdes.2015.06.099 Ozaydin, 2014, Multi-energy conversion of Gd-5 (SiGe2)-poly (vinylidene fluoride), a hybrid material, Appl Phys Lett, 105, 062903, 10.1063/1.4893296 Wang, 2009, Magnetic phase transitions in Pr(1-x)LuxMn(2)Ge(2) compounds, J Phys-Condes Matter, 21, 124217, 10.1088/0953-8984/21/12/124217 Koyama, 2006, Magnetocaloric and structural properties of SmMn2Ge2, J Alloys Comp, 408, 118, 10.1016/j.jallcom.2005.04.181 Duraj, 2010, Magnetic properties and magnetocaloric effect of R1-xRx ' Mn2Ge2 compounds, Acta Phys Pol A, 117, 603, 10.12693/APhysPolA.117.603 Kumar, 2008, Magnetic, magnetothermal, and magnetotransport properties in SmMn2Si2-xGex compounds, J Appl Phys, 103, 013909, 10.1063/1.2828179 Kumar, 2008, Pressure-induced changes in the magnetic and magnetocaloric properties of RMn2Ge2 (R=Sm, Gd), Phys Rev B, 77, 224427, 10.1103/PhysRevB.77.224427 Emre, 2008, Antiferromagnetic-ferromagnetic crossover in La0.5Pr0.5Mn2Si2 and its consequences on magnetoelastic and magnetocaloric properties, Phys Rev B, 78, 144408, 10.1103/PhysRevB.78.144408 Emre, 2010, Magnetic and magnetocaloric results of magnetic field-induced transitions in La1-xCexMn2Si2 (x=0.35 and 0.45) compounds., J Magn Magn Mater, 322, 448, 10.1016/j.jmmm.2009.09.074 Zhang, 2006, Magnetocaloric effect in LaMn2-xFexGe2 at near room temperature, Phys Lett A, 354, 462, 10.1016/j.physleta.2006.01.102 Bruck, 2008, A review on Mn based materials for magnetic refrigeration: structure and properties, Int J Refrig-Rev Int Froid, 31, 763, 10.1016/j.ijrefrig.2007.11.013 Wang, 2011, Magnetocaloric effect in layered NdMn2Ge0.4Si1.6, Appl Phys Lett, 98, 232509, 10.1063/1.3599456 Zeng, 2011, Large magnetocaloric effect in re-entrant ferromagnet PrMn1.4Fe0.6Ge2, J Alloys Comp, 509, L119, 10.1016/j.jallcom.2010.12.047 Chen, 2010, Magnetic properties and magnetocaloric effect of Nd(Mn1-xFex)(2)Ge-2 compounds, J Alloys Comp, 489, 13, 10.1016/j.jallcom.2009.09.078 Kaya, 2015, Effects of size reduction on the magnetic and magnetocaloric properties of NdMn2Ge2 nanoparticles prepared by high-energy ball milling, Phys Status Solidi B-Basic Solid State Phys, 252, 192, 10.1002/pssb.201451127 Din, 2014, Magnetic properties and magnetocaloric effect of NdMn2-xCuxSi2 compounds, J Appl Phys, 115, 17A921, 10.1063/1.4864249 Md Din, 2014, Magnetic phase transitions and entropy change in layered NdMn1.7Cr0.3Si2, Appl Phys Lett, 104, 042401, 10.1063/1.4863230 Kervan, 2011, Magnetocaloric effect in re-entrant ferrimagnet Nd0.2Gd0.8Mn2Ge2 compound, Solid State Commun, 151, 408, 10.1016/j.ssc.2010.11.034 Li, 2014, Magnetic properties and large reversible magnetocaloric effect in TmMn2Si2, J Alloys Comp, 582, 670, 10.1016/j.jallcom.2013.08.117 Li, 2015, Large entropy change accompanying two successive magnetic phase transitions in TbMn2Si2 for magnetic refrigeration, Appl Phys Lett, 106, 182405, 10.1063/1.4919895 Maji, 2014, Large exchange bias and magnetocaloric effect in TbMn2Si2, J Appl Phys, 116, 213913, 10.1063/1.4903770 Samanta, 2007, Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound, Appl Phys Lett, 91, 152506, 10.1063/1.2798594 Samanta, 2008, Comparative studies of magnetocaloric effect and magnetotransport behavior in GdRu2Si2 compound, J Appl Phys, 104, 123901, 10.1063/1.3043558 Li, 2011, Giant magnetocaloric effect in antiferromagnetic borocarbide superconductor RNi(2)B(2)C (R = Dy, Ho, and Er) compounds, J Appl Phys, 110, 043912, 10.1063/1.3625250 Li, 2009, Magnetic properties and large reversible magnetocaloric effect in PrCo2B2 compound, J Appl Phys, 106, 023903, 10.1063/1.3173565 Li, 2009, Magnetic properties and magnetocaloric effect in NdCo2B2 compound, J Phys D-Appl Phys, 42, 145003, 10.1088/0022-3727/42/14/145003 Li, 2009, Giant reversible magnetocaloric effect in antiferromagnetic superconductor Dy0.9Tm0.1Ni2B2C compound, Appl Phys Lett, 95, 132505, 10.1063/1.3240399 Li, 2009, Giant reversible magnetocaloric effect in antiferromagnetic GdCo2B2 compound, Appl Phys Lett, 94, 102509, 10.1063/1.3095660 Zhang, 2014, Effect of Fe substitution on magnetocaloric effect in metamagnetic boron-carbide ErNi2-xFexB2C compounds, J Alloys Comp, 610, 540, 10.1016/j.jallcom.2014.05.008 Chen, 2016, The magnetic properties of NdMnxCr2-xSi2C (0 < x < 2), J Phys D-Appl Phys, 49, 025001, 10.1088/0022-3727/49/2/025001 Kim, 2011, Giant reversible anisotropic magnetocaloric effect in an antiferromagnetic EuFe(2)As(2) single crystal, Appl Phys Lett, 98, 172509, 10.1063/1.3579254 Li, 2012, Magnetocaloric effect in metamagnetic borocarbide DyNi(2-x)A(x)B(2)C (A = Co and Cr) compounds, J Alloys Comp, 529, 25, 10.1016/j.jallcom.2012.03.061 Mo, 2014, Magnetic properties and magnetocaloric effect in the RCu2Si2 and RCu2Ge2 (R = Ho, Er) compounds, J Appl Phys, 115, 073905, 10.1063/1.4864419 Paramanik, 2014, Observation of large magnetocaloric effect in HoRu2Si2, J Appl Phys, 115, 10.1063/1.4867050 Paramanik, 2015, Generation of magnetic phase diagram of HoRu2Si2 using magnetocaloric effect, J Magn Magn Mater, 381, 168, 10.1016/j.jmmm.2014.12.080 Dörr, 2006, Ferromagnetic manganites: spin-polarized conduction versus competing interactions, J Phys D: Appl Phys, 39, R125, 10.1088/0022-3727/39/7/R01 Wang, 2011, Room temperature magnetocaloric effect of La-deficient bulk perovskite manganite La0.7MnO3-delta, Physica B, 406, 1436, 10.1016/j.physb.2011.01.044 Szewczyk, 2005, Specific heat and phase diagram of heavily doped La1-xSrxMnO3 (0.45 <= x <= 1.0), Phys Rev B, 72, 224429, 10.1103/PhysRevB.72.224429 Sudheendra, 2007, Metal–insulator transition and colossal magnetoresistance: relevance of electron–lattice coupling and electronic phase separation, Contemp Phys, 48, 349, 10.1080/00107510801981168 Phan, 2007, Review of the magnetocaloric effect in manganite materials, J Magn Magn Mater, 308, 325, 10.1016/j.jmmm.2006.07.025 Töpfer, 1997, LaMnO3+d Revisited, J Solid State Chem, 130, 117, 10.1006/jssc.1997.7287 Ghosh, 1999, Transition-element doping effects in La0.7Ca0.3MnO3, Phys Rev B, 59, 533, 10.1103/PhysRevB.59.533 Nisha, 2009, Near room temperature magneto caloric effect in V doped La0.67Ca0.33MnO3 ceramics, J Alloys Comp, 478, 566, 10.1016/j.jallcom.2008.11.091 Uthaman, 2015, Structural properties, magnetic interactions, magnetocaloric effect and critical behaviour of cobalt doped La0.7Te0.3MnO3, RSC Adv, 5, 86144, 10.1039/C5RA13408K Morelli, 1996, Magnetocaloric properties of doped lanthanum manganite film, J Appl Phys, 79, 373, 10.1063/1.360840 Zhang, 1996, Magnetocaloric effect in La0.67Ca0.33MnOd and La0.60Y0.07Ca0.33MnOd bulk materials, Appl Phys Lett, 69, 3596, 10.1063/1.117218 Guo, 1996, Large magnetic entropy change in La0.75Ca0.25MnO3, Appl Phys Lett, 70, 204 Zhang, 2010, Nanometer size effect on the structure and magnetic properties of high oxygen content ferromagnetic PrMnO[sub3+d] nanoparticles, J Appl Phys, 108, 113901, 10.1063/1.3516486 Pękała, 2007, Magnetocaloric effect in nano- and polycrystalline manganite La0.7Ca0.3MnO3, Appl Phys A-Mater Sci Process, 90, 237, 10.1007/s00339-007-4309-x Pekala, 2010, Magnetocaloric effect in nano- and polycrystalline manganites La0.5Ca0.5MnO3, J Alloys Comp, 507, 350, 10.1016/j.jallcom.2010.07.165 Tang, 2010, Size-induced changes of structural, magnetic and magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3, Physica B, 405, 2733, 10.1016/j.physb.2010.03.059 Hao, 2011, A-site-disorder-dependent magnetocaloric properties in the mono-valent-metal doped La0.7Ca0.3MnO3 manganites, J Alloys Comp, 509, 5877, 10.1016/j.jallcom.2011.02.162 Ji, 2009, Effects of A-site cation disorder on structure and magnetocaloric properties in Y and Sr codoped La[sub 2/3]Ca[sub 1/3]MnO[sub 3] compounds, J Appl Phys, 105, 07D713, 10.1063/1.3059602 Xie, 2009, Evolution of A-site disorder-dependent structural and magnetic transport properties in La2/3-xEuxCa1/3-ySryMnO3, Mater Chem Phys, 114, 636, 10.1016/j.matchemphys.2008.10.016 Amaral, 2008, The effect of chemical distribution on the magnetocaloric effect: a case study in second-order phase transition manganites, J Non-Cryst Solids, 354, 5301, 10.1016/j.jnoncrysol.2008.05.078 Irmak, 2010, The influence of the sintering temperature on the structural and the magnetic properties of doped manganites: La0.95Ag0.05MnO3 and La0.75Ag0.25MnO3, J Magn Magn Mater, 322, 945, 10.1016/j.jmmm.2009.11.029 Othmani, 2009, The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds, J Alloys Comp, 475, 46, 10.1016/j.jallcom.2008.08.005 Tasarkuyu, 2011, Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7, J Alloys Comp, 509, 3717, 10.1016/j.jallcom.2010.12.011 Szymczak, 2010, Cooling by adiabatic pressure application in La0.7Ca0.3MnO3 magnetocaloric effect material, J Magn Magn Mater, 322, 1589, 10.1016/j.jmmm.2009.09.020 Thiyagarajan, 2014, Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3 (B=Co and Cr), J Appl Phys, 115, 043905, 10.1063/1.4862810 Thiyagarajan, 2016, Effect of hydrostatic pressure on magnetic and magnetocaloric properties in La0.35Pr0.35Ca0.3Mn0.3, J Magn Magn Mater, 398, 116, 10.1016/j.jmmm.2015.06.091 Bingham, 2009, Magnetocaloric effect and refrigerant capacity in charge-ordered manganites, J Appl Phys, 106, 023909, 10.1063/1.3174396 Karmakar, 2008, Magnetocaloric effect in charge ordered Nd0.5Ca0.5MnO3 manganite, J Appl Phys, 103, 023901, 10.1063/1.2827117 Bonilla, 2010, A new criterion to distinguish the order of magnetic transitions by means of magnetic measurements, J Appl Phys, 107, 09E131, 10.1063/1.3366614 Dhahri, 2014, Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)(0.3)Mn0.9V0.1O3, Ceram Int, 40, 459, 10.1016/j.ceramint.2013.06.024 Giri, 2014, Large magnetocaloric effect and critical behavior in Sm0.09Ca0.91MnO3 electron-doped nanomanganite, EPL, 105, 47007, 10.1209/0295-5075/105/47007 Phan, 2014, Critical behavior of La0.7Ca0.3Mn1-xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions, Solid State Commun, 184, 40, 10.1016/j.ssc.2013.12.032 Abassi, 2016, Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1Ca0.23MnO3, Dalton Trans, 45, 4736, 10.1039/C5DT04490A Khondabi, 2015, Magnetocaloric and phase coexistence in La0.5Ca0.5-xSrxMnO3 manganites, J Appl Phys, 118, 233908, 10.1063/1.4937914 Mohamed, 2016, Magnetocaloric-transport properties correlation in doped manganites, Solid State Commun, 233, 15, 10.1016/j.ssc.2016.02.004 Debnath, 2010, Giant magnetic entropy change in colossal magnetoresistance in La0.7Ca0.3MnO3 material in low field, J Appl Phys, 107, 09A916, 10.1063/1.3359808 Bez, 2016, A detailed study of the hysteresis in La0.67Ca0.33MnO3, J Magn Magn Mater, 416, 429, 10.1016/j.jmmm.2016.05.011 Coskun, 2016, High magnetic entropy change in La0.70Ca0.21Ag0.09MnO3 compound, J Alloys Comp, 669, 217, 10.1016/j.jallcom.2016.01.230 Turcaud, 2015, Publisher's Note: Quantifying the deleterious role of strong correlations inLa1−xCaxMnO3at the magnetocaloric transition [Phys. Rev. B91, 134410 (2015)], Phys Rev B, 91, 139902, 10.1103/PhysRevB.91.139902 Khlifi, 2014, Magnetic, magnetocaloric, magnetotransport and magnetoresistance properties of calcium deficient manganites La0.8Ca0.2-x square xMnO3 post-annealed at 800 degrees C, J Alloys Comp, 587, 771, 10.1016/j.jallcom.2013.11.012 Phan, 2016, First-to-second-order magnetic-phase transformation in La0.7Ca0.3-xBaxMnO3 exhibiting large magnetocaloric effect, J Alloys Comp, 657, 818, 10.1016/j.jallcom.2015.10.162 Andrade, 2016, Magnetocaloric functional properties of Sm0.6Sr0.4MnO3 manganite due to advanced nanostructured morphology, Mater Chem Phys, 172, 20, 10.1016/j.matchemphys.2015.12.013 Andrade, 2016, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality, Acta Mater, 102, 49, 10.1016/j.actamat.2015.08.080 Anwar, 2014, Dimensionality dependent magnetic and magnetocaloric response of La0.6Ca0.4MnO3 manganite, J Nanosci Nanotechnol, 14, 8745, 10.1166/jnn.2014.9994 Kumaresavanji, 2014, Room temperature magnetocaloric effect and refrigerant capacitance in La0.7Sr0.3MnO3 nanotube arrays, Appl Phys Lett, 105, 083110, 10.1063/1.4894175 Kumaresavanji, 2015, Magnetocaloric effect in La0.7Ca0.3MnO3 nanotube arrays with broad working temperature span, J Appl Phys, 117, 104304, 10.1063/1.4914410 Quintero, 2014, Grain size modification in the magnetocaloric and non-magnetocaloric transitions in La0.5Ca0.5MnO3 probed by direct and indirect methods, Appl Phys Lett, 105, 152411, 10.1063/1.4898129 Das, 2016, Giant enhancement of magnetocaloric effect at room temperature by the formation of nanoparticle of La0.48Ca0.52MnO3 compound, J Appl Phys, 119, 093903, 10.1063/1.4942829 Giri, 2015, Strain modulated large magnetocaloric effect in Sm0.55Sr0.45MnO3 epitaxial films, Appl Phys Lett, 106, 023507, 10.1063/1.4906087 Bhatt, 2015, Near room temperature magneto-transport (TCR & MR) and magnetocaloric effect in Pr2/3Sr1/3MnO3:Ag2O composite, J Alloys Comp, 619, 151, 10.1016/j.jallcom.2014.08.216 Hussain, 2015, Effect of Zn on the Magnetic and Magnetocaloric Properties of (0.95)La0.7Ca0.3MnO3/(0.05)Mn1-x Zn (x) Fe2O4 Composites, J Supercond Nov Magn, 28, 3323, 10.1007/s10948-015-3157-8 Jerbi, 2015, Magnetic and magnetocaloric study of manganite compounds Pr(0.5)A(0.05)Sr(0.45)MnO(3) (A=Na and K) and composite, Physica B, 477, 75, 10.1016/j.physb.2015.08.022 Marzouki-Ajmi, 2015, Magnetic and magnetocaloric study of polycrystalline (1-x) La0.65Ca0.35MnO3/xFe(2)O(3) composites, J Supercond Nov Magn, 28, 103, 10.1007/s10948-014-2805-8 Marzouki-Ajmi, 2015, Structural, magnetic and magnetocaloric study of polycrystalline (1-x)La0.65Ca0.35MnO3/xCr(2)O(3) composites, J Supercond Nov Magn, 28, 1065, 10.1007/s10948-014-2892-6 Mikhaleva, 2015, Magnetization and magnetocaloric effect in La0.7Pb0.3MnO3 ceramics and 0.85(La0.7Pb0.3MnO3)-0.15(PbTiO3) composite, J Mater Res, 30, 278, 10.1557/jmr.2014.369 M'Nassri, 2016, Enhanced refrigerant capacity and magnetic entropy nearly flattening in (La-2/3 Ba-1/3 MnO3)(1-x/)(La-2/3 Ba-1/3 MnO2.98)(x) Composite, J Supercond Nov Magn, 29, 1879 Mohamed, 2016, Magnetoresistive and magnetocaloric response of manganite/insulator system, J Alloys Comp, 657, 495, 10.1016/j.jallcom.2015.10.095 Mohamed, 2016, Annealing temperature effect on magnetic and magnetocaloric properties of manganites, J Alloys Comp, 665, 394, 10.1016/j.jallcom.2016.01.057 Nasri, 2016, Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites, J Alloys Comp, 678, 427, 10.1016/j.jallcom.2016.04.020 Pekala, 2015, Effect of nanocrystalline structure on magnetocaloric effect in manganite composites (1/3)La0.7Ca0.3MnO3/(2/3)La0.8Sr0.2MnO3, J Alloys Comp, 629, 98, 10.1016/j.jallcom.2014.12.216 Sellami-Jmal, 2015, Magnetic and magnetocaloric properties of La0.65Ca0.35MnO3/La0.7Ca0.2Ba0.1MnO3 and La0.65Ca0.35MnO3/Pr0.5Sr0.5MnO3 composite manganites, J Supercond Nov Magn, 28, 3121, 10.1007/s10948-015-3135-1 Skini, 2016, An efficient composite magnetocaloric material with a tunable temperature transition in K-deficient manganites, RSC Adv, 6, 34271, 10.1039/C5RA27132K Vandrangi, 2015, Enhanced magnetocaloric effect driven by interfacial magnetic coupling in self-assembled Mn3O4-La0.7Sr0.3MnO3 nanocomposites, ACS Appl Mater Interfaces, 7, 26504, 10.1021/acsami.5b07585 Wang, 2015, Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite, Ceram Int, 41, 9035, 10.1016/j.ceramint.2015.03.275 Han, 2010, Magnetocaloric and colossal magnetoresistance effect in layered perovskite La1.4Sr1.6Mn2O7, J Mater Sci Technol, 26, 234, 10.1016/S1005-0302(10)60039-4 Tetean, 2008, Magnetic properties and magnetocaloric effect in La1.4-XRXCa1.6Mn2O7 compounds with R=Ho or Yb, J Optoelectron Adv Mater, 10, 849 Wang, 2004, Magnetic entropy change and colossal magnetoresistance effect in the layered perovskite La1.34Sr1.66Mn2O7, Solid State Commun, 130, 293, 10.1016/j.ssc.2003.12.037 Himcinschi, 2001, Magnetic and magnetocaloric properties of La1.4-XYbXCa1.6Mn2O7, 521 Aliev, 2011, Direct and inverse magnetocaloric effects in A-site ordered PrBaMn2O6 manganite, J Alloys Comp, 509, L165, 10.1016/j.jallcom.2011.02.058 Balli, 2014, A study of the phase transition and magnetocaloric effect in multiferroic La2MnNiO6 single crystals, J Appl Phys, 115, 173904, 10.1063/1.4874943 Mohamed, 2014, Effect of the partial substitution of Fe on the magnetic properties of new brownmillerite oxides LaSrMn2-xFexO5 (0 <= x <= 0.5), J Magn Magn Mater, 361, 44, 10.1016/j.jmmm.2014.02.066 Dhahri, 2006, Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6, J Alloys Comp, 420, 15, 10.1016/j.jallcom.2005.10.030 Balli, 2014, Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals, Appl Phys Lett, 104, 232402, 10.1063/1.4880818 de Oliveira, 2005, Magnetocaloric effect in systems of itinerant electrons: application to Fe Co, Ni, YFe and YFe compounds, J Alloys Comp, 403, 45, 10.1016/j.jallcom.2005.05.014 Nikitin, 1974, Magnetocaloric effect in compounds of rare-earth metals with iron, Soviet Phys JETP-USSR, 38, 1028 Buschow, 1977, Intermetallic compounds of rare-earth and 3d transition metals, Rep Prog Phys, 40, 1179, 10.1088/0034-4885/40/10/002 Paul-Boncour, 2009, Investigation of compounds for magnetocaloric applications: YFe2H4.2, YFe2D4.2, and Y0.5Tb0.5Fe2D4.2, J Appl Phys, 105, 013914, 10.1063/1.3055348 Budziak, 2011, Structural and magnetic transformations in HoMn(2)H(x) hydrides, 012010 Klepka, 2011, EXAFS and XRD investigation of crystal structure in Cr doped YMn2 deuterides, Radiat Phys Chem, 80, 1019, 10.1016/j.radphyschem.2011.03.016 Morariu, 1974, Mossbauer effect on YFe3 compound, Solid State Commun, 15, 1313, 10.1016/0038-1098(74)91370-2 Mandal, 2004, The study of magnetocaloric effect in R2Fe17 (R = Y, Pr) alloys, J Phys D-Appl Phys, 37, 2628, 10.1088/0022-3727/37/19/002 Fang, 2008, Microstructure and magnetocaloric effect of melt-spun Y(2)Fe(17) ribbons, J Appl Phys, 103, 07B302, 10.1063/1.2829031 Karpenkov, 2016, Adiabatic temperature change of micro- and nanocrystalline Y2Fe17 heat-exchangers for magnetic cooling, J Alloys Comp, 668, 40, 10.1016/j.jallcom.2016.01.209 Wang, 2010, Magnetic properties of YFe(12-x)Mo(x) compounds and magnetocaloric effect of YFe(9.5)Mo(2.5), J Magn Magn Mater, 322, 3000, 10.1016/j.jmmm.2010.05.019 Karotsis, 2010, Mn(4)(III)Ln(4)(III) Calix 4 arene clusters as enhanced magnetic coolers and molecular magnets, J Am Chem Soc, 132, 12983, 10.1021/ja104848m Langley, 2011, Molecular coolers: the case for (Cu5Gd4III)-Gd-II, Chem Sci, 2, 1166, 10.1039/c1sc00038a Adhikary, 2015, A family of Fe3+ based double-stranded helicates showing a magnetocaloric effect, and Rhodamine B dye and DNA binding activities, Dalton Trans, 44, 15531, 10.1039/C5DT01569C Biswas, 2016, Densely packed lanthanide cubane based 3D metal-organic frameworks for efficient magnetic refrigeration and slow magnetic relaxation, Inorg Chem, 55, 2085, 10.1021/acs.inorgchem.5b02486 Guo, 2012, Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect, Inorg Chem, 51, 405, 10.1021/ic2018314 Zheng, 2011, Co-Gd phosphonate complexes as magnetic refrigerants, Chem Sci, 2, 99, 10.1039/C0SC00371A Pineda, 2014, Iron lanthanide phosphonate clusters: Fe(6)Ln(6)P(6) Wells-Dawson-like structures with D-3d symmetry, Inorg Chem, 53, 3032, 10.1021/ic402839q Sibille, 2014, Magnetocaloric effect in gadolinium-oxalate framework Gd2(C2O4)3(H2O)6⋅(0⋅6H2O), APL Mater, 2, 124402, 10.1063/1.4900884 Tang, 2016, Co(II)(4)Gd(III)(6) phosphonate grid and cage as molecular refrigerants, Inorg Chim Acta, 442, 195, 10.1016/j.ica.2015.12.013 Lorusso, 2012, Increasing the dimensionality of cryogenic molecular coolers: Gd-based polymers and metal-organic frameworks, Chem Commun, 48, 7592, 10.1039/c2cc33485b Ding, 2016, The magnetocaloric effect with critical behavior of a periodic Anderson-like organic polymer, Phys Chem Chem Phys, 18, 510, 10.1039/C5CP06137G Liu, 2016, Tricarboxylate-based Gd-III coordination polymers exhibiting large magnetocaloric effects, Dalton Trans., 45, 9209, 10.1039/C6DT01349J Qiu, 2016, The effect of magnetic coupling on magnetocaloric behaviour in two 3D Gd(III)-glycolate coordination polymers, Inorg Chem Front, 3, 150, 10.1039/C5QI00208G Peng, 2011, A 48-metal cluster exhibiting a large magnetocaloric effect, Angew Chem-Int Ed, 50, 10649, 10.1002/anie.201105147 Hooper, 2012, The importance of being exchanged: (Gd4M8II)-M-III(OH)(8)(L)(8)(O2CR)(8) (4+) clusters for magnetic refrigeration, Angew Chem-Int Ed, 51, 4633, 10.1002/anie.201200072 Florez, 2011, Thermal observables in coupled Cr7Ni molecular rings: role and quantification of spin-entanglement, J Appl Phys, 109, 07B109, 10.1063/1.3549563 Chen, 2014, Switching of the magnetocaloric effect of Mn-II glycolate by water molecules, Chem-Eur J, 20, 3029, 10.1002/chem.201304423 Tian, 2014, Reversible crystal-to-amorphous-to-crystal phase transition and a large magnetocaloric effect in a spongelike metal organic framework material, Chem Commun, 50, 1915, 10.1039/c3cc48325h Biswas, 2014, Synthesis and characterization of two lanthanide (Gd3+ and Dy3+)-based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocks and their magnetic, sorption, and fluorescence properties study, Cryst Growth Des, 14, 1287, 10.1021/cg401804e Adhikary, 2014, Synthesis, crystal structure and study of magnetocaloric effect and single molecular magnetic behaviour in discrete lanthanide complexes, Dalton Trans, 43, 9334, 10.1039/C4DT00540F Pasatoiu, 2014, Octanuclear Ni(4)(II)Ln(4)(III) complexes. Synthesis, crystal structures and magnetocaloric properties, Dalton Trans, 43, 9136, 10.1039/C4DT00515E Upadhyay, 2014, Synthesis and magnetothermal properties of a ferromagnetically coupled Ni-II-Gd-III-Ni-II cluster, Dalton Trans, 43, 259, 10.1039/C3DT52384E Wang, 2014, Magnetocaloric effect of a series of remarkably isostructural intermetallic Ni(3)(II)Ln(III) cubane aggregates, Dalton Trans, 43, 182, 10.1039/C3DT52176A Xiong, 2014, The multiple core-shell structure in Cu(24)Ln(6) cluster