A-site Na-doping to enhance room-temperature TCR of La1-Na MnO3 polycrystalline ceramics
Tài liệu tham khảo
Nasri, 2013, Critical behavior in Sr-doped manganites La0.6Ca0.4−xSrxMnO3, J. Alloys. Compd., 546, 84, 10.1016/j.jallcom.2012.08.018
Smari, 2016, Correlation between magnetic and electric properties of La0.5Ca0.3Ag0.2MnO3 based on critical behavior of resistivity, Ceram. Int., 42, 10405, 10.1016/j.ceramint.2016.03.182
Smari, 2015, Magnetic and magnetoresistance in half-doped manganite La0.5Ca0.5MnO3 and La0.5Ca0.4Ag0.1MnO3, J. Alloys. Compd., 644, 632, 10.1016/j.jallcom.2015.05.026
Dubroka, 2006, Raman and infrared studies ofLa1−ySryMn1−xMxO3(M=Cr, Co, Cu, Zn, Sc or Ga): oxygen disorder and local vibrational modes, Phys. Rev. B, 73, 224401, 10.1103/PhysRevB.73.224401
Hwang, 2017, A strategy to design high-density nanoscale devices utilizing vapor deposition of metal halide perovskite materials, Adv. Mater., 29, 1701048, 10.1002/adma.201701048
Smari, 2020, Enhancement of the Magnetotransport Behavior in a Phase-Separated LaAgCaMnO3 Polycrystalline: Unraveling the Role of a Multi-Double-Exchange Mechanism, J. Phys. Chem. C, 124, 23324, 10.1021/acs.jpcc.0c06661
Zhang, 2015, Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films, Appl. Surf. Sci., 351, 693, 10.1016/j.apsusc.2015.04.095
Xiong, 2018, Enhanced bidimensionality‐driven ultrahigh laser‐induced voltages in High‐Tc superconducting epitaxial films, Adv. Electron. Mater., 4, 1800116, 10.1002/aelm.201800116
Li, 2000, Laser-induced off-diagonal thermoelectric voltage in La1−xCaxMnO3 thin films, J. Magn. Magn. Mater., 211, 232, 10.1016/S0304-8853(99)00739-8
Chen, 2016, Evolution of the intrinsic electronic phase separation in La0.6Er0.1Sr0.3MnO3 perovskite, Sci. Rep., 6, 6
Fan, 2019, Robust electronic phase separation on nanoscale of perovskite manganite La0.825Sr0.175MnO3, Ceram. Int., 45, 9179, 10.1016/j.ceramint.2019.01.259
Nasri, 2013, Electrical transport and magnetoresistance properties of (1−x)La0.6Sr0.4MnO3/x(Sb2O3) composites, J. Alloys. Compd., 576, 404, 10.1016/j.jallcom.2013.06.005
Khelifi, 2014, The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1−xNdx)2/3(Ca1−ySry)1/3MnO3 oxides, Ceram. Int., 40, 1641, 10.1016/j.ceramint.2013.07.055
Zhang, 2019, Electrical and magnetic properties of La1-xAgxMnO3 (0 ≤ x ≤ 0.5) polycrystalline ceramics by combination of first principles calculations and experimental methods, J. Alloys. Compd., 808, 151709, 10.1016/j.jallcom.2019.151709
Bhatt, 2013, Observance of improved magneto-resistance and magnetic entropy change in La0.7(Ca0.2Sr0.1)MnO3:Pd composite, J. Supercond. Nov. Magn., 27, 1491, 10.1007/s10948-013-2462-3
Chu, 2019, Enhanced room temperature coefficient of resistivity (RT-TCR) and broad metal-insulator transition temperature (TMI) of La0.67Ca0.33-xAgxMnO3 polycrystalline ceramics, Ceram. Int., 45, 17073, 10.1016/j.ceramint.2019.05.259
Liu, 2019, Influence of Ag doping on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics, Ceram. Int., 45, 11006, 10.1016/j.ceramint.2019.02.184
Barison, 2008, High conductivity and chemical stability of BaCe1−x−yZrxYyO3−δ proton conductors prepared by a sol–gel method, J. Mater. Chem., 18, 5120, 10.1039/b808344d
Fabbris, 2018, Emergentc-axis magnetic helix in manganite-nickelate superlattices, Phys. Rev. B, 98, 180401, 10.1103/PhysRevB.98.180401
Rościszewski, 2019, Spin-orbital order in LaMnO3: d−p model study, Phys. Rev. B, 99, 155108, 10.1103/PhysRevB.99.155108
Salamon, 2001, The physics of manganites: structure and transport, Rev. Mod. Phys., 73, 583, 10.1103/RevModPhys.73.583
Pu, 2019, Structural, electrical and magnetic properties of La0.625Ca0.285Sr0.09MnO3 polycrystalline ceramics doped with Ag2O, J. Mater. Sci. Mater. El, 30, 19862, 10.1007/s10854-019-02353-2
Yang, 2019, La0.7Ca0.3-xSrxMnO3:Ag0.2 (0.0165 ≤ x ≤ 0.1) ceramics with large and stable TCR in different magnetic field environments, Ceram. Int., 45, 24742, 10.1016/j.ceramint.2019.08.214