with magnetocaloric effect and slow magnetization relaxation, Dalton Trans, 43, 5639, 10.1039/c3dt53251h Wang, 2014, A series of 3D metal organic frameworks based on 24-MC-6 metallacrown clusters: structure, magnetic and luminescence properties, Dalton Trans, 43, 12989, 10.1039/C4DT01593B Biswas, 2014, Two isostructural 3D lanthanide coordination networks (Ln = Gd-3 Dy3+) with squashed cuboid-type nanoscopic cages showing significant cryogenic magnetic refrigeration and slow magnetic relaxation, Inorg Chem, 53, 3926, 10.1021/ic4030316 Orendac, 2014, Enhanced magnetocaloric effect in quasi-one-dimensional S = 1/2 Heisenberg antiferromagnet Cu(dmen)(2)(H2O) SiF6, J Alloys Comp, 586, 34, 10.1016/j.jallcom.2013.10.044 Pelka, 2014, Magnetocaloric effect in { Fe(pyrazole)(4) (2) Nb(CN)(8) center dot 4H(2)O}(n) molecular magnet, J Magn Magn Mater, 354, 359 Alexandropoulos, 2016, Dodecanuclear 3d/4f-metal clusters with a 'Star of David' topology: single-molecule magnetism and magnetocaloric properties, Chem Commun, 52, 1693, 10.1039/C5CC09385F Balanda, 2016, Relaxation and magnetocaloric effect in the Mn-12 molecular nanomagnet incorporated into mesoporous silica: a comparative study, RSC Adv, 6, 49179, 10.1039/C6RA04063B Kuang, 2015, Synthesis, crystal structure, and magnetic properties of a family of undecanuclear Cu(9)(II)Ln(2)(III) nanoclusters, Eur J Inorg Chem, 2245, 10.1002/ejic.201500064 Langley, 2014, Synthesis, structure, and magnetism of a family of heterometallic Cu(2)Ln(7) and Cu(4)Ln(12) (Ln = Gd, Tb, and Dy) complexes: the Gd analogues exhibiting a large magnetocaloric effect, Inorg Chem, 53, 13154, 10.1021/ic5023467 Liu, 2014, Hexanuclear Ni(2)Ln(4) clusters exhibiting enhanced magnetocaloric effect and slow magnetic relaxation, RSC Adv, 4, 53870, 10.1039/C4RA07882A Pedersen, 2014, Fluoride-bridged Gd-III M-3(III) (2) (M= Cr, Fe, Ga) molecular magnetic refrigerants, Angew Chem-Int Ed, 53, 2394, 10.1002/anie.201308240 Liu, 2016, Molecular design for cryogenic magnetic coolants, Chem Rec, 16, 825, 10.1002/tcr.201500278 Evangelisti, 2010, Recipes for enhanced molecular cooling, Dalton Trans, 39, 4672, 10.1039/b926030g Evangelisti, 2006, Magnetothermal properties of molecule-based materials, J Mater Chem, 16, 2534, 10.1039/b603738k Torres, 2000, Giant and time-dependent magnetocaloric effect in high-spin molecular magnets, Appl Phys Lett, 77, 3248, 10.1063/1.1325393 Affronte, 2004, Engineering molecular rings for magnetocaloric effect, Appl Phys Lett, 84, 3468, 10.1063/1.1737468 Evangelisti, 2005, Molecular nanoclusters as magnetic refrigerants: the case of Fe-14 with very large spin ground-state, Polyhedron, 24, 2573, 10.1016/j.poly.2005.03.123 Manuel, 2006, Magnetocaloric effect in hexacyanochromate Prussian blue analogs, Phys Rev B, 73, 172406, 10.1103/PhysRevB.73.172406 Yuan, 2017, Rare-earth high-entropy alloys with giant magnetocaloric effect, Acta Mater, 125, 481, 10.1016/j.actamat.2016.12.021 Tripathy, 2006, A comparative study of the magnetocaloric effect in Gd3Co and Gd3Ni, J Magn Magn Mater, 306, 24, 10.1016/j.jmmm.2006.02.253 Kumar, 2011, Magnetothermal effect in Gd3Rh, J Appl Phys, 109, 07A909, 10.1063/1.3540664 Monteiro, 2015, The physical properties of Gd3Ru: a real candidate for a practical cryogenic refrigerator, Appl Phys Lett, 106, 194106, 10.1063/1.4921143 Li, 2008, Large reversible magnetocaloric effect in Tb3Co compound, Appl Phys Lett, 92, 242504, 10.1063/1.2939220 Shen, 2010, Magnetocaloric effect in antiferromagnetic Dy3Co compound, Appl Phys A-Mater Sci Process, 99, 853, 10.1007/s00339-010-5613-4 Shen, 2011, Magnetocaloric effect and magnetic phase transition in Ho3Co, J Appl Phys, 109, 07A931, 10.1063/1.3561146 Kumar, 2010, Large reversible magnetocaloric effect in Er3Co compound, J Appl Phys, 107, 09A932, 10.1063/1.3367887 Sánchez Llamazares, 2015, Magnetocaloric properties of rapidly solidified Dy3Co alloy ribbons, J Appl Phys, 117, 17A706, 10.1063/1.4906764 Shen, 2010, Order of magnetic transition and large magnetocaloric effect in Er3Co, Chin Phys B, 19, 047502, 10.1088/1674-1056/19/4/047502 Paramanik, 2015, Magnetic and magnetocaloric properties of Dy5Pd2: role of magnetic irreversibility, RSC Adv, 5, 47860, 10.1039/C5RA06970J Toyoizumi, 2015, Sample dependence of giant magnetocaloric effect in a cluster-glass system Ho5Pd2, J Appl Phys, 117, 17D101, 10.1063/1.4906296 Toyoizumi, 2016, Iop. Magnetocaloric effect in a cluster-glass system Ho5Pd2-xNix, 012036 Canepa, 2002, Magnetocaloric properties of Gd7Pd3 and related intermetallic compounds, IEEE Trans Magn, 38, 3249, 10.1109/TMAG.2002.802510 Talik, 2016, Magnetocaloric and Hopkinson effects in slowly and rapidly cooled Gd7Pd3, Int J Mater Res, 107, 3, 10.3139/146.111318 Canepa, 2002, Magnetocaloric effect in the intermetallic compound Gd7Pd3, Intermetallics, 10, 731, 10.1016/S0966-9795(02)00051-1 Oboz, 2011, Physical properties of Gd7NiPd2 single crystal, J Alloys Comp, 509, 4478, 10.1016/j.jallcom.2011.01.034 Talik, 2016, Influence of nickel on the electronic structure and magnetic properties in Gd7Pd3-xNix, Philos Mag, 96, 1073, 10.1080/14786435.2016.1154620 Oboz, 2010, Magnetic and transport properties of Gd3Y4Pd3 single crystal, J Alloys Comp, 492, 13, 10.1016/j.jallcom.2009.11.105 Talik, 2010, Magnetic properties of Gd4Y3Pd3 single crystal, J Cryst Growth, 312, 1651, 10.1016/j.jcrysgro.2010.01.047 Talik, 2014, Magnetic and transport properties of Gd7-xYxPd3 (x=0-6) system, J Alloys Comp, 582, 718, 10.1016/j.jallcom.2013.08.084 Sengupta, 2005, Large magnetoresistance and magnetocaloric effect above 70 K in Gd2Co2Al, Gd2Co2Ga, and Gd7Rh3, Phys Rev B, 72, 054422, 10.1103/PhysRevB.72.054422 Kumar, 2015, Magnetocaloric effect and refrigeration cooling power in amorphous Gd7Ru3 alloys, AIP Adv, 5, 077125, 10.1063/1.4926810 Bhattacharyya, 2012, Field induced sign reversal of magnetocaloric effect in Gd2In, J Magn Magn Mater, 324, 1239, 10.1016/j.jmmm.2011.11.023 Zhang, 2009, Large reversible magnetocaloric effect in Tb2In, Solid State Commun, 149, 396, 10.1016/j.ssc.2008.12.009 Zhang, 2009, Large reversible magnetocaloric effect in Dy2In, J Phys D-Appl Phys, 42, 055011, 10.1088/0022-3727/42/5/055011 Zhang, 2009, Magnetocaloric effect in Ho2In over a wide temperature range, Appl Phys Lett, 94, 182501, 10.1063/1.3130090 Zhang, 2011, Large reversible magnetocaloric effect in Er2In compound, J Alloys Comp, 509, 2602, 10.1016/j.jallcom.2010.11.108 Tence, 2016, Magnetic and magnetocaloric properties of Gd2In0.8X0.2 compounds (X=Al, Ga, Sn, Pb), J Magn Magn Mater, 399, 46, 10.1016/j.jmmm.2015.09.058 Hadimani, 2014, Enhancement of magnetocaloric effect in the Gd2Al phase by Co alloying, J Appl Phys, 116, 183908, 10.1063/1.4900782 Morozkin, 2010, Magnetic properties of Fe2P-type R6CoTe2 compounds (R = Gd-Er), J Solid State Chem, 183, 1314, 10.1016/j.jssc.2010.04.002 Zhang, 2016, Structure and magnetic behaviors of Gd6FeBi2 compound, Intermetallics, 68, 51, 10.1016/j.intermet.2015.07.013 Hermes, 2010, Large reversible magnetocaloric effect due to a rather unstable antiferromagnetic ground state in Er4NiCd, J Appl Phys, 108, 113919, 10.1063/1.3518556 Li, 2014, Reversible table-like magnetocaloric effect in Eu4PdMg over a very large temperature span, Appl Phys Lett, 104, 092416, 10.1063/1.4867882 Li, 2016, Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals, Chin Phys B, 25, 037502, 10.1088/1674-1056/25/3/037502 Wang, 2010, Magnetic properties and magnetocaloric effect in Ho6-xErxMnBi2 compounds, J Appl Phys, 107, 09A918, 10.1063/1.3359812 Morozkin, 2015, Magnetic and magnetocaloric properties of Ho6Co2Ga-type Dy6Co2.5Sn0.5 compound, J Magn Magn Mater, 378, 174, 10.1016/j.jmmm.2014.11.011 Couillaud, 2011, The magnetocaloric properties of GdScSi and GdScGe, Intermetallics, 19, 1573, 10.1016/j.intermet.2011.06.001 Mayer, 2011, The new ternary silicide Gd5CoSi2: structural, magnetic and magnetocaloric properties, J Solid State Chem, 184, 325, 10.1016/j.jssc.2010.11.023 Tian, 2010, Magnetic properties and magnetocaloric effect in Nd5Si3 compound, J Appl Phys, 107, 09A917, 10.1063/1.3359811 Tian, 2010, Large reversible magnetocaloric effect of light rare-earth intermetallic compound Pr5Si3, J Alloys Comp, 496, 517, 10.1016/j.jallcom.2010.02.093 Schafer, 2014, Magnetic properties of RE5Ir2X (RE = Y, Gd-Ho, X = Sn, Sb, Pb, Bi) and magnetocaloric characterization of Gd5Ir2X, Solid State Sci, 35, 66, 10.1016/j.solidstatesciences.2014.06.010 Yuan, 2015, Targeted structural changes and magnetic properties study in (Ho/Er)(5)Ga3-x(Co/Fe)(x), J Alloys Comp, 620, 376, 10.1016/j.jallcom.2014.09.158 Mohapatra, 2011, Isothermal magnetic entropy behavior in Tb(5)Si(3): sign reversal and non-monotonic variation with temperature, and implications, Solid State Commun, 151, 1340, 10.1016/j.ssc.2011.06.020 Nirmala, 2011, Competing magnetic interactions in the intermetallic compounds Pr5Ge3 and Nd5Ge3, J Appl Phys, 109, 07A716, 10.1063/1.3556920 Maji, 2012, Magnetic and magnetocaloric properties of ball milled Nd5Ge3, J Appl Phys, 111, 073905, 10.1063/1.3700243 Bie, 2009, Rare-earth tetrel antimonidesRE5TtxSb3-x(RE= La-Nd;Tt= Si, Ge), Eur J Inorg Chem, 2009, 3403, 10.1002/ejic.200900336 Morozkin, 2011, New ternary Yb5Sb3-type R5T1-x{Sb, Bi}(2+x) phases (R = Y, Dy, Ho, T = Co, Ru, Rh, Pd) and their magnetic properties, Intermetallics, 19, 302, 10.1016/j.intermet.2010.10.015 Svitlyk, 2008, Gd5Ni0.96Sb2.04 and Gd5Ni0.71Bi2.29: crystal structure, magnetic properties and magnetocaloric effect. Structural transformation and magnetic properties of hexagonal Gd5Bi3, J Solid State Chem, 181, 1080, 10.1016/j.jssc.2008.02.002 Zheng, 2011, Magnetic phase transitions and magnetocaloric properties of (Gd(12-x)Tb(x))Co(7) alloys, J Appl Phys, 109, 07A919, 10.1063/1.3551736 Zheng, 2016, Large magnetocaloric effect in Er12Co7 compound and the enhancement of delta T-FWHM by Ho-substitution, J Alloys Comp, 680, 617, 10.1016/j.jallcom.2016.04.216 Shigeoka, 2011, Novel magnetic behaviour of GdPd2Si2 single crystal, 012121 Han, 2010, Low-field magnetocaloric effect in (Gd1-xDyx)(3)Al-2 alloys, J Alloys Comp, 504, 310, 10.1016/j.jallcom.2010.05.157 Li, 2015, Successive magnetic transitions and magnetocaloric effect in Dy3Al2 compound, J Alloys Comp, 651, 278, 10.1016/j.jallcom.2015.08.087 Zhang, 2014, Magnetic properties and magnetocaloric effect in Tb3Al2 compound, J Alloys Comp, 615, 406, 10.1016/j.jallcom.2014.06.209 Dong, 2011, Magnetic properties and magnetocaloric effects in R(3)Ni(2) (R = Ho and Er) compounds, Appl Phys Lett, 99, 132504, 10.1063/1.3643142 Bhattacharyya, 2014, Magnetocaloric effect near the second order ferromagnetic transition in superstructure R15Si9C compounds (R = Gd, Tb and Dy), J Alloys Comp, 588, 720, 10.1016/j.jallcom.2013.11.071 Niu, 2001, Crystallography, magnetic properties and magnetocaloric effect in Gd-4(BixSb1-x)(3) alloys, J Magn Magn Mater, 234, 193, 10.1016/S0304-8853(01)00391-2 Nobrega, 2011, Theoretical investigation on the magnetocaloric effect in the intermetallic Gd(4)Sb(3), J Alloys Comp, 509, 8979, 10.1016/j.jallcom.2011.05.097 Mohapatra, 2008, Large magnetocaloric effect and magnetoresistance behavior in Gd4Co3, Eur Phys J B, 63, 451, 10.1140/epjb/e2008-00266-x Zhang, 2009, Magnetic and reversible magnetocaloric properties of (Gd1-xDyx)(4)Co-3 ferrimagnets, J Appl Phys, 105, 053902, 10.1063/1.3075627 Tence, 2010, Around the composition Gd4Co3: Structural, magnetic and magnetocaloric properties of Gd6Co4.85(2), Intermetallics, 18, 1216, 10.1016/j.intermet.2010.03.016 Shen, 2009, Magnetic properties and magnetocaloric effects in R6Co2Si3 compounds with R=Nd and Tb, J Alloys Comp, 476, 693, 10.1016/j.jallcom.2008.09.099 Shen, 2009, Room-temperature large refrigerant capacity of Gd6Co2Si3, J Appl Phys, 106, 083902, 10.1063/1.3243289 Shen, 2008, Magnetocaloric effect in Pr6Co1.67Si3 compound, J Alloys Comp, 458, L6, 10.1016/j.jallcom.2007.12.102 Shen, 2007, Magnetic properties and magnetocaloric effects in Tb6Co1.67Si3 compound, Chin Phys, 16, 3853, 10.1088/1009-1963/16/12/050 Shen, 2008, Magnetocaloric effect in Gd6Co1.67Si3 compound with a second-order phase transition, Chin Phys B, 17, 2268, 10.1088/1674-1056/17/6/055 Zhao, 2010, Effect of Dy substitution on magnetic properties and magnetocaloric effects of Tb6Co1.67Si3 compounds, Chin Phys B, 19, 047501, 10.1088/1674-1056/19/4/047501 Haldar, 2010, Metastable magnetization behavior of magnetocaloric R6Co1.67Si3 (R=Tb and Nd) compounds, Physica B, 405, 3446, 10.1016/j.physb.2010.05.021 Shen, 2011, Magnetic entropy change and large refrigerant capacity of Ce6Ni2Si3-type GdCoSiGe compound, Chin Phys B, 20, 027501, 10.1088/1674-1056/20/2/027501 Gaudin, 2008, Structural and magnetocaloric properties of the new ternary silicides Gd6M5/3Si3 with M = Co and Ni, Chem Mater, 20, 2972, 10.1021/cm8000859 Pathak, 2011, Magnetic and magnetocaloric properties of Gd6X2Si3 (X = Ni, Co) and Ln(6)Co(2)Si(3) (Ln = Pr, La), J Appl Phys, 109, 07A913, 10.1063/1.3544509 Chennabasappa, 2014, A core-shell phenomenon maintain the magnetocaloric properties of the ternary silicide Gd6Co1.67Si3 during water flux ageing, J Alloys Comp, 584, 34, 10.1016/j.jallcom.2013.08.211 Zhang, 2015, Abnormal thermal expansion, multiple transitions, magnetocaloric effect, and electronic structure of Gd6Co4.85, J Appl Phys, 118, 133903, 10.1063/1.4931982 Duraj, 2012, Magnetic properties of Dy11Si4In6, Acta Phys Pol A, 121, 1118, 10.12693/APhysPolA.121.1118 Cheung, 2011, Structure, magnetic and magnetocaloric properties of RE11Ge8In2 (RE = Gd-Tm), Intermetallics, 19, 276, 10.1016/j.intermet.2010.10.004 Yamamoto, 2004, Magnetocaloric effect of rare earth mono-nitrides, TbN and HoN, J Alloys Comp, 376, 17, 10.1016/j.jallcom.2003.12.012 Nakagawa, 2006, Magnetocaloric effects of ferromagnetic erbium mononitride, J Alloys Comp, 408, 191, 10.1016/j.jallcom.2005.04.061 Nishio, 2006, Specific heat and thermal conductivity of HoN and ErN at cryogenic temperatures, J Appl Phys, 99, 08K901, 10.1063/1.2158689 Nakagawa, 2006, Magnetocaloric effects of binary rare earth mononitrides, GdxTb1-xN and TbxHo1-xN, J Alloys Comp, 408, 187, 10.1016/j.jallcom.2005.04.046 Nakagawa, 2004, Magnetocaloric effect of mononitride containing gadolinium and dysprosium GdxDy1-xN, J Alloys Comp, 364, 53, 10.1016/S0925-8388(03)00546-2 Hirayama, 2008, Magnetocaloric effect, specific heat and adiabatic temperature change of HoxEr1-xN (x=0.25, 0.5, 0.75), J Alloys Comp, 462, L12, 10.1016/j.jallcom.2007.08.052 von Ranke, 2012, Spin reorientation and the magnetocaloric effect in HoyEr(1-y)N, J Appl Phys, 111, 113916, 10.1063/1.4728201 Hirayama, 2008, Magnetocaloric effect of rare earth nitrides, IEEE Trans Magn, 44, 2997, 10.1109/TMAG.2008.2002586 Kim, 2015, Novel route to prepare HoN nanoparticles for magnetic refrigerant in cryogenic temperature, Int J Hydrog Energy, 40, 11465, 10.1016/j.ijhydene.2015.03.052 Shinde, 2015, Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method, Dalton Trans, 44, 20386, 10.1039/C5DT03528G Ahn, 2004, Preparation, heat capacity, magnetic properties, and the magnetocaloric effect of EuO, J Appl Phys, 97, 063901, 10.1063/1.1841463 Li, 2014, Large reversible magnetocaloric effect in ferromagnetic semiconductor EuS, Solid State Commun, 193, 6, 10.1016/j.ssc.2014.05.024 Hu, 2008, Giant magnetocaloric effect in the Ising antiferromagnet DySb, Appl Phys Lett, 92, 192505, 10.1063/1.2928233 Li, 2010, Giant and anisotropic magnetocaloric effect in antiferromagnetic single crystalline DySb, Solid State Commun, 150, 1865, 10.1016/j.ssc.2010.07.049 de Sousa, 2010, The influence of spontaneous and field induced spin reorientation transitions on the magnetocaloric properties in rare earth intermetallic compounds: application to TbZn, J Appl Phys, 107, 103928, 10.1063/1.3386523 de Sousa, 2011, The influence of spontaneous and field-induced spin reorientation transitions on the magnetocaloric properties of HoZn and ErZn, J Appl Phys, 109, 063904, 10.1063/1.3554725 Law, 2016, Gd plus GdZn biphasic magnetic composites synthesized in a single preparation step: increasing refrigerant capacity without decreasing magnetic entropy change, J Alloys Comp, 675, 244, 10.1016/j.jallcom.2016.03.130 Mo, 2015, Magnetic properties and magnetocaloric effects in HoPd intermetallic, Chin Phys B, 24, 037503, 10.1088/1674-1056/24/3/037503 Zhang, 2009, Magnetic properties and magnetocaloric effect of GdGa compound, J Alloys Comp, 469, 15, 10.1016/j.jallcom.2008.01.115 Zheng, 2014, Magnetic properties and magnetocaloric effects of GdxEr1-xGa (0 <= x <= 1) compounds, J Appl Phys, 115, 17A905, 10.1063/1.4854875 Zheng, 2014, Nearly constant magnetic entropy change and adiabatic temperature change in PrGa compound, J Appl Phys, 115, 17A938, 10.1063/1.4868203 Chen, 2010, Giant magnetocaloric effect in HoGa compound over a large temperature span, Solid State Commun, 150, 157, 10.1016/j.ssc.2009.10.023 Drulis, 2011, The magnetocaloric effect and low temperature specific heat of SmNi, Solid State Commun, 151, 1240, 10.1016/j.ssc.2011.05.047 Xu, 2011, Magnetocaloric effect in ErSi compound, IEEE Trans Magn, 47, 2470, 10.1109/TMAG.2011.2153837 Smarzhevskaya, 2014, New magnetocaloric material based on GdNiH3.2 hydride for application in cryogenic devices, Phys Stat Solidi C: Curr Topics Solid State Phys, 11, 1102, 10.1002/pssc.201300728 Oboz, 2012, Magnetocaloric effect in GdCu intermetallic compound, Cryst Res Technol, 47, 341, 10.1002/crat.201100485 Wang, 2014, Low-temperature large magnetocaloric effect in the antiferromagnetic CeSi compound, J Alloys Comp, 587, 10, 10.1016/j.jallcom.2013.10.183 Yang, 2014, Magnetic and magnetocaloric properties of equiatomic alloys RAl (R = Ho and Er), J Alloys Comp, 596, 58, 10.1016/j.jallcom.2014.01.202 Manfrinetti, 2011, Magnetic ordering of novel La3NiGe2-type R3CoGe2 compounds (R = Pr, Nd, Sm, Gd-Dy), Intermetallics, 19, 321, 10.1016/j.intermet.2010.10.013 Ahn, 2009, The magnetothermal behavior of mixed-valence Eu3O4, J Appl Phys, 106, 043918, 10.1063/1.3204662 Midya, 2012, Giant magnetocaloric effect in magnetically frustrated EuHo[sub 2]O[sub 4] and EuDy[sub 2]O[sub 4] compounds, Appl Phys Lett, 101, 132415, 10.1063/1.4754849 Morozkin, 2016, Magnetic order of Y3NiSi3-type R3NiSi3 (R= Gd-DY) compounds, J Magn Magn Mater, 398, 141, 10.1016/j.jmmm.2015.09.035 Linsinger, 2010, The solid solution Gd2NixCu2-xMg: Large reversible magnetocaloric effect and a drastic change of the magnetism by substitution, J Appl Phys, 108, 043903, 10.1063/1.3466775 Morozkin, 2012, Magnetic properties and magnetocaloric effect of Sc(2)CoSi(2)-type Gd(2)CoSi(2) and Gd(2)CoGe(2) compounds, Intermetallics, 21, 115, 10.1016/j.intermet.2011.10.009 Tence, 2014, Stabilization by Si substitution of the pseudobinary compound Gd-2(Co3-xSix) with magnetocaloric properties around room temperature, Inorg Chem, 53, 6728, 10.1021/ic500529b Morozkin, 2016, Magnetic ordering in Sc2CoSi2-type R2FeSi2 (R = Gd, Tb) and R2CoSi2 (R=Y, Gd-Er) compounds, J Magn Magn Mater, 413, 97, 10.1016/j.jmmm.2016.04.034 Fu, 2011, Structural, magnetic, and magnetothermal properties of R(2)Co(2)Al (R = Tb, and Dy) compounds, Mater Charact, 62, 451, 10.1016/j.matchar.2011.02.009 Karmakar, 2014, Investigation of magnetic and electrical transport properties of Dy2Ni2Sn, J Magn Magn Mater, 370, 96, 10.1016/j.jmmm.2014.06.065 Zhang, 2016, Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound, J Alloys Comp, 667, 130, 10.1016/j.jallcom.2016.01.157 Li, 2016, Magnetic properties and large magnetocaloric effect in Ho2Cu2In and Ho2Au2In compounds, J Mater Sci, 51, 5421, 10.1007/s10853-016-9845-3 Zhang, 2016, Large reversible magnetocaloric effect in RE2Cu2In (RE = Er and Tm) and enhanced refrigerant capacity in its composite materials, J Phys D-Appl Phys, 49, 145002, 10.1088/0022-3727/49/14/145002 da Silva, 2005, Magnetization and specific heat in U1-xLaxGa2 and magnetocaloric effect in UGa2, J Appl Phys, 97, 10A921, 10.1063/1.1854412 da Silva, 2009, A study of pressure and chemical substitution effects on the magnetocaloric properties of the ferromagnetic compound UGa2, J Phys-Condes Matter, 21, 276001, 10.1088/0953-8984/21/27/276001 da Silva, 2008, Magnetic and magnetocaloric properties on the U1-yRyGa2 (R=Er and Dy) compound, J Appl Phys, 103, 07B308, 10.1063/1.2830689 Han, 2010, Magnetocaloric effect in terbium diboride, J Alloys Comp, 498, 118, 10.1016/j.jallcom.2010.03.154 Meng, 2012, Reversible magnetocaloric effect and refrigeration capacity enhanced by two successive magnetic transitions in DyB2, Sci China-Technol Sci, 55, 501, 10.1007/s11431-011-4684-6 dos Reis, 2014, Anisotropic magnetocaloric effect in ErGa2 and HoGa2 single-crystals, J Alloys Comp, 582, 461, 10.1016/j.jallcom.2013.08.023 Wang, 2014, Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds, J Alloys Comp, 592, 63, 10.1016/j.jallcom.2013.12.265 Mo, 2015, A giant reversible magnetocaloric effect in Ho2PdSi3 compound, J Alloys Comp, 618, 512, 10.1016/j.jallcom.2014.08.224 Bazela, 2003, Magnetic structures of R2RhSi3 (R=Ho, Er) compounds, J Alloys Comp, 360, 76, 10.1016/S0925-8388(03)00374-8 Wang, 2014, Large magnetocaloric effect with a wide working temperature span in the R2CoGa3 (R = Gd, Dy, and Ho) compounds, J Appl Phys, 115, 233913, 10.1063/1.4884233 Singh, 2009, Investigations on magnetic and magnetocaloric properties of the intermetallic compound TbAgAl, J Appl Phys, 105, 023901, 10.1063/1.3065528 Chen, 2010, Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound, Appl Phys Lett, 96, 152501, 10.1063/1.3386536 Chen, 2010, Giant magnetic entropy change in antiferromagnetic DyCuSi compound, Solid State Commun, 150, 1429, 10.1016/j.ssc.2010.05.017 Drulis, 2010, Magnetocaloric effect in terbium dihydrides: Heat capacity measurements, Solid State Commun, 150, 164, 10.1016/j.ssc.2009.10.024 Drulis, 2009, Magnetic properties of terbium dihydrides, Solid State Commun, 149, 1266, 10.1016/j.ssc.2009.05.016 Zhang, 2015, Magnetocaloric effects in RT X intermetallic compounds (R = Gd-Tm, T = Fe-Cu and Pd, X = Al and Si), Chin Phys B, 24, 127504, 10.1088/1674-1056/24/12/127504 Canepa, 1999, Magnetocaloric properties of GdNiGa and GdNiIn intermetallic compounds, J Phys D-Appl Phys, 32, 2721, 10.1088/0022-3727/32/21/303 Klimczak, 2010, Magnetocaloric effect of GdTX (T = Mn, Fe, Ni, Pd, X=Al, In) and GdFe6Al6 ternary compounds, J Phys: Conference Series, 200, 092009 Schappacher, 2008, Structure and magnetism of GdRuGe, Solid State Commun, 148, 326, 10.1016/j.ssc.2008.08.033 Oboz, 2011, Properties of the GdTX (T = Mn, Fe, Ni, Pd, X = Al, In) and GdFe6Al6 intermetallics, J Alloys Comp, 509, 5441, 10.1016/j.jallcom.2010.08.163 Takeya, 1994, New-type of magnetocaloric effect - implications on low-temperature magnetic refrigeration using an ericsson cycle, Appl Phys Lett, 64, 2739, 10.1063/1.111459 Zhang, 2011, Magnetocaloric effects in RNiIn (R = Gd-Er) intermetallic compounds, J Appl Phys, 109, 123926, 10.1063/1.3603044 Cui, 2015, Effect of Cu doping on the magnetic and magnetocaloric properties in the HoNiAl intermetallic compound, J Alloys Comp, 622, 24, 10.1016/j.jallcom.2014.08.181 Dong, 2009, Large reversible magnetocaloric effect in DyCuAl compound, J Appl Phys, 105, 113902, 10.1063/1.3122598 Dong, 2011, Spin-glass behavior and magnetocaloric effect in melt-spun TbCuAl alloys, Solid State Commun, 151, 112, 10.1016/j.ssc.2010.11.013 Dong, 2012, Large magnetic entropy change and refrigerant capacity in rare-earth intermetallic RCuAl (R=Ho and Er) compounds, J Magn Magn Mater, 324, 2676, 10.1016/j.jmmm.2012.03.052 Dong, 2012, Effect of crystal grain dimension on the magnetic properties and magnetocaloric effects in DyCuAl compound, J Nanosci Nanotechnol, 12, 1040, 10.1166/jnn.2012.4267 Shen, 2011, Metamagnetic transition and magnetocaloric effect in antiferromagnetic TbPdAl compound, J Magn Magn Mater, 323, 2949, 10.1016/j.jmmm.2011.05.042 Kastil, 2010, Magnetocaloric effect of the Tb1-xYxNiAl and TbNiAl1-yIny Series, Acta Phys Pol A, 118, 888, 10.12693/APhysPolA.118.888 Kastil, 2011, Anisotropic magnetocaloric effect in TbNiAl, J Alloys Comp, 509, 5931, 10.1016/j.jallcom.2011.02.001 Mukadam, 2010, Magnetocaloric effect in UNiGa compound with the multiple magnetic phase transitions, Physica B, 405, 686, 10.1016/j.physb.2009.09.087 Mo, 2014, Evolution of magnetic properties and magnetocaloric effect in TmNi1-xCuxAl (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) compounds, J Appl Phys, 115, 17A909, 10.1063/1.4861580 Bajorek, 2011, Magnetism of selected ternary Sm compounds, J Alloys Comp, 509, 2667, 10.1016/j.jallcom.2010.12.050 Franca, 2016, Magnetocaloric effect of the ternary Dy, Ho and Er platinum gallides, J Magn Magn Mater, 401, 1088, 10.1016/j.jmmm.2015.10.138 Prokes, 2002, Magnetic properties and magnetic structure of HoTiGe and ErTiGe, J Alloys Comp, 335, 62, 10.1016/S0925-8388(01)01819-9 Provenzano, 2006, Structure and magnetocaloric properties of the Fe-doped HoTiGe alloy, J Appl Phys, 99, 08K906, 10.1063/1.2159396 Shen, 2010, Magnetic properties and magnetocaloric effects in antiferromagnetic ErTiSi, J Appl Phys, 107, 09A931, 10.1063/1.3365531 Zhang, 2014, Successive inverse and normal magnetocaloric effects in HoFeSi compound, J Appl Phys, 115, 063901, 10.1063/1.4865297 Ma, 2016, Comparative study of the magnetocaloric effect in multiphase Gd-Ni-Al alloys: single peak versus table-like profile in magnetic entropy changes, J Alloys Comp, 680, 268, 10.1016/j.jallcom.2016.04.120 Wlodarczyk, 2015, Characterization of magnetocaloric effect, magnetic ordering and electronic structure in the GdFe1-xCoxSi intermetallic compounds, Mater Chem Phys, 162, 273, 10.1016/j.matchemphys.2015.05.067 Gupta, 2015, Review on magnetic and related properties of RTX compounds, J Alloys Comp, 618, 562, 10.1016/j.jallcom.2014.08.079 Bajorek, 2009, Influence of Fe substitution on the structure and magnetic properties in Gd(Ni1-xFex)(3) intermetallic compounds, J Alloys Comp, 485, 6, 10.1016/j.jallcom.2009.05.134 Bajorek, 2010, Magnetic properties and magnetocaloric effect in Gd(Ni1-xCox)(3) intermetallic compounds, J Alloys Comp, 494, 22, 10.1016/j.jallcom.2010.01.027 Xie, 2010, Tunable magnetocaloric effect around hydrogen liquefaction temperature in Tb1-xYxCoC2 compounds, Physica B, 405, 2133, 10.1016/j.physb.2010.01.120 Dembele, 2015, Large magnetocaloric effect of GdNiAl2 compound, J Magn Magn Mater, 391, 191, 10.1016/j.jmmm.2015.05.005 Gao, 2015, Magnetic properties and low-temperature large magnetocaloric effect in the antiferromagnetic HoCu0.33Ge2 and ErCu0.25Ge2 compounds, J Alloys Comp, 631, 33, 10.1016/j.jallcom.2015.01.073 Gupta, 2016, Magnetism, electronic structure and optical properties of TbNiGe2, J Alloys Comp, 664, 120, 10.1016/j.jallcom.2015.12.211 Gupta, 2016, Theoretical and experimental investigations on the magnetic and related properties of RAgSn2 (R=Ho, Er) compounds, J Mater Sci, 51, 6341, 10.1007/s10853-016-9930-7 Jang, 2015, Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn, Nat Commun, 6, 8680, 10.1038/ncomms9680 Gruner, 2014, Unusual weak magnetic exchange in two different structure types: YbPt2Sn and YbPt2In, J Phys Condens Matter, 26, 485002, 10.1088/0953-8984/26/48/485002 Bhattacharyya, 2011, Successive magnetic transitions and low temperature magnetocaloric effect in RE2Ni7 (RE=Dy, Ho), J Magn Magn Mater, 323, 1484, 10.1016/j.jmmm.2011.01.004 Ilyn, 2011, Magnetocaloric effect in single crystal Nd2Co7, J Appl Phys, 109, 083932, 10.1063/1.3563583 Li, 2016, Magnetic properties and magnetocaloric effect in metamagnetic RE2Cu2O5 (RE = Dy and Ho) cuprates, J Alloys Comp, 658, 500, 10.1016/j.jallcom.2015.10.289 Lemoine, 2011, Magnetic and magnetocaloric properties of R(6)Mn(23) (R=Y, Nd, Sm, Gd-Tm, Lu) compounds, J Magn Magn Mater, 323, 2690, 10.1016/j.jmmm.2011.06.012 Lemoine, 2010, Magnetocaloric properties of Gd-6(Mn1-xFex)(23) alloys (x <= 0.2), Solid State Commun, 150, 1556, 10.1016/j.ssc.2010.06.005 Lemoine, 2016, Magnetic and magnetocaloric properties of Gd-6(Mn1-xCox)(23) compounds (x <= 0.3), J Alloys Comp, 680, 612, 10.1016/j.jallcom.2016.04.198 Su, 2011, Large reversible magnetocaloric effect in HoTiO(3) single crystal, J Appl Phys, 110, 083912, 10.1063/1.3653838 Ben Amor, 2012, Synthesis, Magnetic Properties, Magnetic Entropy and Arrot Plot of Antiferromagnetic Frustrated Er2Ti2O7 Compound, J Supercond Nov Magn, 25, 1035, 10.1007/s10948-011-1344-9 Alho, 2014, Anisotropic magnetocaloric effect in antiferromagnetic systems: application to EuTiO3, J Appl Phys, 116, 113907, 10.1063/1.4895996 Midya, 2016, Large adiabatic temperature and magnetic entropy changes in EuTiO3, Phys Rev B, 93, 094422, 10.1103/PhysRevB.93.094422 Rubi, 2014, Giant magnetocaloric effect in magnetoelectric Eu1-xBaxTiO3, Appl Phys Lett, 104, 032407, 10.1063/1.4862981 Roy, 2016, Giant low-field magnetocaloric effect in single-crystalline EuTi0.85Nb0.15O3, APL Mater, 4, 026102, 10.1063/1.4940960 Mo, 2015, Observation of giant magnetocaloric effect in EuTi1-xCrxO3, J Alloys Comp, 649, 674, 10.1016/j.jallcom.2015.07.176 Alho, 2011, Theoretical investigation on the existence of inverse and direct magnetocaloric effect in perovskite EuZrO3, J Appl Phys, 109, 083942, 10.1063/1.3582144 Balli, 2015, Observation of large refrigerant capacity in the HoVO3 vanadate single crystal, J Appl Phys, 118, 073903, 10.1063/1.4929370 Cao, 2016, Magnetic phase transition and giant anisotropic magnetic entropy change in TbFeO3 single crystal, J Appl Phys, 119, 063904, 10.1063/1.4941105 Ke, 2016, Anisotropic magnetic entropy change in RFeO3 single crystals(R = Tb, Tm, or Y), Sci Rep, 6, 19775, 10.1038/srep19775 Ke, 2015, Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal, Chin Phys B, 24, 037501, 10.1088/1674-1056/24/3/037501 Yin, 2014, Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe0.5Cr0.5O3, Appl Phys Lett, 104, 032904, 10.1063/1.4862665 McDannald, 2015, Magnetocaloric properties of rare-earth substituted DyCrO3, J Appl Phys, 118, 043904, 10.1063/1.4927440 Yin, 2015, Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal, J Appl Phys, 117, 133901, 10.1063/1.4916701 Yin, 2016, Magnetic and magnetocaloric properties of iron substituted holmium chromite and dysprosium chromite, RSC Adv, 6, 9475, 10.1039/C5RA24323H Ido, 1990, Effect of al substitution on the magnetic-properties of RCo5 (R = rare-earth), J Appl Phys, 67, 4638, 10.1063/1.344838 Nikitin, 2010, Giant rotating magnetocaloric effect in the region of spin-reorientation transition in the NdCo5 single crystal, Phys Rev Lett, 105, 137205, 10.1103/PhysRevLett.105.137205 Ma, 2010, The study of the magnetic and room-temperature magnetocaloric properties in spin-reorientation Nd1-xDyxCo4Al (x=0, 0.1) alloys, J Alloys Comp, 499, 7, 10.1016/j.jallcom.2010.01.104 Ao, 2010, Structural and magnetic properties of Dy(1-x)Nc(1-x)Co(4)Ga compounds, J Alloys Comp, 495, 13, 10.1016/j.jallcom.2010.01.122 Nouri, 2016, Structural, atomic Hirschfeld surface, magnetic and magnetocaloric properties of SmNi5 compound, J Alloys Comp, 672, 440, 10.1016/j.jallcom.2016.02.142 Coroian, 2008 Rocco, 2009, High refrigerant capacity of PrNi5-xCox magnetic compounds exploiting its spin reorientation and magnetic transition over a wide temperature zone, J Phys D-Appl Phys, 42, 055002, 10.1088/0022-3727/42/5/055002 Ma, 2011, Effect of partial Nd-substitution on the magnetic and magnetocaloric properties in spin-reorientation PrCo(4)Al alloy, Eur Phys J B, 84, 167, 10.1140/epjb/e2011-20121-3 Skokov, 2011, Magnetocaloric effect, magnetic domain structure and spin-reorientation transitions in HoCo5 single crystals, J Magn Magn Mater, 323, 447, 10.1016/j.jmmm.2010.09.044 Falkowski, 2012, Magnetocaloric effect in NdNi4Si compound, Acta Phys Pol A, 121, 1290, 10.12693/APhysPolA.121.1290 Laghrissi, 2016, Ab initio, theoretical and Monte Carlo approaches for the magnetocaloric effect in DyNi4Si, J Magn Magn Mater, 412, 259, 10.1016/j.jmmm.2016.04.009 Morozkin, 2015, Magnetism and magnetocaloric effect in YNi4Si-type RNi4Si (R=Ce, Gd, Tb and Dy) compounds, J Magn Magn Mater, 378, 221, 10.1016/j.jmmm.2014.11.036 Yao, 2015, Giant magnetic coercivity in CaCu5-type SmNi3TSi (T=Mn-Cu) solid solutions, J Solid State Chem, 232, 213, 10.1016/j.jssc.2015.09.024 Yao, 2015, Giant magnetic coercivity in orthorhombic YNi4Si-type SmNi4Si compound, J Solid State Chem, 230, 249, 10.1016/j.jssc.2015.07.012 Morozkin, 2015, Magnetic properties of CaCu5-type RNi3TSi (R = Gd and Tb, T = Mn, Fe, Co and Cu) compounds, J Solid State Chem, 232, 150, 10.1016/j.jssc.2015.09.023 Li, 2011, Study of the magnetic transition and large magnetocaloric effect in DyCo3B2 compound, J Appl Phys, 109, 083901, 10.1063/1.3572060 Li, 2011, Magnetic properties and magnetocaloric effect in GdCo3B2 compound, J Alloys Comp, 509, 4198, 10.1016/j.jallcom.2011.01.049 Tolinski, 2011, Magnetocaloric effect in the ternary DyCO3B2 compound, Solid State Sci, 13, 1865, 10.1016/j.solidstatesciences.2011.07.020 Gencer, 2008, Magnetocaloric effect in CeCo4B compound, J Alloys Comp, 466, 1, 10.1016/j.jallcom.2007.11.035 Kervan, 2009, Magnetic properties and magnetocaloric effect of Ce2GdCo11B4 boride, Mater Chem Phys, 116, 586, 10.1016/j.matchemphys.2009.04.041 Sharma, 2010, Pressure tuning the magnetocaloric effect in valence transition compound YbInCu4, J Appl Phys, 108, 083918, 10.1063/1.3481440 Midya, 2014, Mandal p. 3d–4f spin interaction and field-induced metamagnetism in RCrO4 (R=Ho, Gd, Lu) compounds, J Appl Phys, 115, 17E114, 10.1063/1.4861680 Dong, 2015, Ericsson-like giant magnetocaloric effect in GdCrO4-ErCrO4 composite oxides near liquid hydrogen temperature, Mater Lett, 161, 669, 10.1016/j.matlet.2015.09.070 Midya, 2014, Giant magnetocaloric effect in antiferromagnetic DyVO4 compound, Physica B, 448, 43, 10.1016/j.physb.2014.03.019 McMichael, 1993, Enhanced magnetocaloric effect in Gd3Ga5-xFexO12, J Appl Phys, 73, 6946, 10.1063/1.352443 Zhitomirsky, 2003, Enhanced magnetocaloric effect in frustrated magnets, Phys Rev B, 67, 104421, 10.1103/PhysRevB.67.104421 Provenzano, 2003, Enhanced magnetocaloric effects in R-3(Ga1-xFex)(5)O-12 (R = Gd, Dy, Ho; 0 < x < 1) nanocomposites, J Magn Magn Mater, 266, 185, 10.1016/S0304-8853(03)00470-0 Phan, 2009, Magnetocaloric effect in bulk and nanostructured Gd3Fe5O12 materials, J Phys D-Appl Phys, 42, 115007, 10.1088/0022-3727/42/11/115007 von Ranke, 2009, Theoretical investigation on the magnetocaloric effect in garnets R3Fe5O12 where (R=Y and Dy), J Appl Phys, 106, 053914, 10.1063/1.3213383 Nolas, 2001, Semiconductor clathrates: a phonon glass electron crystal material with potential for thermoelectric applications, 255, 10.1016/S0080-8784(01)80152-6 Srinath, 2006, Giant magnetocaloric effect in clathrates, J Appl Phys, 99, 08K902, 10.1063/1.2162035 Phan, 2008, Long-range ferromagnetism and giant magnetocaloric effect in type VIII Eu8Ga16Ge30 clathrates, Appl Phys Lett, 93, 252505, 10.1063/1.3055833 Phan, 2010, Magnetocaloric effect and refrigerant capacity in Sr-doped Eu8Ga16Ge30 type-I clathrates, J Appl Phys, 107, 09A910, 10.1063/1.3349409 Phan, 2011, Origin of the magnetic anomaly and tunneling effect of europium on the ferromagnetic ordering in Eu(8-x)Sr(x)Ga(16)Ge(30) (x=0,4) type-I clathrates, Phys Rev B, 84, 054436, 10.1103/PhysRevB.84.054436 Chaturvedi, 2011, Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials, Appl Phys Lett, 99, 162513, 10.1063/1.3654157 Biswas, 2015, Enhanced cryogenic magnetocaloric effect in Eu8Ga16Ge30 clathrate nanocrystals, J Appl Phys, 117, 033903, 10.1063/1.4906280 Zheng, 2011, Large magnetocaloric effect in a Wells-Dawson type Ni6Gd6P6 cage, Angew Chem-Int Ed, 50, 3692, 10.1002/anie.201008074 Pasturel, 2015, Magnetocaloric properties of a novel ferromagnet Gd3Co4+xAl12-x (x=0.50), Intermetallics, 60, 28, 10.1016/j.intermet.2015.01.003 Chattopadhyay, 2010, Magnetic transitions and thermomagnetic properties of GdCu6, J Magn Magn Mater, 322, 3142, 10.1016/j.jmmm.2010.05.049 Liu, 2015, Metamagnetic transition and magnetothermal properties of ErCo4Ge2, J Appl Phys, 118, 013904, 10.1063/1.4923414 Basso, 2011, Er2Fe14B single crystal as magnetic refrigerant at the spin reorientation transition, J Appl Phys, 109, 083910, 10.1063/1.3567925 Skokov, 2016, Rotational magnetocaloric effect in the Er2Fe14B single crystal, IEEE Trans Magn, 52, 2500304, 10.1109/TMAG.2016.2530138 Jin, 1991, Research for room-temperature magnetic refrigerants in RXCE2-XFE17 series, J Appl Phys, 70, 6275, 10.1063/1.349965 Gorria, 2009, Crystal structure, magnetocaloric effect and magnetovolume anomalies in nanostructured Pr2Fe17, Acta Mater, 57, 1724, 10.1016/j.actamat.2008.12.014 Pawlik, 2006, Phase structure and magnetocaloric effect in binary Pr-Fe alloys, J Magn Magn Mater, 304, E510, 10.1016/j.jmmm.2006.02.138 Guetari, 2014, Influence of Al substitution on magnetocaloric effect of Pr2Fe17-xAlx, J Alloys Comp, 588, 64, 10.1016/j.jallcom.2013.10.184 Zhong, 2014, Magnetocaloric effect of Pr2Fe17-x Mn (x) alloys, Rare Metals, 33, 552, 10.1007/s12598-013-0134-x Alvarez, 2010, Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: crystal structure, microstructure and magnetic properties, J Phys-Condes Matter, 22, 216005, 10.1088/0953-8984/22/21/216005 Alvarez, 2011, Magnetic properties and magneto-caloric effect in pseudo-binary intermetallic (Ce, R)(2)Fe-17 compounds (R = Y, Pr and Dy), Intermetallics, 19, 982, 10.1016/j.intermet.2011.02.020 Kuchin, 2011, Magnetocaloric effect in the Ce2Fe17-xMnx helical magnets, J Alloys Comp, 509, 6763, 10.1016/j.jallcom.2011.04.043 Alvarez-Alonso, 2014, On the broadening of the magnetic entropy change due to Curie temperature distribution, J Appl Phys, 115, 17A929, 10.1063/1.4867346 Charfeddine, 2016, Structural, magnetic, magneto-caloric and Mossbauer spectral study of Tb2Fe17 compound synthesized by arc melting, J Solid State Chem, 238, 15, 10.1016/j.jssc.2016.03.001 Banerjee, 2007, Anomalous magnetic and magnetocaloric properties of Er2Ni17, J Phys D-Appl Phys, 40, 2691, 10.1088/0022-3727/40/9/001 Kuchin, 2010, Enhancement of the magnetocaloric effect in the Lu2Fe17-xMnx system, Solid State Commun, 150, 1580, 10.1016/j.ssc.2010.05.041 Kuchin, 2015, The magnetocaloric effect in R2Fe17 intermetallics with different types of magnetic phase transition, Low Temp Phys, 41, 985, 10.1063/1.4938182 Zhang, 2010, Coexistence of inverse and normal magnetocaloric effect in A-site ordered NdBaMn2O6, Appl Phys Lett, 96, 242506, 10.1063/1.3453657 Pani, 2016, RNi8Si3 (R= Gd, Tb): novel ternary ordered derivatives of the BaCd11 type, J Solid State Chem, 233, 397, 10.1016/j.jssc.2015.11.004 Tkáč, 2015, Giant reversible rotating cryomagnetocaloric effect inKEr(MoO4)2induced by a crystal-field anisotropy, Phys Rev B, 92, 024406, 10.1103/PhysRevB.92.024406 Snyman, 2010, Magnetocaloric effect in geometrically frustrated magnetic compound HoB12, Acta Phys Pol A, 118, 873, 10.12693/APhysPolA.118.873 Chandragiri, 2015, Magnetic and magnetotransport behavior ofRFe5Al7(R=GdandDy): observation of reentrant inverse-magnetocaloric phenomenon and asymmetric magnetoresistance behavior, Phys Rev B, 92, 7, 10.1103/PhysRevB.92.014407 Hill, 2012, Magnetic and magnetocaloric properties of the new rare-earth-transition-metal intermetallic compound Gd3Co29Ge4B10, J Appl Phys, 111, 07E333, 10.1063/1.3677658 Midya, 2014, Giant magnetocaloric effect in ferromagnetic superconductor RuSr2GdCu2O8, J Appl Phys, 116, 223905, 10.1063/1.4904084 Zhang, 2006, Large magnetic entropy changes in NdFe12B6 compound, Appl Phys Lett, 89, 122503, 10.1063/1.2355452 Huang, 2008, Structural properties and Mossbauer spectra of metastable NdFe12B6, Mater Lett, 62, 85, 10.1016/j.matlet.2007.04.085 Zhang, 2011, The magnetocaloric effect in Nd(Co1-xFex)(12)B-6 alloys, Physica B, 406, 2840, 10.1016/j.physb.2011.04.039 Wang, 2010, Magnetic properties and magnetocaloric effect in compound PrFe12B6, Chin Phys B, 19, 067501, 10.1088/1674-1056/19/6/067501 de Oliveira, 2005, Magnetocaloric effect in systems of itinerant electrons: application to Fe Co, Ni, YFe2 and YFe3 compounds, J Alloys Comp, 403, 45, 10.1016/j.jallcom.2005.05.014 Daniilidis, 2007, Magnetocaloric studies of the peak effect in Nb, Phys Rev B, 75, 174519, 10.1103/PhysRevB.75.174519 Ohtsuka, 1965, Reversible magnetocaloric effect in superconducting niobium, Phys Lett, 17, 194, 10.1016/0031-9163(65)90477-4 Wasim, 1965, Magnetocaloric effects and enthalpy in mixed state of superconducting niobium, Phys Lett, 19, 165, 10.1016/0031-9163(65)90043-0 Dong, 1997, Specific heat of superconducting indium in porous Vycor glass, Solid State Commun, 101, 929, 10.1016/S0038-1098(96)00686-2 Graf, 2011, Simple rules for the understanding of Heusler compounds, Prog Solid State Chem, 39, 1, 10.1016/j.progsolidstchem.2011.02.001 Planes, 2009, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, J Phys-Condes Matter, 21, 233201, 10.1088/0953-8984/21/23/233201 Planes, 2015, Caloric and multicaloric effects in shape memory alloys, Mater Today-Proc, 2, 477, 10.1016/j.matpr.2015.07.332 Buchelnikov, 2011, Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys, Phys Metals Metallogr, 112, 633, 10.1134/S0031918X11070052 Umetsu, 2016, NiMn-based metamagnetic shape memory alloys, Scr Mater, 116, 1, 10.1016/j.scriptamat.2016.01.006 Yu, 2015, Recent progress in Heusler-type magnetic shape memory alloys, Rare Metals, 34, 527, 10.1007/s12598-015-0534-1 Singh, 2016, Large magnetization and reversible magnetocaloric effect at the second-order magnetic transition in heusler materials, Adv Mater, 28, 3321, 10.1002/adma.201505571 Kokorin, 2009, Martensitic transformation temperature hysteresis narrowing and magnetocaloric effect in ferromagnetic shape memory alloys Ni-Mn-Ga, J Magn Magn Mater, 321, 782, 10.1016/j.jmmm.2008.11.077 Dutta, 2016, Ab initio prediction of martensitic and intermartensitic phase boundaries in Ni-Mn-Ga, Phys Rev Lett, 116, 025503, 10.1103/PhysRevLett.116.025503 D'Souza, 2014, Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys, J Phys Condens Matter, 26, 506001, 10.1088/0953-8984/26/50/506001 Hu, 2000, Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy, Appl Phys Lett, 76, 3460, 10.1063/1.126677 Fukuda, 2009, Influence of magnetocrystalline anisotropy on martensitic transformation under magnetic field of single-crystalline Ni2MnGa, Scr Mater, 60, 261, 10.1016/j.scriptamat.2008.10.016 Hu, 2001, Magnetic entropy change in Ni50.1Mn20.7Ga29.6 single crystal, J Appl Phys, 90, 5216, 10.1063/1.1410890 Hu, 2001, Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal, Phys Rev B, 64, 132412, 10.1103/PhysRevB.64.132412 Mandal, 2008, Magnetocaloric effect in Ni-Mn-Ga alloys, IEEE Trans Magn, 44, 2993, 10.1109/TMAG.2008.2002481 Zhou, 2005, Influence of the nature of the magnetic phase transition on the associated magnetocaloric effect in the Ni-Mn-Ga system, J Magn Magn Mater, 293, 854, 10.1016/j.jmmm.2004.12.004 Zhou, 2006, Phase transitions and the magnetocaloric effect in Mn rich Ni-Mn-Ga Heusler alloys, J Magn Magn Mater, 305, 372, 10.1016/j.jmmm.2006.01.029 Singh, 2014, Inverse magnetocaloric effect in Mn2NiGa and Mn1.75Ni1.25Ga magnetic shape memory alloys, Appl Phys Lett, 104, 051905, 10.1063/1.4863742 Chatterjee, 2012, Effect of Sn doping on the martensitic and premartensitic transitions in Ni2MnGa, J Magn Magn Mater, 324, 1891, 10.1016/j.jmmm.2012.01.018 Marcos, 2002, Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys, Phys Rev B, 66, 224413, 10.1103/PhysRevB.66.224413 Marcos, 2003, Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys, Phys Rev B, 68, 094401, 10.1103/PhysRevB.68.094401 Pareti, 2003, Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2.19Mn0.81Ga Heusler alloy, Eur