Li, 2019, Electrical and magnetic properties of La1-xSrxMnO3 (0.1 ≤ x ≤ 0.25) ceramics prepared by sol-gel technique, Ceram. Int., 45, 16323, 10.1016/j.ceramint.2019.05.159
Li, 2020, A-site K-doping to enhance room-temperature TCR of polycrystalline La0.8Sr0.2-xKxMnO3 ceramics, J. Alloys. Compd., 847, 156417, 10.1016/j.jallcom.2020.156417
Pal, 2020, Enhancement of temperature coefficient of resistance (TCR) and magnetoresistance (MR) of La0.67-xRExCa0.33MnO3 (x = 0, 0.1; RE = Gd, Nd, Sm) system via rare-earth substitution, Mater. Res. Express, 7, 120421, 10.1088/2053-1591/ab7c20
Ning, 2008, Magneto-electric properties of LaMnO3 with monovalent Na element doping at a site, Rare Met. Mater. Eng., 37, 1887, 10.1016/S1875-5372(10)60002-1
Das, 2019, Influence of magnetic field on electrical and thermal transport in the hole doped ferromagnetic manganite: La0.9Na0.1MnO3, RSC Adv., 9, 1726, 10.1039/C8RA08694J
Wali, 2016, Double metal–insulator transitions and magnetoresistance properties in La0.8Na0.2−x□xMnO3 oxides, Ceram. Int., 42, 5699, 10.1016/j.ceramint.2015.12.100
Zhang, 2020, Effect of Na-doping on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3-xNax)0.3MnO3 polycrystalline ceramics, Ceram. Int., 46, 584, 10.1016/j.ceramint.2019.09.006
Sun, 2019, La1-xSrxMnO3:Ag0.2 (0.1 ≤ x≤ 0.2) ceramics with large room-temperature TCR for uncooled infrared bolometers, J. Eur. Ceram. Soc., 39, 352, 10.1016/j.jeurceramsoc.2018.10.004
Liou, 2008, Synthesis and microstructure of (LaSr)MnO3 and (LaSr)FeO3 ceramics by a reaction-sintering process, Ceram. Int., 34, 273, 10.1016/j.ceramint.2006.09.015
Liou, 2004, Microstructure development in (LaxSr1−x)MnO3 ceramics, Mater. Sci. Eng. B, 108, 278, 10.1016/j.mseb.2003.09.007
Li, 2021, Optimization of room-temperature TCR of polycrystalline La0.9-xSrxK0.1MnO3 ceramics by Sr adjustment, Ceram. Int., 47, 94, 10.1016/j.ceramint.2020.08.111
Liu, 2019, Dependence on sintering temperature of structure, optical and magnetic properties of La0.625Ca0.315Sr0.06MnO3 perovskite nanoparticles, Ceram. Int., 45, 17467, 10.1016/j.ceramint.2019.05.308
Sankar, 2005, Magnetic properties of the self-doped lanthanum manganites La1−xMnO3, Phys. Rev. B, 72, 24405, 10.1103/PhysRevB.72.024405
Goyal, 1997, Material characteristics of perovskite manganese oxide thin films for bolometric applications, Appl. Phys. Lett., 71, 2535, 10.1063/1.120427
Phong, 2013, Electrical transport and temperature coefficient of resistance in polycrystalline La0.7−xAgxCa0.3MnO3 pellets: analysis in terms of a phase coexistence transport model and phase separation model, Physica B, 425, 6, 10.1016/j.physb.2013.05.027
Siwach, 2007, Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3−xAgxMnO3 thin films, J. Appl. Phys., 101, 10.1063/1.2715749
Lisauskas, 2000, Tailoring the colossal magnetoresistivity: La0.7(Pb0.63Sr0.37)0.3MnO3 thin-film uncooled bolometer, Appl. Phys. Lett., 77, 756, 10.1063/1.127109
Li, 2018, Effects of silver doping on structure and electrical properties of La0.67Ca0.23K0.1MnO3 polycrystalline ceramic, Ceram. Int., 44, 3448, 10.1016/j.ceramint.2017.11.147
Altintas, 2011, Effect of Eu doping on structural and magneto-electrical properties of La0.7Ca0.3MnO3 manganites, J. Alloys. Compd., 509, 4510, 10.1016/j.jallcom.2011.01.008
Fontcuberta, 1996, Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms, Phys. Rev. Lett., 76, 1122, 10.1103/PhysRevLett.76.1122
Venkataiah, 2007, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites, J. Alloys. Compd., 429, 1, 10.1016/j.jallcom.2006.03.081
Kurniawan, 2018, Correlation between microstructure and electrical transport properties of La0.7(Ba1-xCax)0.3MnO3 (x = 0 and 0.03) synthesized by sol-gel, Physica B, 532, 161, 10.1016/j.physb.2017.08.038
Dhahri, 2015, Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1-xCrxO3 (0.15, 0.20 and 0.25) manganite oxide, Dalton Trans., 44, 5620, 10.1039/C4DT03662J