Phys J B, 32, 303, 10.1140/epjb/e2003-00102-y Aliev, 2004, Magnetocaloric effect and magnetization in a Ni-Mn-Ga Heusler alloy in the vicinity of magnetostructural transition, J Magn Magn Mater, 272, 2040, 10.1016/j.jmmm.2003.12.1363 Pasquale, 2005, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals, Phys Rev B, 72, 094435, 10.1103/PhysRevB.72.094435 Duan, 2008, Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85-xCuxGa (x=0.05,0.07) alloys, J Appl Phys, 103, 063911, 10.1063/1.2899041 Khovaylo, 2008, Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study, Phys Rev B, 78, 060403, 10.1103/PhysRevB.78.060403 Li, 2011, Determination of the magnetocaloric effect associated with martensitic transition in Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloys, Chin Phys B, 20, 047502, 10.1088/1674-1056/20/4/047502 Zhang, 2011, Magnetocaloric effect in Ni-Mn-Ga thin films under concurrent magnetostructural and Curie transitions, J Appl Phys, 110, 013910, 10.1063/1.3602088 Sasso, 2008, Direct measurements of the entropy change and its history dependence in Ni-Mn-Ga alloys, J Appl Phys, 103, 07B306, 10.1063/1.2829011 Porcari, 2012, Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: the case of Ni-Co-Mn-Ga Heusler alloys, Phys Rev B, 86, 104432, 10.1103/PhysRevB.86.104432 Khovaylo, 2013, Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys, J Alloys Comp, 577, S362, 10.1016/j.jallcom.2012.03.035 Duan, 2007, Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy, J Magn Magn Mater, 309, 96, 10.1016/j.jmmm.2006.06.017 Gomes, 2006, Magnetocaloric properties of the Ni2Mn1-x(Cu, Co)(x)Ga heusler alloys, J Appl Phys, 99, 08Q106, 10.1063/1.2164415 Stadler, 2006, Magnetocaloric properties of Ni2Mn1-xCuxGa, Appl Phys Lett, 88, 192511, 10.1063/1.2202751 Gautam, 2009, Effect of small changes in Mn concentration on phase transition temperatures and magnetic entropy variations in Ni2Mn0.75Cu0.25Ga Heusler alloys, J Alloys Comp, 472, 35, 10.1016/j.jallcom.2008.05.021 Roy, 2009, Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa, Phys Rev B, 79, 235127, 10.1103/PhysRevB.79.235127 Khan, 2007, Phase transitions and corresponding magnetic entropy changes in Ni2Mn0.75Cu0.25-xCoxGa Heusler alloys, J Appl Phys, 102, 023901, 10.1063/1.2753587 Khan, 2007, Magnetocaloric properties of fe and ge doped Ni2Mn1-xCuxGa, J Appl Phys, 101, 09C515, 10.1063/1.2712304 Bao, 2008, Phase transition processes and magnetocaloric effect in Ni2.15Mn0.85-xCoxGa alloys, J Appl Phys, 103, 07B335, 10.1063/1.2838769 Fabbrici, 2011, From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys, Acta Mater, 59, 412, 10.1016/j.actamat.2010.09.059 Pathak, 2010, Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50-xCoxMn32-yFeyGa18, Appl Phys Lett, 97, 062505, 10.1063/1.3467460 Leitao, 2008, Influence of the magnetic anisotropy on the magnetic entropy change of Ni2Mn(Ga, Bi) memory shape alloy, IEEE Trans Magn, 44, 3036, 10.1109/TMAG.2008.2002794 Gao, 2010, Martensitic transformation and magnetocaloric properties of Sn doping Mn-Ni-Ga alloys, J Magn Magn Mater, 322, 2488, 10.1016/j.jmmm.2010.03.006 Mejia, 2012, A less expensive NiMnGa based Heusler alloy for magnetic refrigeration, J Appl Phys, 111, 07A923, 10.1063/1.3675064 Zhang, 2006, Magnetocaloric effect of Ni56Mn18.8Ga24.5Gd0.7 alloy, J Rare Earths, 24, 579, 10.1016/S1002-0721(06)60167-1 Recarte, 2006, Magnetocaloric effect in Ni-Fe-Ga shape memory alloys, Appl Phys Lett, 88, 1032503, 10.1063/1.2189665 Min, 2009, Magnetic entropy change of V substituted Ni-Mn-Ga Heusler alloy, J Appl Phys, 105, 07A929, 10.1063/1.3072819 Albertini, 2007, Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys, J Magn Magn Mater, 316, 364, 10.1016/j.jmmm.2007.03.020 Mandal, 2009, Effect of pressure on the magnetocaloric properties of nickel-rich Ni-Mn-Ga Heusler alloys, J Appl Phys, 105, 073509, 10.1063/1.3099596 Castillo-Villa, 2011, Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25-xGa25Cox magnetic shape memory alloy, Phys Rev B, 83, 174109, 10.1103/PhysRevB.83.174109 Krenke, 2005, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys, Nat Mater, 4, 450, 10.1038/nmat1395 Han, 2006, Large magnetic entropy changes in the Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy, Appl Phys Lett, 89, 182507, 10.1063/1.2385147 Khan, 2007, Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13-x Heusler alloys, J Appl Phys, 101, 053919, 10.1063/1.2710779 Du, 2007, Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni-Mn-Sb, J Phys D-Appl Phys, 40, 5523, 10.1088/0022-3727/40/18/001 Titov, 2012, Hysteresis effects in the inverse magnetocaloric effect in martensitic Ni-Mn-In and Ni-Mn-Sn, J Appl Phys, 112, 073914, 10.1063/1.4757425 Cakir, 2015, Intermartensitic transitions and phase stability in Ni50Mn50-xSnx Heusler alloys, Acta Mater, 99, 140, 10.1016/j.actamat.2015.07.072 Han, 2007, Low-field inverse magnetocaloric effect in Ni50-xMn39+xSn11 Heusler alloys, Appl Phys Lett, 90, 042507, 10.1063/1.2435593 Xuan, 2010, The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43-xSn10 ferromagnetic shape memory alloys, J Appl Phys, 108, 103920, 10.1063/1.3511748 Ingale, 2011, Phase Transformation, Microstructure and Magnetocaloric Properties in Polycrystalline Bulk Ni(50)Mn(50-z)Sn(z) Alloys, IEEE Trans Magn, 47, 3395, 10.1109/TMAG.2011.2152373 Ray, 2014, Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4-xSn0.6 alloy, J Alloys Comp, 600, 55, 10.1016/j.jallcom.2014.01.196 Krenke, 2007, Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn, J Appl Phys, 102, 033903, 10.1063/1.2761853 Gao, 2009, Field-induced structural transition and the related magnetic entropy change in Ni43Mn43Co3Sn11 alloy, J Magn Magn Mater, 321, 2571, 10.1016/j.jmmm.2009.03.047 Liu, 2009, The effect of Co doping on the magnetic entropy changes in Ni44-xCoxMn45Sn11 alloys, J Alloys Comp, 467, 27, 10.1016/j.jallcom.2007.11.137 Srivastava, 2010, Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni45Co5Mn40Sn10, Appl Phys Lett, 97, 014101, 10.1063/1.3456562 Das, 2011, Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy, J Appl Phys, 109, 07A901, 10.1063/1.3540327 Han, 2012, Phase diagram and magnetocaloric effect in Mn(2)Ni(1.64-x)Co(x)Sn(0.36) alloys, Scr Mater, 66, 121, 10.1016/j.scriptamat.2011.10.020 Yang, 2014, Magnetocaloric effect and martensitic transition in Ni50Mn36-xCoxSn14, J Alloys Comp, 588, 46, 10.1016/j.jallcom.2013.10.196 Passamani, 2009, Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn, J Appl Phys, 105, 033919, 10.1063/1.3075835 Yan, 2010, Martensitic transition and magnetocaloric properties in Ni45Mn44-xFexSn11 alloys, J Alloys Comp, 506, 516, 10.1016/j.jallcom.2010.07.076 Ghosh, 2015, Effect of Fe substitution on the magnetic and magnetocaloric properties of Mn-rich Mn-Ni-Fe-Sn off-stoichiometric Heusler alloys, J Appl Phys, 117, 093909, 10.1063/1.4913951 Gao, 2009, Magnetic properties and magnetic entropy change in Heusler alloys Ni50Mn35-x Cu (x) Sn-15, Appl Phys A-Mater Sci Process, 97, 443, 10.1007/s00339-009-5239-6 Dincer, 2010, Influence of irreversibility on inverse magnetocaloric and magnetoresistance properties of the (Ni, Cu)(50)Mn36Sn14 alloys, J Alloys Comp, 506, 508, 10.1016/j.jallcom.2010.07.066 Huu, 2015, Magnetic, magnetocaloric and critical properties of Ni50-xCuxMn37Sn13 rapidly quenched ribbons, J Alloys Comp, 622, 535, 10.1016/j.jallcom.2014.10.126 Zhang, 2007, Giant low-field magnetic entropy changes in Ni45Mn44-xCrxSn11 ferromagnetic shape memory alloys, J Phys D-Appl Phys, 40, 7287, 10.1088/0022-3727/40/23/005 Han, 2012, Martensitic transformation and magnetocaloric effect in Mn-Ni-Nb-Sn shape memory alloys: the effect of 4d transition-metal doping, J Alloys Comp, 515, 114, 10.1016/j.jallcom.2011.11.102 Xuan, 2007, The large low-field magnetic entropy changes in Ni43Mn46Sn11-xSbx alloys, Solid State Commun, 142, 591, 10.1016/j.ssc.2007.04.007 Chen, 2011, The influence of Al substitution on the phase transitions and magnetocaloric effect in Ni43Mn46Sn11-xAlx alloys, J Magn Magn Mater, 323, 248, 10.1016/j.jmmm.2010.09.015 Wang, 2011, Effect of Al doping on the martensitic transition and magnetic entropy change in Ni-Mn-Sn alloys, Solid State Commun, 151, 1196, 10.1016/j.ssc.2011.04.005 Han, 2009, Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni-Mn-Sn alloys, Mater Sci Eng B-Adv Funct Solid-State Mater, 157, 40, 10.1016/j.mseb.2008.12.006 Xuan, 2014, The influence of Ge substitution on the magnetostucture transition and magnetocaloric effect of Mn-Ni-Sn-Ge alloys, J Alloys Comp, 582, 369, 10.1016/j.jallcom.2013.08.053 Muthu, 2014, Hydrostatic pressure effects on martensitic transition, magnetic and magnetocaloric effect in Si doped Ni-Mn-Sn Heusler alloys, J Alloys Comp, 584, 175, 10.1016/j.jallcom.2013.09.007 Muthu, 2011, Hydrostatic pressure effect on the martensitic transition, magnetic, and magnetocaloric properties in Ni(50-x)Mn(37+x)Sn(13) Heusler alloys, J Appl Phys, 110, 083902, 10.1063/1.3651375 Xuan, 2008, Boron's effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11Bx alloys, Appl Phys Lett, 92, 102503, 10.1063/1.2895645 Czaja, 2014, Magnetocaloric properties and exchange bias effect in Al for Sn substituted Ni48Mn39.5Sn12.5 Heusler alloy ribbons, J Magn Magn Mater, 358, 142, 10.1016/j.jmmm.2014.01.069 Emre, 2014, Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys, Appl Phys Lett, 105, 231910, 10.1063/1.4903494 Stern-Taulats, 2015, Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys, Acta Mater, 96, 324, 10.1016/j.actamat.2015.06.026 Dubenko, 2015, Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys, J Magn Magn Mater, 383, 186, 10.1016/j.jmmm.2014.10.083 Guan, 2011, Large magnetocaloric effect at low magnetic field in Ni50-xCoxMn35In15 ribbons, J Appl Phys, 109, 07A903, 10.1063/1.3540649 Gottschall, 2016, Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials, Phys Rev B, 93, 184431, 10.1103/PhysRevB.93.184431 Sanchez-Alarcos, 2011, Structural and magnetic properties of Cr-doped Ni-Mn-In metamagnetic shape memory alloys, J Phys D-Appl Phys, 44, 395001, 10.1088/0022-3727/44/39/395001 Sharma, 2010, Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy, Phys Rev B, 82, 172411, 10.1103/PhysRevB.82.172411 Sokolovskiy, 2014, Tuning magnetic exchange interactions to enhance magnetocaloric effect in Ni50Mn34In16 Heusler alloy: Monte Carlo and ab initio studies, Int J Refrig-Rev Int Froid, 37, 273, 10.1016/j.ijrefrig.2013.05.017 Liu, 2009, Influence of Sb on the magnetic and magnetocaloric properties of ferromagnetic shape memory alloy NiMnIn, J Appl Phys, 105, 033913, 10.1063/1.3075821 Zhao, 2011, Magnetocaloric and electrical properties in annealed Si-doped Ni-Mn-In Heusler alloy ribbons, IEEE Trans Magn, 47, 2455, 10.1109/TMAG.2011.2160156 Pathak, 2009, The effect of partial substitution of In by X = Si, Ge and Al on the crystal structure, magnetic properties and resistivity of Ni50Mn35In15 Heusler alloys, J Phys D-Appl Phys, 42, 045004, 10.1088/0022-3727/42/4/045004 Quetz, 2014, Phase diagram and magnetocaloric effects in Ni50Mn35(In1-xCrx)(15) and (Mn1-xCrx)NiGe1.05 alloys, J Appl Phys, 115, 17A922, 10.1063/1.4866082 Pandey, 2015, Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys, J Appl Phys, 117, 183905, 10.1063/1.4921052 Dubenko, 2012, The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B, Appl Phys Lett, 100, 192402, 10.1063/1.4714539 Zhao, 2014, Martensitic transitions and magnetocaloric properties in Ni48Mn39In13-xGex (x=1–3) ribbons, IEEE Trans Magn, 50, 2500404 Singh, 2014, The influence of quench atomic disorder on the magnetocaloric properties of Ni-Co-Mn-In alloys, J Alloys Comp, 601, 108, 10.1016/j.jallcom.2014.02.069 Hu, 2009, Effect of the introduction of H atoms on magnetic properties and magnetic entropy change in metamagnetic Heusler alloys Ni-Mn-In, Appl Phys Lett, 95, 112503, 10.1063/1.3229890 Sharma, 2011, The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy, J Phys-Condes Matter., 23, 366001, 10.1088/0953-8984/23/36/366001 Pandey, 2016, The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys, AIP Adv, 6, 056213, 10.1063/1.4943763 Feng, 2009, Large low-field inverse magnetocaloric effect in Ni50-xMn38+xSb12 alloys, J Phys D-Appl Phys, 42, 125003, 10.1088/0022-3727/42/12/125003 Han, 2008, The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys, J Appl Phys, 104, 053906, 10.1063/1.2975146 Nayak, 2009, Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys, J Phys D-Appl Phys, 42, 035009, 10.1088/0022-3727/42/3/035009 Sahoo, 2011, Effect of Si and Ga substitutions on the magnetocaloric properties of NiCoMnSb quaternary Heusler alloys, J Appl Phys, 109, 07A921, 10.1063/1.3554219 Sahoo, 2012, Structural, magnetic, magnetocaloric and magnetotransport properties in Ge doped Ni-Mn-Sb Heusler alloys, J Magn Magn Mater, 324, 1267, 10.1016/j.jmmm.2011.11.025 Feng, 2011, Abnormal e/a-dependence of T-M and large inverse magnetocaloric effect in Ni49-xCuxMn39Sb12 alloys, Mater Sci Eng B-Adv Funct Solid-State Mater, 176, 621, 10.1016/j.mseb.2011.02.003 Sahoo, 2011, Effect of Fe substitution on the magnetic, transport, thermal and magnetocaloric properties in Ni(50)Mn(38-x)Fe(x)Sb(12) Heusler alloys, J Appl Phys, 109, 123904, 10.1063/1.3590398 Nong, 2011, Structural, magnetic and magnetocaloric properties of Heusler alloys Ni(50)Mn(38)Sb(12) with boron addition, Mater Sci Eng B-Adv Funct Solid-State Mater, 176, 1322, 10.1016/j.mseb.2011.07.013 Nayak, 2009, Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy, J Appl Phys, 106, 053901, 10.1063/1.3208064 Si, 2008, The effect of Ni-substitution on the magnetic properties of Ni2MnGe Heusler alloys, J Alloys Comp, 462, 1, 10.1016/j.jallcom.2007.08.012 Recarte, 2010, Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni-Fe-Ga ferromagnetic shape memory alloys, J Phys-Condes Matter, 22, 416001, 10.1088/0953-8984/22/41/416001 Pal, 2010, Magnetocaloric effect and magnetoresistance of Ni-Fe-Ga alloys, J Phys D-Appl Phys, 43, 455002, 10.1088/0022-3727/43/45/455002 Yu, 2009, Phase transformations and magnetocaloric effect in NiFeGa ferromagnetic shape memory alloy, J Alloys Comp, 477, 732, 10.1016/j.jallcom.2008.10.143 Liu, 2008, A high-temperature coupling of martensitic and magnetic transformations and magnetic entropy change in Ni-Fe-Ga-Co alloys, Scr Mater, 59, 1063, 10.1016/j.scriptamat.2008.07.019 Fu, 2009, Magnetic properties and magnetic entropy change of Co50Ni22Ga28 alloy, J Alloys Comp, 474, 595, 10.1016/j.jallcom.2008.07.028 Vivas, 2016, Experimental evidences of enhanced magnetocaloric properties at room temperature and half-metallicity on Fe2MnSi-based Heusler alloys, Mater Chem Phys, 174, 23, 10.1016/j.matchemphys.2016.02.045 Amaral, 2009, The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements, Appl Phys Lett, 94, 042506, 10.1063/1.3075851 Buchelnikov, 2011, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni-Mn-X (X = Ga, In) Heusler alloys, J Phys D-Appl Phys, 44, 064012, 10.1088/0022-3727/44/6/064012 Bourgault, 2010, Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K, Appl Phys Lett, 96, 132501, 10.1063/1.3372633 Mukherjee, 2011, Overcoming the spin-multiplicity limit of entropy by means of lattice degrees of freedom: a minimal model, Phys Rev B, 83, 214413, 10.1103/PhysRevB.83.214413 Caballero-Flores, 2016, Latent heat contribution to the direct magnetocaloric effect in Ni-Mn-Ga shape memory alloys with coupled martensitic and magnetic transformations, J Phys D-Appl Phys, 49, 205004, 10.1088/0022-3727/49/20/205004 Recarte, 2010, Entropy change linked to the magnetic field induced martensitic transformation in a Ni-Mn-In-Co shape memory alloy, J Appl Phys, 107, 053501, 10.1063/1.3318491 Bourgault, 2015, Entropy change of a Ni45.5Co4.5Mn37In13 single crystal studied by scanning calorimetry in high magnetic fields: Field dependence of the magnetocaloric effect, Appl Phys Lett, 107, 092403, 10.1063/1.4929950 Blázquez, 2016, A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys, Appl Phys Lett, 109, 122410, 10.1063/1.4963319 Diestel, 2015, Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications, J Appl Phys, 118, 023908, 10.1063/1.4922358 Stonaha, 2015, Lattice vibrations boost demagnetization entropy in a shape-memory alloy, Phys Rev B, 92, 140406, 10.1103/PhysRevB.92.140406 Aguilar-Ortiz, 2016, Influence of Fe doping and magnetic field on martensitic transition in Ni-Mn-Sn melt-spun ribbons, Acta Mater, 107, 9, 10.1016/j.actamat.2016.01.041 Buchelnikov, 2015, First-principles study of the structural and magnetic properties of the Ni45Co5Mn39Sn11 Heusler alloy, J Magn Magn Mater, 383, 180, 10.1016/j.jmmm.2014.10.024 Entel, 2015, The metamagnetic behavior and giant inverse magnetocaloric effect in Ni-Co-Mn-(Ga, In, Sn) Heusler alloys, J Magn Magn Mater, 385, 193, 10.1016/j.jmmm.2015.03.003 Goncalves, 2014, Magnetovolume effects in heusler compounds via first-principles calculations, IEEE Trans Magn, 50, 1, 10.1109/TMAG.2014.2326892 Sokolovskiy, 2014, Ab Initio and Monte Carlo approaches for the magnetocaloric effect in Co- and In-doped Ni-Mn-Ga Heusler alloys, Entropy, 16, 4992, 10.3390/e16094992 Sokolovskiy, 2014, Monte Carlo and first-principles approaches for single crystal and polycrystalline Ni2MnGa Heusler alloys, J Phys D: Appl Phys, 47, 425002, 10.1088/0022-3727/47/42/425002 Sokolovskiy, 2015, Achieving large magnetocaloric effects in Co- and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies, Phys Rev B, 91, 220409, 10.1103/PhysRevB.91.220409 L'Vov, 2016, Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior, J Appl Phys, 119, 013902, 10.1063/1.4939556 Liu, 2002, Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa, J Appl Phys, 92, 5006, 10.1063/1.1511293 Hu, 2009, Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni51Mn49-xInx, J Appl Phys, 105, 07A940, 10.1063/1.3073951 Rao, 2009, Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons, J Alloys Comp, 478, 59, 10.1016/j.jallcom.2008.12.015 Cui, 2006, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater, 5, 286, 10.1038/nmat1593 Gottschall, 2015, Large reversible magnetocaloric effect in Ni-Mn-In-Co, Appl Phys Lett, 106, 021901, 10.1063/1.4905371 Sasso, 2011, Enhanced field induced martensitic phase transition and magnetocaloric effect in Ni55Mn20Ga25 metallic foams, Intermetallics, 19, 952, 10.1016/j.intermet.2011.02.015 Monroe, 2012, Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication, Scr Mater, 67, 116, 10.1016/j.scriptamat.2012.03.038 Pasquale, 2004, Magnetic entropy in Ni2MnGa single crystals, J Appl Phys, 95, 6918, 10.1063/1.1682784 Liu, 2008, Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co, Appl Phys Lett., 93, 102512, 10.1063/1.2981210 Chatterjee, 2009, Giant magnetoresistance and large inverse magnetocaloric effect in Ni2Mn1.36Sn0.64 alloy, J Phys D-Appl Phys, 42, 065001, 10.1088/0022-3727/42/6/065001 Khovaylo, 2010, Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys, Phys Rev B, 81, 214406, 10.1103/PhysRevB.81.214406 Niemann, 2010, Metamagnetic transitions and magnetocaloric effect in epitaxial Ni-Co-Mn-In films, Appl Phys Lett, 97, 222507, 10.1063/1.3517443 Dincer, 2011, The effect of the substitution of Cu for Ni on magnetoresistance and magnetocaloric properties of Ni50Mn34In16, J Alloys Comp, 509, 794, 10.1016/j.jallcom.2010.09.092 Basso, 2012, Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys, Phys Rev B, 85, 014430, 10.1103/PhysRevB.85.014430 Bennett, 2012, Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy, J Alloys Comp, 525, 34, 10.1016/j.jallcom.2012.02.062 Ghosh, 2016, Measurement protocol dependent magnetocaloric properties in a Si-doped Mn-rich Mn-Ni-Sn-Si off-stoichiometric Heusler alloy, J Appl Phys, 119, 183902, 10.1063/1.4948962 Sarkar, 2016, Giant magnetocaloric effect from reverse martensitic transformation in Ni-Mn-Ga-Cu ferromagnetic shape memory alloys, J Alloys Comp, 670, 281, 10.1016/j.jallcom.2016.02.039 Pal, 2014, Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy, J Magn Magn Mater, 360, 183, 10.1016/j.jmmm.2014.02.023 Salazar Mejía, 2015, Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys, J Appl Phys, 117, 17E710, 10.1063/1.4916556 Khovaylo, 2010, Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field, Appl Phys Lett, 97, 052503, 10.1063/1.3476348 Booth, 2012, The magnetocaloric effect in thermally cycled polycrystalline Ni-Mn-Ga, J Appl Phys, 111, 07A933, 10.1063/1.3676608 Kokorin, 2014, Effect of thermal cycling on the martensitic transformation in Ni-Mn-In alloys, J Appl Phys, 116, 103515, 10.1063/1.4895585 Kalbfleisch, 2016, On the influence of the cooling rate on the martensitic transformation of Ni-Mn-Sn Heusler alloys, Scr Mater, 114, 121, 10.1016/j.scriptamat.2015.12.005 Ma, 2015, Wheel speed-dependent martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn ferromagnetic shape memory alloy ribbons, Acta Mater, 90, 292, 10.1016/j.actamat.2015.03.011 Agarwal, 2015, Effect of low temperature annealing on magneto-caloric effect of Ni-Mn-Sn-Al ferromagnetic shape memory alloy, J Alloys Comp, 641, 244, 10.1016/j.jallcom.2015.04.069 Chen, 2015, Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon, J Magn Magn Mater, 377, 137, 10.1016/j.jmmm.2014.10.077 Crouïgneau, 2015, Annealing effect on the magnetic induced austenite transformation in polycrystalline freestanding Ni-Co-Mn-In films produced by co-sputtering, J Appl Phys, 117, 035302, 10.1063/1.4906224 Czaja, 2016, Effect of heat treatment on magnetostructural transformations and exchange bias in Heusler Ni48Mn39.5Sn9.5Al3 ribbons, Acta Mater, 103, 30, 10.1016/j.actamat.2015.10.001 Wang, 2015, Enhanced magnetocaloric properties in annealed Heusler Ni-Mn-Sn ribbons, J Magn Magn Mater, 374, 153, 10.1016/j.jmmm.2014.08.042 Czaja, 2016, Magnetostructural transition and magnetocaloric effect in highly textured Ni-Mn-Sn alloy, J Appl Phys, 119, 165102, 10.1063/1.4947503 Li, 2015, Large magnetocaloric effect related to martensitic transformation in Ni50Co2Mn33In15 textured alloy, Physica B, 476, 179, 10.1016/j.physb.2015.05.002 Sahoo, 2013, In-plane and out of plane magnetic properties in Ni46Co4Mn38Sb12 ribbons, J Appl Phys, 113, 17A940, 10.1063/1.4800505 Giri, 2013, Effect of crystallographic alignment on the magnetocaloric effect in alloys near the Ni2MnGa stoichiometry, J Appl Phys, 113, 17A907, 10.1063/1.4793608 Hernando, 2009, Magnetocaloric effect in preferentially textured Mn50Ni40In10 melt spun ribbons, Appl Phys Lett, 94, 222502, 10.1063/1.3147875 McLeod, 2015, Magnetocaloric response of non-stoichiometric Ni2MnGa alloys and the influence of crystallographic texture, Acta Mater, 97, 245, 10.1016/j.actamat.2015.06.059 Hernando, 2008, Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons, Appl Phys Lett, 92, 132507, 10.1063/1.2904625 Li, 2012, Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon, Appl Phys Lett, 100, 174102, 10.1063/1.4704780 Liu, 2009, Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons, Acta Mater, 57, 4911, 10.1016/j.actamat.2009.06.054 Zhang, 2015, Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method, Scr Mater, 104, 41, 10.1016/j.scriptamat.2015.04.004 Aliev, 2010, Magnetocaloric effect in ribbon samples of Heusler alloys Ni-Mn-M (M=In, Sn), Appl Phys Lett, 97, 212505, 10.1063/1.3521261 Zhao, 2010, Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni-Mn-In ribbons, Scr Mater, 63, 250, 10.1016/j.scriptamat.2010.03.067 Rostamnejadi, 2011, Magnetocaloric effect in La(0.67)Sr(0.33)MnO(3) manganite above room temperature, J Magn Magn Mater, 323, 2214, 10.1016/j.jmmm.2011.03.036 Llamazares, 2011, Magnetocaloric properties of as-quenched Ni50.4Mn34.9In14.7 ferromagnetic shape memory alloy ribbons, Appl Phys A-Mater Sci Process, 103, 1125, 10.1007/s00339-010-6053-x Kumar, 2012, Structure, magneto-structural transitions and magnetocaloric properties in Ni(50-x)Mn(37+x)In(13) melt spun ribbons, J Magn Magn Mater, 324, 26, 10.1016/j.jmmm.2011.07.022 Llamazares, 2012, Refrigerant capacity of austenite in as-quenched and annealed Ni51.1Mn31.2In17.7 melt spun ribbons, J Appl Phys, 111, 07A932, 10.1063/1.3676606 Caballero-Flores, 2015, Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons, J Alloys Comp, 629, 332, 10.1016/j.jallcom.2014.12.099 Czaja, 2016, Effect of ball milling and thermal treatment on exchange bias and magnetocaloric properties of Ni48Mn39.5Sn10.5Al2 ribbons, J Magn Magn Mater, 401, 223, 10.1016/j.jmmm.2015.10.043 Dey, 2016, Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons, J Magn Magn Mater, 397, 342, 10.1016/j.jmmm.2015.08.102 Gonzalez-Legarreta, 2015, Magnetostructural phase transition in off-stoichiometric Ni-Mn-In Heusler alloy ribbons with low In content, J Magn Magn Mater, 383, 190, 10.1016/j.jmmm.2014.10.152 Li, 2015, Magnetostructural transitions in Mn-rich Heusler Mn-Ni-In melt-spun ribbons with enhanced magnetocaloric effect, J Magn Magn Mater, 391, 17, 10.1016/j.jmmm.2015.04.098 Varzaneh, 2014, Magnetocaloric effect in Ni47Mn40Sn13 alloy prepared by mechanical alloying, J Alloys Comp, 598, 6, 10.1016/j.jallcom.2014.01.249 Tang, 2005, Magnetocaloric effect in NiMnGa particles produced by spark erosion, J Appl Phys, 97, 10M309, 10.1063/1.1852451 Singh, 2015, Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys, Phys Rev B, 92, 020105, 10.1103/PhysRevB.92.020105 Khovaylo, 2014, Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys Status Solidi B-Basic Solid State Phys, 251, 2104, 10.1002/pssb.201451217 Varga, 2011, Magnetic and structural properties of Ni-Mn-Ga Heusler-type microwires, Scr Mater, 65, 703, 10.1016/j.scriptamat.2011.07.018 Zhang, 2016, Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires, Appl Phys Lett, 108, 052401, 10.1063/1.4941232 Recarte, 2009, Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni-Mn-Ga thin films, Appl Phys Lett, 95, 141908, 10.1063/1.3246149 Niemann, 2012, Growth of sputter-deposited metamagnetic epitaxial Ni-Co-Mn-In films, J Appl Phys, 111, 093909, 10.1063/1.4712310 Akkera, 2015, Martensitic phase transformation of magnetron sputtered nanostructured Ni-Mn-In ferromagnetic shape memory alloy thin films, J Alloys Comp, 642, 53, 10.1016/j.jallcom.2015.03.261 Teichert, 2015, Influence of film thickness and composition on the martensitic transformation in epitaxial Ni-Mn-Sn thin films, Acta Mater, 86, 279, 10.1016/j.actamat.2014.12.019 Akkera, 2015, Martensitic phase transformations and magnetocaloric effect in Al co-sputtered Ni-Mn-Sb alloy thin films, Mater Sci Eng B-Adv Funct Solid-State Mater, 198, 113, 10.1016/j.mseb.2015.04.007 Barman, 2015, Improved magnetocaloric effect in magnetron sputtered Ni-Mn-Sb-Al ferromagnetic shape memory alloy thin films, Vacuum, 120, 22, 10.1016/j.vacuum.2015.06.013 Dutta, 2015, Interplay of strain and interdiffusion in Heusler alloy bilayers, Phys Status Solidi-Rapid Res Lett, 9, 321, 10.1002/pssr.201510070 Teichert, 2015, Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films, Phys Rev B, 91, 184405, 10.1103/PhysRevB.91.184405 Schleicher, 2015, Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications, J Appl Phys, 118, 053906, 10.1063/1.4927850 Fang, 2007, Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy, Scr Mater, 57, 453, 10.1016/j.scriptamat.2007.05.036 Zhang, 2008, The magnetic and magnetocaloric effect of (Mn0.5Co0.5)(65)Ge-35 alloy in low magnetic field, J Magn Magn Mater, 320, 1671, 10.1016/j.jmmm.2008.01.023 Wang, 2006, Vacancy induced structural and magnetic transition in MnCo[sub 1−x]Ge, Appl Phys Lett, 89, 262504, 10.1063/1.2424273 Fang, 2009, Structures, magnetic properties, and magnetocaloric effect in MnCo1-xGe (0.02 <= x <= 0.2) compounds, J Magn Magn Mater, 321, 3053, 10.1016/j.jmmm.2009.05.006 Markin, 2009, Magnetic Properties and Structural Transitions in (MnCo)(1-x)Ge, 489 Liu, 2010, Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys, EPL, 91, 17003, 10.1209/0295-5075/91/17003 Ma, 2011, Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn(1+x)Co(1-x)Ge alloys, Chin Phys B, 20, 087502, 10.1088/1674-1056/20/8/087502 Liu, 2012, Magnetostructural transition and adiabatic temperature change in Mn-Co-Ge magnetic refrigerants, Scr Mater, 66, 642, 10.1016/j.scriptamat.2012.01.048 Lin, 2006, Structural and magnetic properties of MnFe1-xCoxGe compounds, IEEE Trans Magn, 42, 3776, 10.1109/TMAG.2006.884516 Dincer, 2014, The magnetic and magnetocaloric properties of CoMnGe1-xGax alloys, J Alloys Comp, 588, 332, 10.1016/j.jallcom.2013.10.194 Wu, 2014, Effect of substitution of In for Co on magnetostructural coupling and magnetocaloric effect in MnCo1-xInxGe compounds, J Appl Phys, 115, 17A911, 10.1063/1.4863255 Zhang, 2008, Magnetostructural phase transition and magnetocaloric effect in off-stoichiometric Mn1.9-xNixGe alloys, Appl Phys Lett, 93, 122505, 10.1063/1.2990649 Daniel-Perez, 2014, Magnetostructural transition and magnetocaloric effect in MnNiGe1.05 melt-spun ribbons, J Appl Phys, 115, 17A920, 10.1063/1.4864435 Zhang, 2010, The magnetostructural transformation and magnetocaloric effect in Co-doped MnNiGe1.05 alloys, J Phys D-Appl Phys, 43, 205003, 10.1088/0022-3727/43/20/205003 Zhang, 2011, The magnetic phase transitions and magnetocaloric effect in MnNi(1-x)Co(x)Ge alloys, Solid State Commun, 151, 1359, 10.1016/j.ssc.2011.06.017 Zhang, 2011, Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys, Chin Phys B, 20, 097501, 10.1088/1674-1056/20/9/097501 Liu, 2012, Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets, Nat Commun, 3, 873, 10.1038/ncomms1868 Zhang, 2009, Magnetocaloric effect in MnCo1-xAlxGe compounds, J Mater Sci Technol, 25, 781 Samanta, 2012, Magnetostructural phase transitions and magnetocaloric effects in MnNiGe1-xAlx, Appl Phys Lett, 100, 052404, 10.1063/1.3681798 Meng, 2010, Structural and magnetic properties of MnCo1-xVxGe compounds, J Alloys Comp, 497, 14, 10.1016/j.jallcom.2010.03.004 Ma, 2012, Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn(1-x)V(x)CoGe alloys, J Magn Magn Mater, 324, 135, 10.1016/j.jmmm.2011.07.047 Trung, 2010, From single- to double-first-order magnetic phase transition in magnetocaloric Mn1-xCrxCoGe compounds, Appl Phys Lett, 96, 162507, 10.1063/1.3399774 Caron, 2011, Pressure-tuned magnetocaloric effect in Mn(0.93)Cr(0.07)CoGe, Phys Rev B, 84, 020414, 10.1103/PhysRevB.84.020414 Hamer, 2009, Phase diagram and magnetocaloric effect of CoMnGe1-xSnx alloys, J Magn Magn Mater, 321, 3535, 10.1016/j.jmmm.2008.03.003 Sandeman, 2006, Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1-xGex, Phys Rev B, 74, 224436, 10.1103/PhysRevB.74.224436 Zhang, 2009, Large magnetic entropy change and broad working temperature span in CoMnSi0.88Ge0.12 alloy, J Phys D-Appl Phys, 42, 015007, 10.1088/0022-3727/42/1/015007 Trung, 2010, Giant magnetocaloric effects by tailoring the phase transitions, Appl Phys Lett, 96, 172504, 10.1063/1.3399773 Ma, 2014, Magnetostructural transformation and magnetocaloric effect in melt-spun and annealed Mni(1-x)Cu(x)CoGe ribbons, J Alloys Comp, 610, 15, 10.1016/j.jallcom.2014.04.204 Ma, 2014, Microstructure and magnetic properties in melt-spun MnV0.02CoGe0.99 ribbons, J Magn Magn Mater, 357, 41, 10.1016/j.jmmm.2014.01.022 Songlin, 2002, Magnetic phase transition and magnetocaloric effect in Mn5-xFexSi3, J Alloys Comp, 334, 249, 10.1016/S0925-8388(01)01776-5 Songlin, 2002, Magnetic and magnetocaloric properties of Mn5Ge3-xSbx, J Alloys Comp, 337, 269, 10.1016/S0925-8388(01)01935-1 Tegus, 2002, Magnetic-phase transitions and magnetocaloric effects, Physica B, 319, 174, 10.1016/S0921-4526(02)01119-5 Candini, 2004, Revised magnetic phase diagram for FexMn5-xSi3 intermetallics, J Appl Phys, 95, 6819, 10.1063/1.1688219 Wu, 2009, Magnetocaloric effects in Fe(4)MnSi(3)B(x) interstitial compounds, Acta Metall Sin-Engl Lett, 22, 397, 10.1016/S1006-7191(08)60114-3 Hering, 2015, Structure, magnetism, and the magnetocaloric effect of MnFe4Si3 Single crystals and powder samples, Chem Mater, 27, 7128, 10.1021/acs.chemmater.5b03123 Herlitschke, 2016, Elasticity and magnetocaloric effect in MnFe4Si3, Phys Rev B, 93, 094304, 10.1103/PhysRevB.93.094304 Zhang, 2007, Magnetic properties and enhanced magnetic refrigeration in (Mn1-xFex)(5)Ge-3 compounds, J Appl Phys, 101, 123911, 10.1063/1.2748723 Zhao, 2006, Magnetic-entropy change in Mn5Ge3-xSix alloys, J Alloys Comp, 416, 43, 10.1016/j.jallcom.2005.08.039 Liu, 2006, Magnetocaloric effect in Mn5Ge3-xSix pseudobinary compounds, J Appl Phys, 99, 08Q101, 10.1063/1.2148332 Liu, 2005, Magnetic properties and magnetocaloric effects of Mn5Ge2.7 M-0.3 (M = Ga, Al, Sn) compounds, Acta Phys Sin, 54, 5884, 10.7498/aps.54.5884 Liu, 2004, Magnetic properties and magnetocaloric effects of Mn5Ge3-xGax, Chin Phys, 13, 397, 10.1088/1009-1963/13/3/025 Tolinski, 2014, Specific heat and magnetocaloric effect of the Mn5Ge3 ferromagnet, Intermetallics, 47, 1, 10.1016/j.intermet.2013.12.005 Zhao, 2005, Magnetocaloric properties of Mn5Sn3-xGax alloys, IEEE Trans Magn, 41, 3754, 10.1109/TMAG.2005.854760 Zhang, 2010, Crystal structure and curie temperature of (Mn1-xFex)(5)Sn-3 alloy, Rare Metal Mater Eng, 39, 549 Kuhrt, 1985, Magnetic B-T phase-diagram of anion substituted MNAS - magnetocaloric experiments, Phys Status Solidi A-Appl Res, 91, 105, 10.1002/pssa.2210910114 Wada, 2001, Giant magnetocaloric effect of MnAs1-xSbx, Appl Phys Lett, 79, 3302, 10.1063/1.1419048 Zou, 2008, Giant magnetocaloric effect and soft-mode magneto-structural phase transition in MnAs, EPL, 81, 47002, 10.1209/0295-5075/81/47002 Franzen, 1974, Phase transitions between NiAs- and MnP-type phases, Phys Rev B, 10, 1248, 10.1103/PhysRevB.10.1248 Morikawa, 2004, Effect of concentration deviation from stoichiometry on the magnetism of Mn1+delta As0.75Sb0.25, J Magn Magn Mater, 283, 322, 10.1016/j.jmmm.2004.05.035 de Campos, 2011, Single crystal growth and characterization of MnAs, J Cryst Growth, 333, 54, 10.1016/j.jcrysgro.2011.08.001 Marangolo, 2014, Surface acoustic wave triggering of giant magnetocaloric effect in MnAs/GaAs devices, Appl Phys Lett, 105, 162403, 10.1063/1.4898387 de Campos, 2015, Investigations in MnAs1-xSbx: experimental validation of a new magnetocaloric composite, J Magn Magn Mater, 374, 342, 10.1016/j.jmmm.2014.08.069 Trassinelli, 2014, Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment, Appl Phys Lett, 104, 081906, 10.1063/1.4866663 Wada, 2009, Pressure dependence of magnetic entropy change and magnetic transition in MnAs1-xSbx, Phys Rev B, 79, 092407, 10.1103/PhysRevB.79.092407 Wada, 2002, Extremely large magnetic entropy change of MnAs1-xSbx near room temperature, Mater Trans, 43, 73, 10.2320/matertrans.43.73 Wada, 2003, Giant magnetocaloric effect of MnAs1-xSbx in the vicinity of first-order magnetic transition, Physica B, 328, 114, 10.1016/S0921-4526(02)01822-7 Morikawa, 2004, Effect of deviation from stoichiometry on magnetic and magnetocaloric properties in MnAs1-xSbx, J Magn Magn Mater, 272, E583, 10.1016/j.jmmm.2003.12.1036 Wada, 2006, Effects of heat treatment on the magnetic phase transition and magnetocaloric properties of Mn1+delta As1-xSbx, Mater Trans, 47, 486, 10.2320/matertrans.47.486 Wada, 2007, Direct measurements of magnetocaloric effects of Mn1+delta As1-xSbx, J Magn Magn Mater, 310, 2811, 10.1016/j.jmmm.2006.10.1060 Kim, 2010, Magnetization, magnetic transition and magnetic entropy changes of bulk MnAs1-xSbx fabricated by underwater shock compaction, Mater Sci Eng B-Adv Funct Solid-State Mater, 167, 114, 10.1016/j.mseb.2010.01.056 Rocco, 2016, Influence of chemical doping and hydrostatic pressure on the magnetic properties of Mn1-xFexAs magnetocaloric compounds, Phys Rev B, 93, 054431, 10.1103/PhysRevB.93.054431 Cui, 2009, Magnetocaloric effects and reduced thermal hysteresis in Si-doped MnAs compounds, J Alloys Comp, 479, 189, 10.1016/j.jallcom.2008.12.144 Cui, 2010, Interstitial-nitrogen effect on phase transition and magnetocaloric effect in Mn(As, Si) (invited), J Appl Phys, 107, 09A938, 10.1063/1.3358617 Cui, 2010, Carbon-doping effects on the metamagnetic transition and magnetocaloric effect in MnAsCx, J Magn Magn Mater, 322, 2223, 10.1016/j.jmmm.2010.02.014 Sun, 2011, Magnetocaloric effect and size-effect related thermal hysteresis reduction in MnAs(1-x)P(x) compounds, Phys Status Solidi A-Appl Mater, 208, 1950, 10.1002/pssa.201026735 Sun, 2012, Effect of microstrain on the magnetism and magnetocaloric properties of MnAs0.97P0.03, Appl Phys Lett, 100, 112407, 10.1063/1.3695039 Mitsiuk, 2013, Phase transitions and magnetocaloric effect in MnAs, MnAs0.99P0.01, and MnAs0.98P0.02 single crystals, Inorg Mater, 49, 14, 10.1134/S002016851301007X De Campos, 2006, Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1-xFexAs, Nat Mater, 5, 802, 10.1038/nmat1732 Balli, 2008, Giant magnetocaloric effect in Mn1-x(Ti0.5V0.5)(x)As: experiments and calculations, J Appl Phys, 103, 103908, 10.1063/1.2917323 Cui, 2009, Beneficial effect of minor Al substitution on the magnetocaloric effect of Mn1-xAlxAs, Mater Lett, 63, 595, 10.1016/j.matlet.2008.11.056 Rocco, 2007, Ambient pressure colossal magnetocaloric effect in Mn1-xCuxAs compounds, Appl Phys Lett, 90, 242507, 10.1063/1.2746074 Xu, 2010, Co doping enhanced giant magnetocaloric effect in Mn1-xCoxAs films epitaxied on GaAs (001), Appl Phys Lett, 97, 042502, 10.1063/1.3467467 Sun, 2008, Giant room-temperature magnetocaloric effect in Mn1-xCrxAs, Appl Phys Lett, 92, 072504, 10.1063/1.2884524 Sun, 2011, Magnetism and magnetocaloric properties of Mn0.95Cr0.05As, Physica B, 406, 2731, 10.1016/j.physb.2011.04.016 Dung, 2012, Giant magnetocaloric effect of Mn0.92Ba0.08As thin film grown on Al2O3(0001) substrate, J Appl Phys, 111, 07C310, 10.1063/1.3675988 Mejia, 2011, Fe/Cr substitution in MnAs compound: Increase in the relative cooling power, Appl Phys Lett, 98, 102515, 10.1063/1.3560309 Gama, 2004, Pressure-induced colossal magnetocaloric effect in MnAs, Phys Rev Lett, 93, 237202, 10.1103/PhysRevLett.93.237202 von Ranke, 2005, Analytical model to understand the colossal magnetocaloric effect, Phys Rev B, 71, 054410, 10.1103/PhysRevB.71.054410 von Ranke, 2006, Theoretical description of the colossal entropic magnetocaloric effect: Application to MnAs, Phys Rev B, 73, 014415, 10.1103/PhysRevB.73.014415 Plaza, 2009, Magnetocaloric effect: Overcoming the magnetic limit, J Magn Magn Mater, 321, 446, 10.1016/j.jmmm.2008.10.001 Carvalho, 2009, Investigation of the first-order metamagnetic transitions and the colossal magnetocaloric effect using a Landau expansion applied to MnAs compound, Eur Phys J B, 68, 67, 10.1140/epjb/e2009-00083-9 Sharma, 2008, Irreversibility in cooling and heating processes in the magnetocaloric MnAs and alloys, Appl Phys Lett, 93, 261910, 10.1063/1.3058712 Alho, 2012, Theoretical investigation on the magnetocaloric effect in MnAs using a microscopic model to describe the magnetic and thermal hysteresis, Solid State Commun, 152, 951, 10.1016/j.ssc.2012.03.028 Balli, 2009, The, “colossal” magnetocaloric effect in Mn1-xFexAs: What are we really measuring?, Appl Phys Lett, 95, 072509, 10.1063/1.3194144 Bratko, 2012, History dependence of directly observed magnetocaloric effects in (Mn, Fe)As, Appl Phys Lett, 100, 252409, 10.1063/1.4729893 Niemann, 2014, Inapplicability of the Maxwell relation for the quantification of caloric effects in anisotropic ferroic materials, Int J Refrig-Rev Int Froid, 37, 281, 10.1016/j.ijrefrig.2013.07.029 Tegus, 2013, Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge), Chin Phys B, 22, 037506, 10.1088/1674-1056/22/3/037506 Tegus, 2002, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature, 415, 150, 10.1038/415150a Koyama, 2005, Magnetic field effect on structural property of MnFeP0.5As0.5, Mater Trans, 46, 1753, 10.2320/matertrans.46.1753 Goraus, 2015, The effect of doping on magnetic properties of (Fe-1 (-) Mn-x(x))2P(1) (-) Si-y(y) series, Solid State Commun, 224, 41, 10.1016/j.ssc.2015.10.004 Gribanov, 2009, Magnetic and magnetocaloric properties of the alloys Mn2-xFexP0.5As0.5 (0 <= x <= 0.5), Low Temp Phys, 35, 786, 10.1063/1.3253401 Budzynski, 2014, Influence of Mn/Fe ratio on the magnetic properties of the Mn2-xFexP0.5As0.5, 0.5 <= x <= 1 alloys, Physica B, 452, 37, 10.1016/j.physb.2014.06.042 Hermann, 2004, Mossbauer spectral study of the magnetocaloric FeMnP1-xAsx compounds, Phys Rev B, 70, 214425, 10.1103/PhysRevB.70.214425 Szymczak, 2014, Comparison of magnetocaloric properties of the Mn2-xFexP0.5As0.5 (x=1.0 and 0.7) compounds, Solid State Sci, 36, 29, 10.1016/j.solidstatesciences.2014.06.015 Dung, 2011, From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)(1.95)P(0.50)Si(0.50) compounds, Appl Phys Lett, 99, 092511, 10.1063/1.3634016 Hudl, 2011, Order-disorder induced magnetic structures of FeMnP0.75Si0.25, Phys Rev B, 83, 134420, 10.1103/PhysRevB.83.134420 Geng, 2012, Magnetocaloric effects in Mn1.35Fe0.65P1-xSix compounds, Chin Phys B, 21, 037504, 10.1088/1674-1056/21/3/037504 Tegus, 2004, Tuning of the magneto-caloric effects in MnFe(P, As) by substitution of elements, J Magn Magn Mater, 272, 2389, 10.1016/j.jmmm.2003.12.974 Balli, 2014, Negative and conventional magnetocaloric effects of a MnRhAs single crystal, J Appl Phys, 115, 203909, 10.1063/1.4880397 Li, 2003, Magnetic properties of MnFeP0.5As0.5-xGex, IEEE Trans Magn, 39, 3148, 10.1109/TMAG.2003.816039 Tegus, 2005, Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex, J Alloys Comp, 396, 6, 10.1016/j.jallcom.2004.12.001 Dagula, 2005, Magnetic-entropy change in Mn1.1Fe0.9P1-xGex compounds, IEEE Trans Magn, 41, 2778, 10.1109/TMAG.2005.854774 Sougrati, 2008, A structural, magnetic and Mossbauer spectral study of the magnetocaloric Mn1.1Fe0.9P1-xGex compounds, J Phys-Condes Matter, 20, 475206, 10.1088/0953-8984/20/47/475206 Ou, 2006, Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1-xGex compounds, J Phys-Condes Matter, 18, 11577, 10.1088/0953-8984/18/50/012 Liu, 2016, A pathway to optimize the properties of magnetocaloric Mn2-xFexP1-yGey for magnetic refrigeration, J Alloys Comp, 666, 108, 10.1016/j.jallcom.2016.01.074 Liu, 2009, Origin and tuning of the magnetocaloric effect in the magnetic refrigerant Mn1.1Fe0.9(P0.8Ge0.2), Phys Rev B, 79, 014435, 10.1103/PhysRevB.79.014435 Yan, 2006, Magnetic entropy change in melt-spun MnFePGe (invited), J Appl Phys, 99, 08K903, 10.1063/1.2162807 Trung, 2009, Tunable thermal hysteresis in MnFe(P, Ge) compounds, Appl Phys Lett, 94, 102513, 10.1063/1.3095597 Yue, 2009, Crystal structure and magnetic transition of MnFePGe compound prepared by spark plasma sintering, J Appl Phys, 105, 07A915, 10.1063/1.3056157 Yue, 2013, Structural, thermal, and magnetic properties of MnFePSiGe compounds prepared by spark plasma sintering method, J Magn Magn Mater, 335, 114, 10.1016/j.jmmm.2013.01.035 Liu, 2010, Neutron diffraction study of the magnetic refrigerant Mn1.1Fe0.9P0.76Ge0.24, Powder Diffr, 25, S25, 10.1154/1.3478986 Yue, 2010, Effect of annealing on the structure and magnetic properties of Mn1.1Fe0.9P0.8Ge0.2 compound, J Appl Phys, 107, 09A939, 10.1063/1.3358620 Chen, 2016, Structural investigation of the crossover in the magnetic transition of Mn-Fe-P-Ge magnetocaloric powders, J Alloys Comp, 658, 104, 10.1016/j.jallcom.2015.10.195 Chen, 2015, The magnetic phase transition in Mn1.1Fe0.9P1−xGex magnetocaloric alloys, J Appl Phys, 117, 063909, 10.1063/1.4906568 Chen, 2015, Large magnetocaloric effect near room temperature in Mn-Fe-P-Ge nanostructured powders, J Alloys Comp, 652, 393, 10.1016/j.jallcom.2015.08.245 Liu, 2015, The effect of Al doping on the crystal structure and magnetocaloric behavior of Mn1.2Fe0.8P1-xGex compounds, J Alloys Comp, 633, 120, 10.1016/j.jallcom.2015.01.141 Wada, 2014, Tuning the Curie temperature and thermal hysteresis of giant magnetocaloric (MnFe)(2)PX (X = Ge and Si) compounds by the Ru substitution, Jpn J Appl Phys, 53, 063001, 10.7567/JJAP.53.063001 Dagula, 2006, Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5-xSix(x=0-0.3) compounds, J Appl Phys, 99, 08Q105, 10.1063/1.2158969 Thanh, 2008, Structure, magnetism, and magnetocaloric properties of MnFeP1-xSix compounds, J Appl Phys, 103, 07B318, 10.1063/1.2836958 Hoglin, 2015, Phase diagram, structures and magnetism of the FeMnP1-xSix-system, RSC Adv, 5, 8278, 10.1039/C4RA15419C Hoglin, 2015, Irreversible structure change of the as prepared FeMnP1-xSix-structure on the initial cooling through the curie temperature, J Magn Magn Mater, 374, 455, 10.1016/j.jmmm.2014.08.088 Li, 2015, Thermodynamic-state and kinetic-process dependent dual ferromagnetic states in high-Si content FeMn(PSi) alloys, J Appl Phys, 118, 213903, 10.1063/1.4936835 Neish, 2015, Local observation of the site occupancy of Mn in a MnFePSi compound, Phys Rev Lett, 114, 106101, 10.1103/PhysRevLett.114.106101 Li, 2014, Kinetic arrest induced antiferromagnetic order in hexagonal FeMnP0.75Si0.25 alloy, Appl Phys Lett, 105, 262405, 10.1063/1.4905270 Bartok, 2016, Study of the first paramagnetic to ferromagnetic transition in as prepared samples of Mn-Fe-P-Si magnetocaloric compounds prepared by different synthesis routes, J Magn Magn Mater, 400, 333, 10.1016/j.jmmm.2015.08.045 Roy, 2016, Latent heat of the first-order magnetic transition of MnFeSi0.33P0.66, Phys Rev B, 93, 165101, 10.1103/PhysRevB.93.165101 Wada, 2015, Recent progress of magnetocaloric effect and magnetic refrigerant materials of Mn compounds (invited), J Appl Phys, 117, 172606, 10.1063/1.4914120 Thanh, 2006, Magnetocaloric effect in MnFe(P, Si, Ge) compounds, J Appl Phys, 99, 08Q107, 10.1063/1.2170589 Zhang, 2005, Neutron diffraction study of history dependence in MnFeP0.6Si0.4, J Magn Magn Mater, 290, 679, 10.1016/j.jmmm.2004.11.335 Thanh, 2007, Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe(P, Si, Ge), J Magn Magn Mater, 310, E1012, 10.1016/j.jmmm.2006.11.194 Song, 2009, Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5-xSix compounds, J Alloys Comp, 474, 388, 10.1016/j.jallcom.2008.06.098 Tsunekawa, 2007, Temperature and magnetic. eld dependence of the soft X-ray magnetic circular dichroism intensity for the Mn-L-3 edge of MnFeP0.78Ge0.22, J Magn Magn Mater, 310, E1010, 10.1016/j.jmmm.2006.10.977 Takeda, 2010, Electronic states of magnetic refrigerator materials Mn0.9Fe1.1P0.55As0.45 using Soft X-ray magnetic circular dichroism, J Phys: Conference Series, 200, 012199 Liu, 2009, A first-principles study on the magnetocaloric compound MnFeP2/3Si1/3, J Appl Phys, 105, 07A902, 10.1063/1.3056408 Wang, 2013, Peculiar influence of Mn/Fe ratio on the magnetic and magnetocaloric properties of Mn2-xFexP0.6Si0.25Ge0.15 compounds, J Alloys Comp, 554, 208, 10.1016/j.jallcom.2012.11.075 Wang, 2013, Analysis of the first-order phase transition of (Mn, Fe)2(P, Si, Ge) using entropy change scaling, J Phys D: Appl Phys, 46, 295001, 10.1088/0022-3727/46/29/295001 Wang, 2011, Magnetocaloric effect in MnFeP0.63Ge0.12Si0.25Bx (x=0, 0.01, 0.02, 0.03) compounds, Acta Metall Sin, 47, 344 Guillou, 2015, Effect of boron substitution on the ferromagnetic transition of MnFe0.95P2/3Si1/3, J Alloys Comp, 632, 717, 10.1016/j.jallcom.2015.01.308 Guillou, 2014, Taming the first-order transition in giant magnetocaloric materials, Adv Mater, 26, 2671, 10.1002/adma.201304788 Guillou, 2015, Electronic and magnetic properties of phosphorus across the first-order ferromagnetic transition of (Mn, Fe)(2)(P, Si, B) giant magnetocaloric materials, Phys Rev B, 92, 224427, 10.1103/PhysRevB.92.224427 Yibole, 2015, Moment evolution across the ferromagnetic phase transition of giant magnetocaloric(Mn, Fe)2(P, Si, B)compounds, Phys Rev B, 91, 014429, 10.1103/PhysRevB.91.014429 Guillou, 2014, Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system, J Appl Phys, 116, 063903, 10.1063/1.4892406 Guillou, 2014, About the mechanical stability of MnFe(P, Si, B) giant-magnetocaloric materials, J Alloys Comp, 617, 569, 10.1016/j.jallcom.2014.08.061 Roy, 2016, Effect of doping and elastic properties in (Mn, Fe)(2)(Si, P), Phys Rev B, 93, 094110, 10.1103/PhysRevB.93.094110 Thang, 2016, Structural and magnetocaloric properties of (Mn, Fe)(2)(P, Si) materials with added nitrogen, J Alloys Comp, 670, 123, 10.1016/j.jallcom.2016.02.014 Yabuta, 2007, Pressure effects on the first order transition in MnFe(P, As) and MnFe(P, Ge), J Magn Magn Mater, 310, 1826, 10.1016/j.jmmm.2006.10.699 Sun, 2011, Room-temperature magnetocaloric effect in (Co0.35Mn0.65)(2)P compound, J Mater Sci Technol, 27, 382, 10.1016/S1005-0302(11)60078-9 Haj-Khlifa, 2015, Crystal and magnetic effects of selected substitutions of Ni for Fe and for Co in the orthorhombic MnFe0.35Co0.65P compound, J Alloys Comp, 652, 322, 10.1016/j.jallcom.2015.08.194 Ma, 2015, Structural, magnetic and magnetocaloric properties of (Mn, Co)(2)(Si, P) compounds, J Alloys Comp, 625, 95, 10.1016/j.jallcom.2014.11.072 Yu, 2003, Large magnetic entropy change in the metallic antiperovskite Mn3GaC, J Appl Phys, 93, 10128, 10.1063/1.1574591 Tohei, 2003, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC, J Appl Phys, 94, 1800, 10.1063/1.1587265 Tong, 2013, Mn-based antiperovskite functional materials: review of research, Chin Phys B, 22, 067501, 10.1088/1674-1056/22/6/067501 Kanomata, 1997, Field-induced magnetic transition of Mn3GaC, Solid State Commun, 101, 811, 10.1016/S0038-1098(96)00737-5 Burriel, 2005, Square-shape magnetocaloric effect in Mn3GaC, J Magn Magn Mater, 290, 715, 10.1016/j.jmmm.2004.11.346 Matsumoto, 2008, Electronic and magnetic states of Mn2.97Co0.03GaC studied by soft X-ray photoemission and magnetic circular dichroism, Jpn J Appl Phys, 47, 1567, 10.1143/JJAP.47.1567 Yu, 2006, Assessment of the magnetic entropy change in the metallic antiperovskite Mn3GaC1-delta (delta=0, 0.22), J Magn Magn Mater, 299, 317, 10.1016/j.jmmm.2005.04.020 Cakir, 2012, Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements, Appl Phys Lett, 100, 202404, 10.1063/1.4717181 Scheibel, 2015, Dependence of the inverse magnetocaloric effect on the field-change rate in Mn3GaC and its relationship to the kinetics of the phase transition, J Appl Phys, 117, 233902, 10.1063/1.4922722 Wang, 2009, Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds Ga1-xCMn3+x (x=0, 0.06, 0.07, and 0.08), J Appl Phys, 105, 083907, 10.1063/1.3108535 Dias, 2014, Effect of carbon content on magnetostructural properties of Mn3GaC, J Magn Magn Mater, 363, 140, 10.1016/j.jmmm.2014.03.052 Tohei, 2004, Large magnetocaloric effect of Mn3-xCoxGaC, J Magn Magn Mater, 272, E585, 10.1016/j.jmmm.2003.12.1035 Wang, 2010, Structural, magnetic properties and magnetocaloric effect in Ni-doped antiperovskite compounds GaCMn3-xNix (0 <= x <= 0.10), Physica B, 405, 2427, 10.1016/j.physb.2010.03.001 Lewis, 2006, Magnetism and the defect state in the magnetocaloric antiperovskite Mn3GaC1-delta, J Phys-Condes Matter, 18, 1677, 10.1088/0953-8984/18/5/020 Cakir, 2013, Adiabatic temperature change around coinciding first and second order magnetic transitions in Mn3Ga(C0.85N0.15), J Magn Magn Mater, 344, 207, 10.1016/j.jmmm.2013.05.057 Cakr, 2016, Magnetic correlations in the magnetocaloric materials Mn3GaC and Mn3GaC0.85N0.15 studied by neutron polarization analysis and neutron depolarization, J Phys-Condes Matter, 28, 13LT02, 10.1088/0953-8984/28/13/13LT02 Wang, 2011, Magnetic properties and room-temperature magnetocaloric effect in the doped antipervoskite compounds Ga1-xAlxCMn3 (0 <= x <= 0.15), J Magn Magn Mater, 323, 2017, 10.1016/j.jmmm.2011.02.046 Wang, 2010, Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3, J Appl Phys, 108, 093925, 10.1063/1.3505753 Shao, 2015, Low-field magnetocaloric effect in antiperovskite Mn3Ga1-xGexC compounds, J Magn Magn Mater, 396, 160, 10.1016/j.jmmm.2015.08.034 Dias, 2015, Effect of composition on magnetocaloric properties of Mn3Ga(1−x)SnxC, J Appl Phys, 117, 123901, 10.1063/1.4916095 Wang, 2009, Large magnetic entropy change near room temperature in antiperovskite SnCMn3, EPL, 85, 47004, 10.1209/0295-5075/85/47004 Wang, 2012, Magnetic/structural diagram, chemical composition-dependent magnetocaloric effect in self-doped antipervoskite compounds Sn(1-x)CMn(3+x) (0 <= x <= 0.40), J Magn Magn Mater, 324, 773, 10.1016/j.jmmm.2011.09.014 Wang, 2010, Magnetism, magnetocaloric effect and positive magnetoresistance in Fe-doped antipervoskite compounds SnCMn3-xFex (x=0.05–0.20), J Magn Magn Mater, 322, 163, 10.1016/j.jmmm.2009.09.009 Yan, 2014, Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3Sn1-xCoxC1.1 compounds, Acta Phys Sin, 63, 167502, 10.7498/aps.63.167502 Sun, 2013, Thermodynamic, electromagnetic, and lattice properties of antiperovskite Mn3SbN, Adv Condens Matter Phys, 286325 Yang, 2014, Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3, J Appl Phys, 116, 033902, 10.1063/1.4890223 Annaorazov, 1992, Alloys of the Fe-Rh system as a new class of working material for magnetic refrigerators, Cryogenics, 32, 867, 10.1016/0011-2275(92)90352-B Nikitin, 1990, The magnetocaloric effect in FE49RH51 compound, Phys Lett A, 148, 363, 10.1016/0375-9601(90)90819-A Shirane, 1963, Mössbauer study of hyperfine fields and isomer shifts in the Fe-Rh alloys, Phys Rev, 131, 183, 10.1103/PhysRev.131.183 Manekar, 2008, Reproducible room temperature giant magnetocaloric effect in Fe-Rh, J Phys D-Appl Phys, 41, 192004, 10.1088/0022-3727/41/19/192004 Annaorazov, 2002, Heat pump cycles based on the AF-F transition in Fe-Rh alloys induced by tensile stress, Int J Refrig-Rev Int Froid, 25, 1034, 10.1016/S0140-7007(02)00028-2 Annaorazov, 2003, An analysis of the process of adiabatic inducement of the F-AF transition in FeRh by pressure, J Alloys Comp, 354, 1, 10.1016/S0925-8388(02)01342-7 Annaorazov, 2002, Magnetocaloric heat-pump cycles based on the AF-F transition in Fe-Rh alloys, J Magn Magn Mater, 251, 61, 10.1016/S0304-8853(02)00477-8 Chirkova, 2016, Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions, Acta Mater, 106, 15, 10.1016/j.actamat.2015.11.054 Stern-Taulats, 2015, Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51, Appl Phys Lett, 107, 152409, 10.1063/1.4933409 Stern-Taulats, 2014, Barocaloric and magnetocaloric effects inFe49Rh51, Phys Rev B, 89, 214105, 10.1103/PhysRevB.89.214105 Liu, 2016, Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle, Nat Commun, 7, 11614, 10.1038/ncomms11614 Gruner, 2003, Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in alpha-FeRh, Phys Rev B, 67, 064415, 10.1103/PhysRevB.67.064415 Gruner, 2005, Simulation of the (p, T) phase diagram of the temperature-driven metamagnet alpha-FeRh, Phase Trans, 78, 209, 10.1080/01411590412331316582 Gu, 2005, Dominance of the spin-wave contribution to the magnetic phase transition in FeRh, Phys Rev B, 72, 012403, 10.1103/PhysRevB.72.012403 Sandratskii, 2011, Magnetic excitations and femtomagnetism of FeRh: a first-principles study, Phys Rev B, 83, 174408, 10.1103/PhysRevB.83.174408 Annaorazov, 1996, Anomalously high entropy change in FeRh alloy, J Appl Phys, 79, 1689, 10.1063/1.360955 de Vries, 2013, Hall-effect characterization of the metamagnetic transition in FeRh, New J Phys, 15, 013008, 10.1088/1367-2630/15/1/013008 Nishimura, 2008, Magnetocaloric effect of Fe(Rh1-xPdx) alloys, Mater Trans, 49, 1753, 10.2320/matertrans.MRA2008080 Barua, 2014, Towards tailoring the magnetocaloric response in FeRh-based ternary compounds, J Appl Phys, 115, 17A903, 10.1063/1.4854975 Kouvel, 1966, Unusual nature of the abrupt magnetic transition in FeRh and its pseudobinary variants, J Appl Phys, 37, 1257, 10.1063/1.1708424 Lu, 2009, First-order magnetic phase transition in FeRh-Pt thin films, J Appl Phys, 105, 07A904, 10.1063/1.3065973 Uebayashi, 2007, Structure and magnetism of pseudo-binary ordered alloys Fe(Rh, Pd), Mn(Rh, Pd), (Fe, Mn)Rh and (Fe, Mn)Pd, J Magn Magn Mater, 310, 1051, 10.1016/j.jmmm.2006.10.238 Manekar, 2011, Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh, J Phys D-Appl Phys, 44, 242001, 10.1088/0022-3727/44/24/242001 Caron, 2013, Magnetocrystalline anisotropy and the magnetocaloric effect in Fe2P, Phys Rev B, 88, 094440, 10.1103/PhysRevB.88.094440 Hudl, 2014, Thermodynamics around the first-order ferromagnetic phase transition ofFe2Psingle crystals, Phys Rev B, 90, 144432, 10.1103/PhysRevB.90.144432 Fruchart, 2005, On the magnetocaloric effect in d-metal pnictides, Physica A, 358, 123, 10.1016/j.physa.2005.06.013 Gruber, 2013, Electronic structure and the magneto-caloric effect, J Phys-Condes Matter, 25, 436002, 10.1088/0953-8984/25/43/436002 Wiendlocha, 2008, Magnetocaloric properties of Fe2-xTxP (T = Ru and Rh) from electronic structure calculations and magnetization measurements, J Phys D-Appl Phys, 41, 205007, 10.1088/0022-3727/41/20/205007 Zach, 2004, Magneto-elastic properties and electronic structure analysis of the (Fe1−xNix)2P system, J Alloys Comp, 383, 322, 10.1016/j.jallcom.2004.04.039 Balli, 2007, Magnetocaloric effect in ternary metal phosphides (Fe1-xNix)(2)P, J Magn Magn Mater, 316, 358, 10.1016/j.jmmm.2007.03.018 Delczeg-Czirjak, 2012, Magnetic exchange interactions in B-, Si-, and As-doped Fe2P from first-principles theory, Phys Rev B, 85, 224435, 10.1103/PhysRevB.85.224435 Florez, 2013, Magnetic entropy change plateau in a geometrically frustrated layered system: FeCrAs-like iron-pnictide structure as a magnetocaloric prototype, J Phys Condens Matter, 25, 226004, 10.1088/0953-8984/25/22/226004 Desautels, 2016, Dynamical freezing, magnetic ordering, and the magnetocaloric effect in nanostructured Fe/Cu thin films, Appl Phys Lett, 108, 172410, 10.1063/1.4948347 Rong, 2007, Temperature- and magnetic-field-induced phase transitions in Fe-rich FePt alloys, Appl Phys Lett, 90, 222504, 10.1063/1.2745255 Recarte, 2007, Magnetic study of the martensitic transformation in a Fe-Pd alloy, J Magn Magn Mater, 316, E614, 10.1016/j.jmmm.2007.03.044 Sanchez-Alarcos, 2009, Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys, Acta Mater, 57, 4224, 10.1016/j.actamat.2009.05.020 Prida, 2011, Magnetocaloric effect in melt-spun FePd ribbon alloy with second order phase transition, J Alloys Comp, 509, 190, 10.1016/j.jallcom.2010.09.060 Ipus, 2011, Near room temperature magnetocaloric response of an (FeNi)ZrB alloy, IEEE Trans Magn, 47, 2494, 10.1109/TMAG.2011.2159781 Ucar, 2013, Tuning the Curie temperature in gamma-FeNi nanoparticles for magnetocaloric applications by controlling the oxidation kinetics, J Appl Phys, 113, 17A918, 10.1063/1.4795012 Ucar, 2014, Effect of Mo addition on structure and magnetocaloric effect in gamma-FeNi nanocrystals, J Electron Mater, 43, 137, 10.1007/s11664-013-2725-6 Chaudhary, 2015, Magnetic and structural properties of high relative cooling power (Fe70Ni30)(92)Mn-8 magnetocaloric nanoparticles, J Phys D-Appl Phys, 48, 305003, 10.1088/0022-3727/48/30/305003 Chaudhary, 2014, Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles, J Appl Phys, 116, 163918, 10.1063/1.4900736 Chaudhary, 2015, High relative cooling power in a multiphase magnetocaloric Fe-Ni-B alloy, IEEE Magn Lett, 6, 6700104, 10.1109/LMAG.2015.2449259 Mandal, 2015, Investigation of the critical behaviour and magnetocaloric effect in gamma-Fe49Ni29Cr22 disordered austenitic stainless steel alloy by using the field dependence of magnetic entropy change, J Alloys Comp, 653, 453, 10.1016/j.jallcom.2015.09.035 Lucas, 2013, Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys, J Appl Phys, 113, 17A923, 10.1063/1.4798340 Zhong, 2014, Structure, magnetic properties and magnetocaloric effects of Fe50Mn15-x Co (x) Ni-35 alloys, Sci China-Phys Mech Astron, 57, 437, 10.1007/s11433-013-5383-z Belyea, 2015, Tunable magnetocaloric effect in transition metal alloys, Sci Rep, 5, 15755, 10.1038/srep15755 Tan, 2013, Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements, J Am Chem Soc, 135, 9553, 10.1021/ja404107p Cedervall, 2016, Magnetic structure of the magnetocaloric compound AlFe2B2, J Alloys Comp, 664, 784, 10.1016/j.jallcom.2015.12.111 Lewis, 2015, Developing magnetofunctionality: coupled structural and magnetic phase transition in AlFe2B2, J Alloys Comp, 650, 482, 10.1016/j.jallcom.2015.07.255 Chai, 2015, Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T=Fe, Mn, Cr) and AlFe2-xMnxB2, J Solid State Chem, 224, 52, 10.1016/j.jssc.2014.04.027 Du, 2015, Magnetic frustration and magnetocaloric effect in AlFe2-xMnxB2 (x=0-0.5) ribbons, J Phys D-Appl Phys, 48, 335001, 10.1088/0022-3727/48/33/335001 Kaeswurm, 2016, Direct measurement of the magnetocaloric effect in cementite, J Magn Magn Mater, 410, 105, 10.1016/j.jmmm.2016.02.080 Zhao, 2009, Magnetic properties of Fe(3(1-x))Cr(3x)C alloys, Int J Miner Metall Mater, 16, 314, 10.1016/S1674-4799(09)60056-X Zhang, 2003, The crystallographic phases and magnetic properties of Fe2MnSi1-xGex, Physica B, 328, 295, 10.1016/S0921-4526(02)01853-7 Mazet, 2006, Mn3Sn2: a promising material for magnetic refrigeration, Appl Phys Lett, 89, 022503, 10.1063/1.2220541 Recour, 2009, Magnetocaloric properties of Mn(3)Sn(2) from heat capacity measurements, J Appl Phys, 105, 033905, 10.1063/1.3074093 Ma, 2014, Giant magnetocaloric and magnetoresistance effects in ferrimagnetic Mn1.9Co0.1Sb alloy, Appl Phys Lett, 104, 022410, 10.1063/1.4862332 Li, 2006, CoMnSb: a magnetocaloric material with a large low-field magnetic entropy change at intermediate temperature, J Appl Phys, 99, 063901, 10.1063/1.2179195 Li, 2006, Effect of annealing on the magnetic entropy change of CoMnSb alloy, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 428, 332, 10.1016/j.msea.2006.05.041 Li, 2007, Effect of Nb addition on the magnetic properties and magnetocaloric effect of CoMnSb alloy, J Alloys Comp, 427, 15, 10.1016/j.jallcom.2006.03.007 Tekgul, 2015, The structural, magnetic, and magnetocaloric properties of In-doped Mn2-xCrxSb, J Appl Phys, 118, 153903, 10.1063/1.4934253 Xie, 2010, Reversible room-temperature magnetocaloric effect in Mn[sub 5]PB[sub 2], Appl Phys Lett, 97, 202504, 10.1063/1.3518064 Du, 2007, Giant magnetocaloric effect in epsilon-(Mn0.83Fe0.17)(3.25)Ge antiferromagnet, Appl Phys Lett, 90, 042510, 10.1063/1.2432274 Mamiya, 2010, Influence of random substitution on magnetocaloric effect in a spinel ferrite, J Magn Magn Mater, 322, 1561, 10.1016/j.jmmm.2009.09.023 Anwar, 2014, Enhanced relative cooling power of Ni1-xZnxFe2O4 (0.0 <= x <= 0.7) ferrites, Acta Mater, 71, 100, 10.1016/j.actamat.2014.03.002 Gass, 2008, Magnetization and magnetocaloric effect in ball-milled zinc ferrite powder, J Appl Phys, 103, 07B309, 10.1063/1.2829754 Gopalan, 2010, Inverse magnetocaloric effect in sol-gel derived nanosized cobalt ferrite, Appl Phys A-Mater Sci Process, 99, 497, 10.1007/s00339-010-5573-8 Luo, 2009, Observation of the large magnetocaloric effect in an orbital-spin-coupled system MnV(2)O(4), J Phys-Condes Matter, 21, 436010, 10.1088/0953-8984/21/43/436010 Luo, 2010, Observation of the large orbital entropy in Zn-doped orbital-spin-coupled system MnV2O4, Appl Phys Lett, 96, 211903, 10.1063/1.3303982 Luo, 2012, Large reversible magnetocaloric effect in spinel MnV2O4 with minimal Al substitution, J Magn Magn Mater, 324, 766, 10.1016/j.jmmm.2011.09.013 Fu, 2013, Critical behavior of spinel vanadate MnV1.95Al0.05O4, J Magn Magn Mater, 326, 205, 10.1016/j.jmmm.2012.08.013 Huang, 2014, Observation of the large magnetocaloric effect and suppression of orbital entropy change in Fe-doped MnV2O4, J Appl Phys, 115, 034903, 10.1063/1.4861630 Yan, 2007, Large magnetocaloric effect in spinel CdCr2S4, Appl Phys Lett, 90, 262502, 10.1063/1.2751576 Zhang, 2010, Spin-lattice coupling studied by magnetic entropy and EPR in the CdCr2S4 system, Solid State Commun, 150, 2109, 10.1016/j.ssc.2010.09.017 Shen, 2008, Magnetic properties and magnetic entropy change in spinels (Cd, M)Cr(2)S(4) with M=Cu or Fe, J Appl Phys, 103, 07B315, 10.1063/1.2830973 Zhang, 2012, Scaling of the magnetic entropy change in spinel selenide CuCr2Se4, Physica B, 407, 3543, 10.1016/j.physb.2012.05.020 Li, 2012, Study of magnetic entropy and ESR in ferromagnet CuCr2Te4, J Magn Magn Mater, 324, 3133, 10.1016/j.jmmm.2012.05.017 Bebenin, 2015, Magnetocaloric effect and inhomogeneity of CdCr2Se4 and HgCr2Se4 single crystals, J Magn Magn Mater, 387, 127, 10.1016/j.jmmm.2015.03.093 Zhang, 2006, A potential oxide for magnetic refrigeration application: CrO2 particles, J Phys-Condes Matter, 18, L559, 10.1088/0953-8984/18/44/L01 Jiang, 2012, Large magnetocaloric effect in CrO2/TiO2 epitaxial films above room temperature, Mater Lett, 76, 25, 10.1016/j.matlet.2012.02.057 Ren, 2014, Tunable magnetic transition and reversible magnetocaloric effects at room temperature in transition-metal-oxyfluorides CrO2-xFx, J Alloys Comp, 596, 69, 10.1016/j.jallcom.2014.01.198 Zhong, 2013, Review of magnetocaloric effect in perovskite-type oxides, Chin Phys B, 22, 057501, 10.1088/1674-1056/22/5/057501 Zhong, 2004, Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6, J Magn Magn Mater, 282, 151, 10.1016/j.jmmm.2004.04.036 Zhong, 2004, Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry, Eur Phys J B, 41, 213, 10.1140/epjb/e2004-00312-9 El-Hagary, 2010, Effect of partial substitution of Cr3+ for Fe3+ on magnetism, magnetocaloric effect and transport properties of Ba2FeMoO6 double perovskites, J Alloys Comp, 502, 376, 10.1016/j.jallcom.2010.04.172 Alvarez-Serrano, 2011, Tunable ferrites as environmentally friendly materials for energy-efficient processes, Adv Mater, 23, 5237, 10.1002/adma.201101727 Kurniawan, 2016, Curie temperature engineering in high entropy alloys for magnetocaloric applications, IEEE Magn Lett, 7, 6105005, 10.1109/LMAG.2016.2592462 Pedro, 2014, Cs2NaAl1-xCrxF6: a family of compounds presenting magnetocaloric effect, Phys Rev B, 90, 064407, 10.1103/PhysRevB.90.064407 Alisultanov, 2014, Oscillating magnetocaloric effect of a multilayer graphene, Appl Phys Lett, 105, 232406, 10.1063/1.4903833 Reis, 2011, Oscillating magnetocaloric effect, Appl Phys Lett, 99, 052511, 10.1063/1.3615296 Reis, 2015, Magnetocaloric cycle with six stages: Possible application of graphene at low temperature, Appl Phys Lett, 107, 102401, 10.1063/1.4930577 Caballero-Flores, 2011, Optimization of the refrigerant capacity in multiphase magnetocaloric materials, Appl Phys Lett, 98, 102505, 10.1063/1.3560445 Paticopoulos, 2012, Enhancement of the magnetocaloric effect in composites: experimental validation, Solid State Commun, 152, 1590, 10.1016/j.ssc.2012.05.015 Luo, 2009, Rare earth based bulk metallic glasses, J Non-Cryst Solids, 355, 759, 10.1016/j.jnoncrysol.2009.02.006 Wang, 2009, Bulk metallic glasses with functional physical properties, Adv Mater, 21, 4524, 10.1002/adma.200901053 Zhang, 2013, Magnetic behavior of Gd4Co3 metallic glass, J Magn Magn Mater, 326, 157, 10.1016/j.jmmm.2012.09.002 Zheng, 2013, Magnetocaloric effect and critical behavior of amorphous (Gd4Co3)(1-x)Si-x alloys, J Magn Magn Mater, 343, 184, 10.1016/j.jmmm.2013.04.087 Zhong, 2013, Amorphous and crystallized (Gd4Co3)(100-x)B-x alloys for magnetic refrigerants working in the vicinity of 200 K, J Alloys Comp, 553, 152, 10.1016/j.jallcom.2012.11.086 Zheng, 2012, The magnetocaloric effect and critical behavior in amorphous Gd60Co40-xMnx alloys, J Appl Phys, 111, 07A922, 10.1063/1.3673860 Foldeaki, 1997, Composition dependence of magnetic properties in amorphous rare-earth-metal-based alloys, J Magn Magn Mater, 174, 295, 10.1016/S0304-8853(97)00140-6 Fang, 2011, Structures and magnetocaloric effects of Gd65-xRExFe20Al15 (x=0-20; RE=Tb, Dy, Ho, and Er) ribbons, J Appl Phys, 109, 07A933, 10.1063/1.3561447 Zheng, 2011, Magnetic properties and large magnetocaloric effects in amorphous Gd-Al-Fe alloys for magnetic refrigeration, Sci China-Phys Mech Astron, 54, 1267, 10.1007/s11433-011-4363-4 Zhao, 2011, The influence of Si addition on the glass forming ability, magnetic and magnetocaloric properties of the Gd-Fe-Al glassy ribbons, J Appl Phys, 109, 07A911, 10.1063/1.3540666 Min, 2014, Magnetic properties and magnetocaloric effects of Gd-Mn-Si ribbons in amorphous and crystalline states, J Alloys Comp, 606, 50, 10.1016/j.jallcom.2014.04.014 de Paula, 2016, Magnetocaloric effect and evidence of superparamagnetism in GdAl2 nanocrystallites: a magnetic-structural correlation, Phys Rev B, 93, 094427, 10.1103/PhysRevB.93.094427 Phan, 2013, Ferromagnetic order in rapidly cooled Nd-Fe-Co-Al alloy ribbons, IEEE Trans Magn, 49, 3375, 10.1109/TMAG.2013.2242853 Zhang, 2014, Tunable magnetic and magnetocaloric properties in heavy rare-earth based metallic glasses through the substitution of similar elements, J Appl Phys, 115, 133903, 10.1063/1.4870286 Xia, 2014, Large magnetic entropy change and adiabatic temperature rise of a Gd55Al20Co20Ni5 bulk metallic glass, J Appl Phys, 115, 223904, 10.1063/1.4882735 Liu, 2016, Room temperature table-like magnetocaloric effect in amorphous Gd50Co45Fe5 ribbon, J Phys D-Appl Phys, 49, 055004, 10.1088/0022-3727/49/5/055004 Chevalier, 2005, Magnetocaloric properties of amorphous GdNiAl obtained by mechanical grinding, Appl Phys A-Mater Sci Process, 80, 601, 10.1007/s00339-003-2239-9 Si, 2002, Magnetic properties and magnetic entropy change of amorphous and crystalline GdNiAl ribbons, Appl Phys A-Mater Sci Process, 75, 535, 10.1007/s003390101034 Shen, 2014, Enhanced magnetocaloric and mechanical properties of melt-extracted Gd55Al25Co20 micro-fibers, J Alloys Comp, 603, 167, 10.1016/j.jallcom.2014.03.053 Biswas, 2014, Impact of structural disorder on the magnetic ordering and magnetocaloric response of amorphous Gd-based microwires, J Appl Phys, 115, 17A318, 10.1063/1.4864143 Costa, 2016, Theoretical investigation on the magnetocaloric effect in amorphous Eu80Au20 system, J Magn Magn Mater, 414, 78, 10.1016/j.jmmm.2016.04.044 von Ranke, 2014, Theoretical investigations on magnetic entropy change in amorphous and crystalline systems: applications to RAg (R=Tb, Dy, Ho) and GdCuAl, J Magn Magn Mater, 369, 34, 10.1016/j.jmmm.2014.06.026 von Ranke, 2014, Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: applications to Dy70Zr30 and DyCo3.4 alloys, J Appl Phys, 116, 143903, 10.1063/1.4897911 McHenry, 1999, Amorphous and nanocrystalline materials for applications as soft magnets, Progr Mater Sci, 44, 291, 10.1016/S0079-6425(99)00002-X Franco, 2012, Magnetic refrigerants with continuous phase transitions: amorphous and nanostructured materials, Scr Mater, 67, 594, 10.1016/j.scriptamat.2012.05.004 Blázquez, 2015, Analysis of the magnetocaloric effect in powder samples obtained by ball milling, Metall Mater Trans E, 2, 131 Maeda, 1983, Fe-Zr amorphous-alloys for magnetic refrigerants near room-temperature, J Jpn Inst Met, 47, 688, 10.2320/jinstmet1952.47.8_688 Belova, 1984, Temperature-dependence of magnetocaloric effect in amorphous ferromagnets, Fiz Tverd Tela, 26, 851 Franco, 2006, Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys, Appl Phys Lett, 88, 132509, 10.1063/1.2188385 Shen, 2002, Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy, J Appl Phys, 91, 5240, 10.1063/1.1456957 Podmiljsak, 2014, Influence of Ni on the magnetocaloric effect in Nanoperm-type soft-magnetic amorphous alloys, J Alloys Comp, 591, 29, 10.1016/j.jallcom.2013.12.150 Shao, 1996, Preparation of nanocomposite working substances for room-temperature magnetic refrigeration, J Magn Magn Mater, 163, 103, 10.1016/S0304-8853(96)00337-X Ipus, 2009, Microstructural evolution characterization of Fe-Nb-B ternary systems processed by ball milling, Philos Mag, 89, 1415, 10.1080/14786430902984566 Ipus, 2010, Influence of Co addition on the magnetic properties and magnetocaloric effect of Nanoperm (Fe(1-x)Co(x))(75)Nb(10)B(15) type alloys prepared by mechanical alloying, J Alloys Comp, 496, 7, 10.1016/j.jallcom.2009.12.029 Blazquez, 2012, Enhancement of the magnetic refrigerant capacity in partially amorphous Fe70Zr30 powders obtained by mechanical alloying, Intermetallics, 26, 52, 10.1016/j.intermet.2012.03.011 Ipus, 2014, Milling effects on magnetic properties of melt spun Fe-Nb-B alloy, J Appl Phys, 115, 17B518, 10.1063/1.4866700 Moreno, 2014, Magnetocaloric effect of Co62Nb6Zr2B30 amorphous alloys obtained by mechanical alloying or rapid quenching, J Appl Phys, 115, 17A302, 10.1063/1.4857595 Moreno-Ramirez, 2015, Analysis of magnetocaloric effect of ball milled amorphous alloys: demagnetizing factor and Curie temperature distribution, J Alloys Comp, 622, 606, 10.1016/j.jallcom.2014.10.134 Ipus, 2015, Influence of hot compaction on microstructure and magnetic properties of mechanically alloyed Fe(Co)-based amorphous compositions, J Alloys Comp, 653, 546, 10.1016/j.jallcom.2015.09.074 Ipus, 2014, A procedure to extract the magnetocaloric parameters of the single phases from experimental data of a multiphase system, Appl Phys Lett, 105, 172405, 10.1063/1.4900790 Franco, 2006, A Finemet-type alloy as a low-cost candidate for high-temperature magnetic refrigeration, Appl Phys Lett, 88, 042505, 10.1063/1.2167803 Swierczek, 2014, Nanocrystallization and magnetocaloric effect in amorphous Fe-Mo-Cu-B alloy, J Alloys Comp, 615, 255, 10.1016/j.jallcom.2014.06.162 Thanveer, 2016, Magnetocaloric effect in amorphous and partially crystallized Fe40Ni38Mo4B18 alloys, AIP Adv, 6, 055322, 10.1063/1.4952969 Luo, 2016, Size-dependent structure and magnetocaloric properties of Fe-based glass-forming alloy powders, AIP Adv, 6, 045002, 10.1063/1.4945754 Moubah, 2016, Enhanced magnetocaloric properties of FeZr amorphous films by C ion implantation, Mater Lett, 175, 5, 10.1016/j.matlet.2016.03.124 Alvarez, 2011, Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite, Appl Phys Lett, 99, 232501, 10.1063/1.3665941 Tian, 2015, Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78-xCexSi4Nb5B12Cu1 (x=0-10) composite materials, Mater Lett, 138, 64, 10.1016/j.matlet.2014.09.127 Lai, 2015, Table-like magnetocaloric effect of Fe88-xNdxCr8B4 composite materials, J Magn Magn Mater, 390, 87, 10.1016/j.jmmm.2015.04.046 Chau, 2007, The discovery of the colossal magnetocaloric effect in a series of amorphous ribbons based on Finemet, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 449, 360, 10.1016/j.msea.2006.02.354 Hoa, 2007, The crystallization and properties of alloys with Fe partly substituted by Cr and Cu fully substituted by Au in Finemet, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 449, 364, 10.1016/j.msea.2006.03.139 Hoa, 2007, The crystallization, magnetic and magnetocaloric properties in Fe76.5-xNbxSi15.5B7Au1 ribbons, J Magn Magn Mater, 310, 2483, 10.1016/j.jmmm.2006.11.088 Huu, 2008, Giant magnetocaloric effect at room temperature and low-field change in Fe78-xCrxSi4Nb5B12Cu1 amorphous alloys, J Korean Phys Soc, 53, 763, 10.3938/jkps.53.763 Duong, 2009, The existence of large magnetocaloric effect at low field variation and the anti-corrosion ability of Fe-rich alloy with Cr substituted for Fe, 012067 Min, 2006, The substitution effect of Cr about large magnetocaloric effect in amorphous Fe-Si-B-Nb-Au ribbons, J Magn Magn Mater, 300, E385, 10.1016/j.jmmm.2005.10.125 Moreno-Ramirez, 2016, Magnetocaloric response of amorphous and nanocrystalline Cr-containing Vitroperm-type alloys, J Magn Magn Mater, 409, 56, 10.1016/j.jmmm.2016.02.087 Franco, 2012, Magnetic materials for energy applications, JOM, 64, 750, 10.1007/s11837-012-0348-7 Liu, 2014, Optimizing and fabricating magnetocaloric materials, Chin Phys B, 23, 047503, 10.1088/1674-1056/23/4/047503 Smaili, 1997, Composite materials for Ericsson-like magnetic refrigeration cycle, J Appl Phys, 81, 824, 10.1063/1.364166 de Oliveira, 2003, Understanding the table-like magnetocaloric effect, J Magn Magn Mater, 261, 112, 10.1016/S0304-8853(02)01447-6 Hashimoto, 1987, New application of complex magnetic-materials to the magnetic refrigerant in an ericsson magnetic refrigerator, J Appl Phys, 62, 3873, 10.1063/1.339232 Engelbrecht, 2011, Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators, Int J Refrig-Rev Int Froid, 34, 1132, 10.1016/j.ijrefrig.2010.11.014 Yan, 2005, Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons, J Appl Phys, 97, 036102, 10.1063/1.1844605 Liu, 2013, A new approach to prepare spherical La-Fe-Si-Co magnetocaloric refrigerant particles, Scr Mater, 69, 485, 10.1016/j.scriptamat.2013.06.009 Katter, 2008, Magnetocaloric properties of La(Fe Co, Si)(13) bulk material prepared by powder metallurgy, IEEE Trans Magn, 44, 3044, 10.1109/TMAG.2008.2002523 Lowe, 2012, The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe, Si, Co)(13), Acta Mater, 60, 4268, 10.1016/j.actamat.2012.04.027 Franco, 2008, Tailoring of magnetocaloric response in nanostructured materials: role of anisotropy, Phys Rev B, 77, 104434, 10.1103/PhysRevB.77.104434 Baldomir, 2007, Magnetocaloric effects in magnetic nanoparticle systems: a Monte Carlo study, J Non-Cryst Solids, 353, 790, 10.1016/j.jnoncrysol.2006.12.041 Skomski, 2008, Temperature- and field-induced entropy changes in nanomagnets, J Appl Phys, 103, 07B329, 10.1063/1.2835094 Serantes, 2009, Magnetocaloric effect in dipolar chains of magnetic nanoparticles with collinear anisotropy axes, Phys Rev B, 80, 134421, 10.1103/PhysRevB.80.134421 Alvarez, 2010, Magnetocaloric effect in nanostructured Pr2Fe17 and Nd2Fe17 synthesized by high-energy ball-milling, Acta Phys Pol A, 118, 867, 10.12693/APhysPolA.118.867 Belova, 1973, Magnetocaloric effect in superparamagnetic substances, Zhurnal Eksperimentalnoi Teor Fiz, 64, 1746 Bennett, 1992, Monte-Carlo and mean-field calculations of the magnetocaloric effect of ferromagnetically interacting clusters, J Magn Magn Mater, 104, 1094, 10.1016/0304-8853(92)90504-H Franco, 2002, High-temperature evolution of coercivity in nanocrystalline alloys, Phys Rev B, 66, 224418, 10.1103/PhysRevB.66.224418 McMichael, 1992, Magnetocaloric effect in superparamagnets, J Magn Magn Mater, 111, 29, 10.1016/0304-8853(92)91049-Y Skorvanek, 2007, Magnetocaloric effect in amorphous and nanocrystalline Fe81-xCrxNb7B12 (x=0 and 3.5) alloys, Mater Sci Eng A-Struct Mater Prop Microstruct Process, 449, 460, 10.1016/j.msea.2006.02.353 Shen, 2016, Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure, Appl Phys Lett, 108, 092403, 10.1063/1.4943137 Thanh, 2015, Critical behavior in double-exchange ferromagnets of Pr0.6Sr0.4MnO3 nanoparticles, IEEE Trans Magn, 51, 2501004, 10.1109/TMAG.2015.2424978 Turcaud, 2015, Influence of manganite powder grain size and Ag-particle coating on the magnetocaloric effect and the active magnetic regenerator performance, Acta Mater, 97, 413, 10.1016/j.actamat.2015.06.058 Wang, 2012, Magnetocaloric effect in perovskite manganite La0.65Nd0.05Ba0.3MnO3 with double metal-insulator peaks, J Supercond Nov Magn, 25, 533, 10.1007/s10948-011-1329-8 Keshri, 2016, Studies on characteristic properties of superparamagnetic La0.67Sr0.33-xKxMnO3 nanoparticles, J Alloys Comp, 656, 245, 10.1016/j.jallcom.2015.09.176 Fatnassi, 2015, Structural and magnetic properties of nanosized La0.8Ca0.2Mn1-xFexO3 particles (0 <= x <= 0.2) prepared by sol-gel method, J Supercond Nov Magn, 28, 2401, 10.1007/s10948-015-3030-9 Gharsallah, 2016, Effect of the annealing temperature on the structural and magnetic behaviors of 0.875La(0.6)Ca(0.4)MnO(3)/0.125La(0.6)Sr(0.4)MnO(3) composition, J Magn Magn Mater, 401, 56, 10.1016/j.jmmm.2015.09.082 Shinde, 2012, Glycine-assisted combustion synthesis and magnetocaloric properties of polycrystalline La0.8Ca0.2MnO3, J Korean Phys Soc, 61, 2000, 10.3938/jkps.61.2000 Poddar, 2006, Magnetocaloric effect in ferrite nanoparticles, J Magn Magn Mater, 307, 227, 10.1016/j.jmmm.2006.04.007 Li, 2014, Enhanced cryogenic magnetocaloric effect induced by small size GdNi5 nanoparticles, J Mater Sci Technol, 30, 973, 10.1016/j.jmst.2014.01.009 Phong, 2016, Particle size effects on La0.7Ca0.3MnO3: Griffiths phase-like behavior and magnetocaloric study, J Alloys Comp, 662, 557, 10.1016/j.jallcom.2015.12.052 Hueso, 2002, Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3-delta nanoparticles synthesized by sol-gel techniques, J Appl Phys, 91, 9943, 10.1063/1.1476972 Poddar, 2007, Magnetic transition and large magnetocaloric effect associated with surface spin disorder in Co and CocoreAgshell nanoparticles, J Phys Chem C, 111, 14060, 10.1021/jp073274i Franco, 2010, Field dependence of the magnetocaloric effect in core-shell nanoparticles, J Appl Phys, 107, 09A902, 10.1063/1.3335514 Zeleňáková, 2016, Large magnetocaloric effect in fine Gd2O3 nanoparticles embedded in porous silica matrix, Appl Phys Lett, 109, 122412, 10.1063/1.4963267 Wang, 2016, Multifunctional hydrogels with temperature, ion, and magnetocaloric stimuli-responsive performances, Macromol Rapid Commun, 37, 759, 10.1002/marc.201500748 Yuzuak, 2013, Inverse magnetocaloric effect of epitaxial Ni-Mn-Sn thin films, Appl Phys Lett, 103, 222403, 10.1063/1.4834357 Caballero-Flores, 2012, Magnetic multilayers as a way to increase the magnetic field responsiveness of magnetocaloric materials, J Nanosci Nanotechnol, 12, 7432, 10.1166/jnn.2012.6521 Wang, 2007, The study of low-field positive and negative magnetic entropy changes in Ni43Mn46-xCuxSn11 alloys, J Appl Phys, 102, 013909, 10.1063/1.2752140 Barati, 2014, Extraordinary induction heating effect near the first order Curie transition, Appl Phys Lett, 105, 162412, 10.1063/1.4900557 Xuan, 2015, Enhancement of the martensitic transformation and magnetocaloric effect of Ni-Mn-V-Sn ribbons by annealing treatment, Phys Status Solidi A-Appl Mater, 212, 1954, 10.1002/pssa.201532024 Belov, 1972, Determination of exchange interaction of sublattices in gadolinium iron-garnet on basis of magnetocaloric effect, Soviet Physics Jetp-Ussr, 34, 588 Belov, 1977, Observation of spin reorientation based on measurements of magnetocaloric effect, Zhurnal Eksperimentalnoi Teor Fiz, 72, 586 Franco, 2010, Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X=Al, Cu, Ga, Mn, Fe, Co), J Magn Magn Mater, 322, 218, 10.1016/j.jmmm.2009.08.039 Kouvel, 1964, Detailed magnetic behavior of nickel near its curie point, Phys Rev a-Gen Phys, 136, 1626, 10.1103/PhysRev.136.A1626 Sanchez-Perez, 2016, Influence of nanocrystallization on the magnetocaloric properties of Ni-based amorphous alloys: determination of critical exponents in multiphase systems, J Alloys Comp, 686, 717, 10.1016/j.jallcom.2016.06.057 Franco, 2007, A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios, J Appl Phys, 101, 093903, 10.1063/1.2724804 Smith, 2014, Scaling and universality in magnetocaloric materials, Phys Rev B, 90, 104422, 10.1103/PhysRevB.90.104422 Romero-Muñiz, 2016, Applicability of scaling behavior and power laws in the analysis of the magnetocaloric effect in second-order phase transition materials, Phys Rev B, 94, 134401, 10.1103/PhysRevB.94.134401 Alvarez, 2011, Magneto-caloric effect in the pseudo-binary intermetallic YPrFe17 compound, Mater Chem Phys, 131, 18, 10.1016/j.matchemphys.2011.09.062 Zhong, 2012, Critical behavior and magnetocaloric effect of Gd65Mn35-xGex (x=0, 5, and 10) melt-spun ribbons, J Appl Phys, 112, 033903, 10.1063/1.4740062 Debnath, 2013, Investigation of the critical behavior in Mn0.94Nb0.06CoGe alloy by using the field dependence of magnetic entropy change, J Appl Phys, 113, 093902, 10.1063/1.4794100 Pelka, 2013, Magnetic systems at criticality: different signatures of scaling, Acta Phys Pol A, 124, 977, 10.12693/APhysPolA.124.977 Mahjoub, 2015, Critical behavior and the universal curve for magnetocaloric effect in Pr0.6Ca0.1Sr0.3Mn1-xFexO3 (x=0, 0.05 and 0.075) manganites, J Alloys Comp, 633, 207, 10.1016/j.jallcom.2015.02.011 Li, 2016, Critical behavior in polycrystalline La0.7Sr0.3CoO3 from bulk magnetization study, J Alloys Comp, 659, 203, 10.1016/j.jallcom.2015.11.060 Sattibabu, 2016, Studies on the magnetoelastic and magnetocaloric properties of Yb1-xMgxMnO3 using neutron diffraction and magnetization measurements, RSC Adv, 6, 48636, 10.1039/C6RA08791D Han, 2017, Critical phenomenon in the itinerant ferromagnet Cr11Ge19 studied by scaling of the magnetic entropy change, J Alloys Comp, 693, 389, 10.1016/j.jallcom.2016.09.210 Franco, 2009, The influence of a minority magnetic phase on the field dependence of the magnetocaloric effect, J Magn Magn Mater, 321, 1115, 10.1016/j.jmmm.2008.10.034 Law, 2012, The magnetocaloric effect of partially crystalline Fe-B-Cr-Gd alloys, J Appl Phys, 111, 113919, 10.1063/1.4723644 Romero-Muniz, 2014, Influence of the demagnetizing factor on the magnetocaloric effect: critical scaling and numerical simulations, Appl Phys Lett, 104, 252405, 10.1063/1.4885110 Banerjee, 1964, On a generalised approach to first and second order magnetic transitions, Phys Lett, 12, 16, 10.1016/0031-9163(64)91158-8 Ge, 2015, Scaling investigation of the magnetic entropy change in helimagnet MnSi, J Alloys Comp, 649, 46, 10.1016/j.jallcom.2015.07.130 Collins, 1953, Cyclic adiabatic demagnetization, Phys Rev, 90, 991, 10.1103/PhysRev.90.991.2 Rosenblum, 1976, Continuous refrigeration at 10 mK using adiabatic demagnetization, Cryogenics, 16, 245, 10.1016/0011-2275(76)90270-8 Pratt, 1977, A continuous demagnetization refrigerator operating near 2 K and a study of magnetic refrigerants, Cryogenics, 17, 689, 10.1016/0011-2275(77)90225-9 Steyert, 1978, Rotating carnot-cycle magnetic refrigerators for use near 2K, J Appl Phys, 49, 1227, 10.1063/1.325010 Barclay, 1979, Reciprocating magnetic refrigerator for 2-4-K operation - initial results, J Appl Phys, 50, 5870, 10.1063/1.326683 Barclay, 1980, A 4-K to 20-K rotational-cooling magnetic refrigerator capable of 1 mW to greater-than 1 W operation, Cryogenics, 20, 467, 10.1016/0011-2275(80)90081-8 Delpuech, 1981, Double acting reciprocating magnetic refrigerator - 1st experiments, Cryogenics, 21, 579, 10.1016/0011-2275(81)90225-3 Numazawa, 1984, The helium magnetic refrigerator. II - Liquefaction process and efficiency, Adv Cryogenics Eng, 29, 589, 10.1007/978-1-4613-9865-3_67 Mastumoto, 1988, An ericsson magnetic refrigerator for low temperature, Adv Cryogenics Eng, 33, 743 Nakagome, 1985 Hakuraku, 1985, A static magnetic refrigerator for superfluid-helium with new heat switches and a superconducting pulse coil, Jpn J Appl Phys Part 1 - Regul Pap Short Notes Rev Pap, 24, 1538, 10.1143/JJAP.24.1538 Barclay, 1986, Experimental results on a low-temperature magnetic refrigerator, Adv Cryogenics Eng, 31, 743, 10.1007/978-1-4613-2213-9_84 Hakuraku, 1986, A rotary magnetic refrigerator for superfluid-helium production, J Appl Phys, 60, 3266, 10.1063/1.337716 Hakuraku, 1986, A magnetic refrigerator for superfluid-helium equipped with a rotating superconducting magnet system, Jpn J Appl Phys Part 1 - Regul Pap Short Notes Rev Pap, 25, 140, 10.1143/JJAP.25.140 Taussig, 1986, Magnetic refrigeration based on magnetically active Nakagome, 1986, Reciprocating magnetic refrigerator for helium liquefaction, Adv Cryogenics Eng, 31, 753, 10.1007/978-1-4613-2213-9_85 Nakagome, 1988, A parasitic magnetic refrigerator for cooling superconducting magnet, IEEE Trans Magn, 24, 1113, 10.1109/20.11425 Kuz'min, 1991, Magnetic refrigerants for the 4.2-20 K region: garnets or perovskites?, J Phys D: Appl Phys, 24, 2039, 10.1088/0022-3727/24/11/020 Filin, 1992, Development and study of magnetic refrigerators of the static type, IEEE Trans Magn, 28, 953, 10.1109/20.120037 DeGregoria, 1992, Modeling the active magnetic regenerator, Adv Cryogenics Eng, 37, 867, 10.1007/978-1-4615-3368-9_13 Bezaguet, 1994, Design and construction of a static magnetic refrigerator operating between 1.8-K and 4.5-K, Cryogenics, 34, 227, 10.1016/S0011-2275(05)80049-9 Jeong, 1994, Tandem magnetic refrigerator for 1.8-K, Cryogenics, 34, 263, 10.1016/0011-2275(94)90105-8 Zimm, 1995 Kashani, 1996 Kashani, 1995, Development of a magnetic refrigerator operating between 2 K and 10 K, Cryocoolers, 8, 637, 10.1007/978-1-4757-9888-3_63 Satoh, 1996 Zimm, 1996 Ohira, 1996, The characteristics of magnetic refrigeration operating at the temperature of 20 K Hall, 1998, Analyzing magnetic refrigeration efficiency: a rotary AMR - Reverse Brayton case study, vol. 43 Pts a and B, 1719 Yayama, 2000, Hybrid cryogenic refrigerator: combination of brayton magnetic-cooling and Gifford-McMahon gas-cooling system, Jpn J Appl Phys, 39, 4220, 10.1143/JJAP.39.4220 Hepburn, 2001, Cooling system for ultra low temperature cryogenic detector cameras, 72 Kamiya, 2006, Design and build of magnetic refrigerator for hydrogen liquefaction, vol. 51A and B, 591 Numazawa, 2008, Development of a magnetic refirgerator for hydrogen liquefaction, vol. 53a and 53b, 1183 Matsumoto, 2009, Magnetic refrigerator for hydrogen liquefaction, 012028 Numazawa, 2013, Magnetic refrigerator for hydrogen liquefaction, Progr Supercond Cryogen, 15, 1, 10.9714/psac.2013.15.2.001 Kim, 2013, Experimental investigation of two-stage active magnetic regenerative refrigerator operating between 77 K and 20 K, Cryogenics, 57, 113, 10.1016/j.cryogenics.2013.06.002 Brown, 1978 Steyert, 1978 Kirol, 1987, Rotary recuperative magnetic heat pump Green, 1990, A Gadolinium-Terbium Active Regenerator, Adv Cryogenics Eng, 35, 1165 Zimm, 1998, Description and performance of a near-room temperature magnetic refrigerator, vol. 43 Pts a and B, 1759 Lawton, 1999 Bohigas, 2000, Room-temperature magnetic refrigerator using permanent magnets, IEEE Trans Magn, 36, 538, 10.1109/20.846216 Hirano, 2002, Development of magnetic refrigerator for room temperature application, vol. 47, Pts a and B, 1027 Rowe, 2002, Design of an active magnetic regenerator test apparatus, vol 47, Pts a and B, 995 Zimm, 2003 Zimm, 2005, Design and performance of a permanent magnet rotary refrigerator, 367 Zimm, 2006, Design and performance of a permanent-magnet rotary refrigerator, Int J Refrig-Rev Int Froid, 29, 1302, 10.1016/j.ijrefrig.2006.07.014 Blumenfeld, 2002, High temperature superconducting magnetic refrigeration, vol. 47, Pts a and B, 1019 Lu, 2005, A permanent magnet magneto-refrigerator study on using Gd/Gd-Si-Ge/Gd-Si-Ge-Ga alloys, 291 Okamura, 2006, Performance of a room-temperature rotary magnetic refrigerator, Int J Refrig-Rev Int Froid, 29, 1327, 10.1016/j.ijrefrig.2006.07.020 Clot, 2003, A magnet-based device for active magnetic regenerative refrigeration, IEEE Trans Magn, 39, 3349, 10.1109/TMAG.2003.816253 Allab, 2005, A magnetic field source system for magnetic refrigeration and its interaction with magnetocaloric material, 309 Richard, 2004, Magnetic refrigeration: single and multimaterial active magnetic regenerator experiments, J Appl Phys, 95, 2146, 10.1063/1.1643200 Rowe, 2006, Experimental investigation of a three-material layered active magnetic regenerator, Int J Refrig-Rev Int Froid, 29, 1286, 10.1016/j.ijrefrig.2006.07.012 Shir, 2005, Transient response in magnetocaloric regeneration, IEEE Trans Magn, 41, 2129, 10.1109/TMAG.2005.848786 Vasile, 2006, Innovative design of a magnetocaloric system, Int J Refrig-Rev Int Froid, 29, 1318, 10.1016/j.ijrefrig.2006.07.016 Yu, 2005, Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration, 375 Gao, 2006, Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration, Int J Refrig-Rev Int Froid, 29, 1274, 10.1016/j.ijrefrig.2005.12.015 Kawanami, 2005, Optimization of a magnetic refrigerator at room temperature for air cooling systems, 275 Kim, 2005, 763 Yao, 2006, Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets, Int J Refrig-Rev Int Froid, 29, 1267, 10.1016/j.ijrefrig.2006.07.010 Hirano, 2007, Development o room temperature magnetic refrigerator-overall plan Okamura, 2007, Improvement o 100 W class room temperature magnetic refrigerator Egolf, 2006 Huang, 2006, Development of permanent magnetic refrigerator at room temperature, Rare Metals, 25, 641, 10.1016/S1001-0521(07)60164-8 Huang, 2007, Research on the magneto-caloric effect in LaFe11.17-XCo0.78Si1.05BX alloys Zimm, 2007, Design and initial performance of a magnetic refrigerator with a rotating permanent magnet Tura, 2007, Design and testing of a permanent magnet magnetic refrigerator Buchelnikov, 2007, The prototype of effective device for magnetic refrigeration Chen, 2007, A permanent magnet rotary magnetic refrigerator Petersen, 2007, A numerical analysis of a reciprocating active magnetic regenerator with a parallel-plate regenerator geometry Muller, 2007, Study of a efficiency of a magnetothermal system according to the permeability of the magnetocaloric material around its Curie temperature Nakamura, 2008 Bahl, 2008, A versatile magnetic refrigeration test device, Rev Sci Instrum, 79, 093906, 10.1063/1.2981692 Hirano, 2009, A development of spherical-shaped magnetocaloric materials using power coating method Zheng, 2009, Design and performance study of the active magnetic refrigerator for room-temperature application, Int J Refrig-Rev Int Froid, 32, 78, 10.1016/j.ijrefrig.2008.06.004 Bour, 2009, Experimental and numerical analysis of a reciprocating room temperature active magnetic regenerator Coelho, 2009, Prototype of a Gd-based rotaring magnetic refrigerator for work around room temperature Dupuis, 2009, New investigations in magnetic refrigeration device, AMR cycle and refrigerant bed performance evaluation Kim, 2009, Investigation on the room temperature active magnetic regenerative refrigerator with permanent magnetic array Pryds, 2009, Do simple magnetic refrigeration test devices lead to more successful prototypes? Sari, 2009, Initial results of a tests-bed magnetic refrigeration machine with practical running conditions Tagliafico, 2009, Design and assembly of a linear reciprocating magnetic refrigerator Tagliafico, 2013, Preliminary experimental results from a linear reciprocating magnetic refrigerator prototype, Appl Therm Eng, 52, 492, 10.1016/j.applthermaleng.2012.12.022 Tura, 2009, Progress in the characterization and optimization of a permanent magnet magnetic refrigerator Tusek, 2009, Magnetic cooling - development of magnetic refrigerator, Strojniski Vestn-J Mech Eng, 55, 293 Trevizoli, 2011, Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus, Int J Refrig-Rev Int Froid, 34, 1518, 10.1016/j.ijrefrig.2011.05.005 Kim, 2011, Numerical simulation and its verification for an active magnetic regenerator, Int J Refrig-Rev Int Froid, 34, 204, 10.1016/j.ijrefrig.2010.07.003 Balli, 2012, A pre-industrial magnetic cooling system for room temperature application, Appl Energy, 98, 556, 10.1016/j.apenergy.2012.04.034 Tura, 2011, Permanent magnet magnetic refrigerator design and experimental characterization, Int J Refrig-Rev Int Froid, 34, 628, 10.1016/j.ijrefrig.2010.12.009 Park, 2012, Development of the active magnetic regenerative refrigerator for room temperature application, Progr Supercond Cryogenics, 14, 60, 10.9714/sac.2012.14.3.060 Engelbrecht, 2012, Experimental results for a novel rotary active magnetic regenerator, Int J Refrig-Rev Int Froid, 35, 1498, 10.1016/j.ijrefrig.2012.05.003 Arnold, 2014, Design improvements of a permanent magnet active magnetic refrigerator, Int J Refrig-Rev Int Froid, 37, 99, 10.1016/j.ijrefrig.2013.09.024 Park, 2013, Development of the tandem reciprocating magnetic regenerative refrigerator and numerical simulation for the dead volume effect, Int J Refrig-Rev Int Froid, 36, 1741, 10.1016/j.ijrefrig.2013.03.012 He, 2013, Design and performance of a room-temperature hybrid magnetic refrigerator combined with Stirling gas refrigeration effect, Int J Refrig-Rev Int Froid, 36, 1465, 10.1016/j.ijrefrig.2013.03.014 Romero Gómez, 2013, Experimental analysis of a reciprocating magnetic refrigeration prototype, Int J Refrig, 36, 1388, 10.1016/j.ijrefrig.2013.01.008 Aprea, 2014, Initial experimental results from a rotary permanent magnet magnetic refrigerator, Int J Refrig-Rev Int Froid, 43, 111, 10.1016/j.ijrefrig.2014.03.014 Eriksen, 2015, Design and experimental tests of a rotary active magnetic regenerator prototype, Int J Refrig-Rev Int Froid, 58, 14, 10.1016/j.ijrefrig.2015.05.004 Kolano, 2016, Magnetocaloric cooling device with reciprocating motion of the magnetic field source, Acta Phys Pol A, 129, 1205, 10.12693/APhysPolA.129.1205 Lozano, 2016, Development of a novel rotary magnetic refrigerator, Int J Refrig-Rev Int Froid, 68, 187, 10.1016/j.ijrefrig.2016.04.005 Abdelmessih, 2016, Design of a Magnetic Cooling Device Using Gadolinium Alloy and Permanent Magnets Benedict, 2016, Design and performance of a novel magnetocaloric heat pump, Sci Technol Built Environ, 22, 520, 10.1080/23744731.2016.1185889 von Ranke, 2008, The giant anisotropic magnetocaloric effect in DyAl2, J Appl Phys, 104, 093906, 10.1063/1.3009974 Lorusso, 2016, Rotating magnetocaloric effect in an anisotropic molecular dimer, Angew Chem-Int Ed, 55, 3360, 10.1002/anie.201510468 Phan, 2016, Cooling achieved by rotating an anisotropic superconductor in a constant magnetic field: a new perspective, AIP Adv, 6, 125022, 10.1063/1.4972124 Ujihara, 2007, Thermal energy harvesting device using ferromagnetic materials, Appl Phys Lett, 91, 10.1063/1.2775096 Kitanovski, 2010, Innovative ideas for future research on magnetocaloric technologies, Int J Refrig-Rev Int Froid, 33, 449, 10.1016/j.ijrefrig.2009.11.005 Moya, 2014, Caloric materials near ferroic phase transitions, Nat Mater, 13, 439, 10.1038/nmat3951 Gough, 1805, A description of a property of caoutchouc or Indian rubber; with some reflections on the cause of the elasticity of this substance, Mem Lit Phil Soc Manch, 1, 288 Joule, 1859, On some thermo-dynamic properties of solids, Philos Trans R Soc Lond, 149, 91, 10.1098/rstl.1859.0005 Manosa, 2017, Materials with giant mechanocaloric effects: cooling by strength, Adv Mater, 29, 1603607, 10.1002/adma.201603607 Scott, 2011, Electrocaloric materials, Annu Rev Mater Res, 41, 229, 10.1146/annurev-matsci-062910-100341 Kitanovski, 2015, Present and future caloric refrigeration and heat-pump technologies, Int J Refrig, 57, 288, 10.1016/j.ijrefrig.2015.06.008 Bruederlin, 2017, SMA foil-based elastocaloric cooling: from material behavior to device engineering, J Phys D: Appl Phys, 50, 10.1088/1361-6463/aa87a2 de Vries, 2017, Application of Peltier thermal diodes in a magnetocaloric heat pump, Appl Therm Eng, 111, 377, 10.1016/j.applthermaleng.2016.09.103 Cwik, 2009, Magnetic properties and specific heat of Dy1-xLaxNi2 compounds, J Magn Magn Mater, 321, 2821, 10.1016/j.jmmm.2009.04.014 Marcos, 2004, Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2, J Magn Magn Mater, 272, 579, 10.1016/j.jmmm.2003.11.225 de Oliveira, 2008, Magnetocaloric effect in the Laves phase pseudobinaries (Dy1-c R-c)Al-2 (R = Er and Ho), J Magn Magn Mater, 320, 386, 10.1016/j.jmmm.2007.06.014 Troper, 2004, Magnetocaloric effect in the pseudobinary Ho(Co1-cRhc)(2), J Magn Magn Mater, 272, 583, 10.1016/j.jmmm.2003.11.230 Singh, 2005, Anomalous magnetocaloric effect and magnetoresistance in Ho(Ni, Fe)(2) compounds, Phys Rev B, 72, 014452, 10.1103/PhysRevB.72.014452 de Oliveira, 2004, Magnetocaloric effect in rare-earth pseudobinary Er(Co1-cNic)(2), Phys Rev B, 69, 064421, 10.1103/PhysRevB.69.064421 Gomes, 2006, La(Fe1-xCox)(11.44)Al-1.56: a composite system for Ericsson-cycle-based magnetic refrigerators, J Appl Phys, 99, 116107, 10.1063/1.2203389 Balli, 2007, Optimization of La(Fe, Co)(13-x)Si-x based compounds for magnetic refrigeration, J Phys-Condes Matter, 19, 236230, 10.1088/0953-8984/19/23/236230 Shen, 2008, Large magnetic entropy change and low hysteresis loss in the Nd- and Co-doped La(Fe, Si)(13) compounds, J Appl Phys, 103, 07B317, 10.1063/1.2829035 Kumar, 2009, Magnetic and magnetocaloric effect in melt spun La1-xRxFe(13-y)Al(y)C(z) (R = Pr and Nd) compounds, J Phys D-Appl Phys, 42, 205003, 10.1088/0022-3727/42/20/205003 Pathak, 2009, Magnetic, magnetocaloric, and magnetoelastic properties of LaFe11.57Si1.43Bx compounds, J Appl Phys, 106, 063917, 10.1063/1.3225995 Sun, 2009 Balli, 2008, The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature, Appl Phys Lett, 92, 232505, 10.1063/1.2939098 Zeng, 2012, Direct measurements of magneto-caloric effect of Gd5Si2Ge2 alloys in low magnetic field, J Supercond Nov Magn, 25, 487, 10.1007/s10948-011-1307-1 Kumar, 2008, Microstructure and magnetocaloric effect in Gd5Si2(Ge1-xGax)(2) alloys, J Alloys Comp, 461, 14, 10.1016/j.jallcom.2007.07.023 Hou, 2011, The magentocaloric effect of Gd5Si2Ge2-xZnx alloy, 525 Chen, 2011, The studies of phase relation, microstructure, magnetic transition, magnetocaloric effect in (Gd(1-x)Er(x))(5)Si(1.7)Ge(2.3) compounds, J Alloys Comp, 509, 9604, 10.1016/j.jallcom.2011.07.004 Yucel, 2006, Changes in the phase structure and magnetic characteristics of Gd5Si2Ge2 when alloyed with Mn, J Alloys Comp, 420, 182, 10.1016/j.jallcom.2005.10.078 Yuzuak, 2012, Effects of manganese doping on magnetocaloric effect in Ge-rich Gd5Ge2.05Si1.95 alloy, J Rare Earths, 30, 217, 10.1016/S1002-0721(12)60026-X Campoy, 2007, Magnetocaloric effect and transport properties of Gd5Ge2(Si1-xSnx)(2) (x=0.23 and 0.40) compounds, J Magn Magn Mater, 316, 368, 10.1016/j.jmmm.2007.03.023 Misra, 2009, Structural, magnetic, and thermal characteristics of the phase transitions in Gd5GaxGe4-x magnetocaloric materials, J Solid State Chem, 182, 3031, 10.1016/j.jssc.2009.08.016 Ryan, 2003, Field and temperature induced magnetic transition in Gd5Sn4: a giant magnetocaloric material, Phys Rev Lett, 90, 117202, 10.1103/PhysRevLett.90.117202 Campoy, 2004, Experimental study of the magnetocaloric effect in Gd5Sn2Si2 compound, J Magn Magn Mater, 272, 2375, 10.1016/j.jmmm.2003.12.1010 Svitlyk, 2010, Structural, magnetic and magnetocaloric properties of the Gd5Si4-xSbx (x=0.5-3.5) phases, J Magn Magn Mater, 322, 2558, 10.1016/j.jmmm.2010.03.020 Tegus, 2002, Magnetic and magneto-caloric properties of Tb5Ge2Si2, J Appl Phys, 91, 8534, 10.1063/1.1450830 Yao, 2012, Tuning magnetic and structural transitions through valence electron concentration in the giant magnetocaloric Gd5-xEuxGe4 phases, Chem Mater, 24, 552, 10.1021/cm203148e Yuzuak, 2010, Giant magnetocaloric effect in Tb5Ge2-xSi2-xMn2x compounds, Chin Phys B, 19, 057501, 10.1088/1674-1056/19/5/057501 Wada, 2000, Magnetic phase transition and magnetocaloric effect of DyMn2Ge2, J Magn Magn Mater, 218, 203, 10.1016/S0304-8853(00)00410-8 Kumar, 2007, Magnetic and magnetocaloric properties of SmxGd1-xMn2Si2, J Alloys Comp, 427, 42, 10.1016/j.jallcom.2006.03.025 Kumar, 2007, Heat capacity and magnetocaloric effect in polycrystalline Gd1-xSmxMn2Si2, J Magn Magn Mater, 319, 1, 10.1016/j.jmmm.2007.04.029 Kumar, 2007, Effect of Ge substitution for Si on the anomalous magnetocaloric and magnetoresistance properties of GdMn2Si2 compounds, J Appl Phys, 101, 013908, 10.1063/1.2402975 Kumar, 2007, Multiple magnetic transitions and the magnetocaloric effect in Gd1-xSmxMn2Ge2 compounds, J Phys-Condes Matter, 19, 386210, 10.1088/0953-8984/19/38/386210 Samanta, 2009, Contribution of energy-gap in the ferromagnetic spin-wave spectrum on magnetocaloric parameters of CeRu2Ge2, J Phys-Condes Matter, 21, 026010, 10.1088/0953-8984/21/2/026010 Wang, 2009, Re-entrant ferromagnet PrMn2Ge0.8Si1.2: magnetocaloric effect, J Appl Phys, 105, 07A909, 10.1063/1.3059610 Dincer, 2010, Magnetoresistance and magnetocaloric properties of the Pr0.1Gd0.9Mn2Ge2 compound, Phys Scr, 81, 025703, 10.1088/0031-8949/81/02/025703 Li, 2011, Effect of Fe substitution on magnetic and magnetocaloric effect in Gd(Co(1-x)Fe(x))(2)B(2) compounds, J Appl Phys, 110, 083915, 10.1063/1.3654013 Li, 2012, Giant reversible magnetocaloric effect in ErMn2Si2 compound with a second order magnetic phase transition, Appl Phys Lett, 100, 152403, 10.1063/1.4704155 Li, 2012, Effect of Fe substitution on magnetocaloric effect in borocarbide superconductor Dy(Ni1-xFex)(2)B2C, 44 Li, 2012, Study of the magnetic properties and magnetocaloric effect in RCo2B2 (R = Tb, Dy and Ho) compounds, Intermetallics, 23, 101, 10.1016/j.intermet.2011.12.002 Yusuf, 2012, Magnetic properties and magnetocaloric effect in intermetallic compounds NdMn2-xCoxSi2, J Appl Phys, 111, 093914, 10.1063/1.4709761 Peña, 2008, Structural, magnetic and magnetotransport properties of La0.7Pb0.3(Mn1–xNix)O3 (0.1 ≤x ≤ 0.3) CMR manganites, Eur J Inorg Chem, 2008, 2569, 10.1002/ejic.200701173 Li, 2008, Large magnetocaloric effect in La2/3Ca1/3Mn1-xSixO3 (x=0.05-0.20) manganites, J Phys D-Appl Phys, 41, 175002, 10.1088/0022-3727/41/17/175002 Dhahri, 2008, Effect of Sn-doping on the structural, magnetic and magnetocaloric properties of La0.67Ba0.33Mn1-xSnxO3 compounds, J Magn Magn Mater, 320, 2613, 10.1016/j.jmmm.2008.05.030 Kolat, 2007, Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds, Mater Sci Eng B-Solid State Mater Adv Technol, 140, 212, 10.1016/j.mseb.2007.05.002 Cabeza, 1999, Magnetization and resistivity in chromium doped manganites, J Phys: Condens Matter, 11, 2569 Cao, 2001, Local distortions in La0.7Ca0.3Mn1-bAbO3 (A=Ti and Ga) colossal magnetoresistance samples: Correlations with magnetization and evidence for cluster formation, Phys Rev B, 64, 184409, 10.1103/PhysRevB.64.184409 Liu, 2000, Effect of Ti dopant on the carrier density collapse in colossal magnetoresistance material La0.7Ca0.3Mn1-yTiyO3, Phys Rev B, 62, 15112, 10.1103/PhysRevB.62.15112 Rivadulla, 2000, Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compound La2/3Ca1/3Mn1-xAxO3 (A=Co, Cr; x<0.1), Phys Rev B, 62, 5678, 10.1103/PhysRevB.62.5678 Sun, 2000, Effects of Cr doping in La0.67Ca0.33MnO3: magnetization, resistivity, and thermopower, Phys Rev B, 63, 054404, 10.1103/PhysRevB.63.054404 Turilli, 1996, Relationship between spin order and transport and magnetotransport properties in La0.67Ca0.33Mn1-xAlxOy compounds, Phys Rev B., 54, 13052, 10.1103/PhysRevB.54.13052 Zhao, 2008, Magnetic, transport and microstructural properties of polycrystalline samples with nominal composition of La0.7Ca0.3Mn1−xVxO3 (0<x<0.2), J Magn Magn Mater, 320, 924, 10.1016/j.jmmm.2007.09.016 Zhou, 2005, Relationship between the magnetocaloric effect and sequential magnetic phase transitions in Ni-Mn-Ga alloys, J Appl Phys, 97, 10M515, 10.1063/1.1853891 Albertini, 2004, Composition dependence of magnetic and magnetothermal properties of Ni-Mn-Ga shape memory alloys, J Magn Magn Mater, 272, 2111, 10.1016/j.jmmm.2003.12.883 Albertini, 2006, Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys, J Appl Phys, 100, 023908, 10.1063/1.2218470 Khan, 2006, The overlap of first- and second-order phase transitions and related magnetic entropy changes in Ni2+xMn1-xGa Heusler alloys, IEEE Trans Magn, 42, 3108, 10.1109/TMAG.2006.879632 Babita, 2007, Phase transformation and magnetic properties in Ni-Mn-Ga Heusler alloys, J Alloys Comp, 432, 23, 10.1016/j.jallcom.2006.06.003 Muthu, 2010, Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50-xMn37+xSn13 Heusler alloys, J Phys D-Appl Phys, 43, 425002, 10.1088/0022-3727/43/42/425002 Phan, 2012, Magnetocaloric effect in Ni0.5Mn0.5-xSnx alloys, IEEE Trans Magn, 48, 1381, 10.1109/TMAG.2011.2171478 Ma, 2010, Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni-Mn-Co-Sn alloy, Appl Phys Lett, 97, 052506, 10.1063/1.3476351 Podgornykh, 2011, Heat capacity of the Ni50Mn37(In0.2Sn0.8)(13) alloy, 012004 Pathak, 2007, Large magnetic entropy change in Ni50Mn50-xInx Heusler alloys, Appl Phys Lett, 90, 262504, 10.1063/1.2752720 Gao, 2009, Tuning the magnetic entropy change of Ni50-xMn35+xIn15 alloys by varying the Mn content, J Appl Phys, 105, 083902, 10.1063/1.3098229 Rao, 2010, Large low-field inverse magnetocaloric effect near room temperature in Ni50-x Mn37+x In-13 Heusler alloys, Appl Phys A-Mater Sci Process, 99, 265, 10.1007/s00339-009-5517-3 Xuan, 2011, Martensitic transformation and magnetic properties in high-Mn content Mn50Ni50-xInx ferromagnetic shape memory alloys, J Alloys Comp, 509, 5761, 10.1016/j.jallcom.2011.01.073 Liu, 2012, Magnetocaloric effect in high Ni content Ni(52)Mn(48-x)In(x) alloys under low field change, J Magn Magn Mater, 324, 514, 10.1016/j.jmmm.2011.08.031 Pathak, 2010, Magnetism and magnetocaloric effects in Ni50Mn35-xCoxIn15 Heusler alloys, J Appl Phys, 107, 09A907, 10.1063/1.3335893 Pathak, 2008, The effect of partial substitution of In by Si on the phase transitions and respective magnetic entropy changes of Ni50Mn35In15 Heusler alloy, J Phys D-Appl Phys, 41, 202004, 10.1088/0022-3727/41/20/202004 Takeuchi, 2012, Enhancement of magnetocaloric properties near room temperature in Ga-doped Ni50Mn34.5In15.5 Heusler-type alloy, J Appl Phys, 111, 103902, 10.1063/1.4716033 Dubenko, 2009, Magnetocaloric effects in Ni-Mn-X based Heusler alloys with X = Ga, Sb, In, J Magn Magn Mater, 321, 754, 10.1016/j.jmmm.2008.11.043 Nayak, 2010, Magneto-thermal and magneto-transport behavior around the martensitic transition in Ni50-xCoxMn40Sb10 (x=9, 9.5) Heusler alloys, J Alloys Comp, 499, 140, 10.1016/j.jallcom.2010.03.190 Pathak, 2011, Effect of partial substitution of Ni by Co on the magnetic and magnetocaloric properties of Ni50Mn35In15 Heusler alloy, J Appl Phys, 109, 07A916, 10.1063/1.3540696 Pathak, 2010, Magnetoresistance and magnetocaloric effect at a structural phase transition from a paramagnetic martensitic state to a paramagnetic austenitic state in Ni50Mn36.5In13.5 Heusler alloys, Appl Phys Lett, 96, 172503, 10.1063/1.3422483 Ma, 2011, Magnetic and magnetocaloric properties in melt-spun and annealed Ni42 7Mn40 8Co5 2Sn113 ribbons, J Alloys Comp, 509, 1111, 10.1016/j.jallcom.2010.09.205 Bruck, 2003, Magnetic refrigeration towards room-temperature applications, Physica B, 327, 431, 10.1016/S0921-4526(02)01769-6