Critical phenomena of magnetization, magnetocaloric effect, and superparamagnetism in nanoparticles of non-stoichiometric manganite
Tài liệu tham khảo
Prasad, 2008, TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia, J. Biomed. Mater. Res. B Appl. Biomater., 85, 409, 10.1002/jbm.b.30959
Pollert, 2010, Core-shell La1xSrxMnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia, Philos. Trans. A. Math. Phys. Eng. Sci., 368, 4389, 10.1098/rsta.2010.0123
Belous, 2014, Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine, AIP Conference Proceedings, 1627, 13, 10.1063/1.4901650
Shlapa, 2016, Iron-doped (La,Sr)MnO3 manganites as promising mediators of self-controlled magnetic nanohyperthermia, Nanoscale Res. Lett., 11, 24, 10.1186/s11671-015-1223-6
Shlapa, 2017, Lanthanum-strontium manganites for magnetic nanohyperthermia: fine tuning of parameters by substitutions in lanthanum sublattice, J. Alloys Compd., 702, 31, 10.1016/j.jallcom.2017.01.222
Meenach, 2012, Controlled synergistic delivery of paclitaxel and heat from poly (β-amino ester)/iron oxide-based hydrogel nanocomposites, Int. J. Pharm., 427, 177, 10.1016/j.ijpharm.2012.01.052
Oliveira, 2013, Magnetic field triggered drug release from polymersomes for cancer therapeutics, J. Contr. Release, 169, 165, 10.1016/j.jconrel.2013.01.013
Ulbrich, 2016, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies, Chem. Rev., 116, 5338, 10.1021/acs.chemrev.5b00589
Hervault, 2016, Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications, Nanoscale, 8, 12152, 10.1039/C5NR07773G
Moise, 2018, The potential of magnetic hyperthermia for triggering the differentiation of cancer cells, Nanoscale, 10, 20519, 10.1039/C8NR05946B
Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04
Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356
Prabhakaran, 2017, The structural, magnetic and magnetic entropy changes on CoFe2O4/CoFe2 composites for magnetic refrigeration application, J. Magn. Magn Mater., 444, 297, 10.1016/j.jmmm.2017.08.008
Franco, 2018, A. Conde Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005
Pecharsky, 2001, Thermodynamics of the magnetocaloric effect, Phys. Rev. B, 64, 144406, 10.1103/PhysRevB.64.144406
Oliveira, 2010, Theoretical aspects of the magnetocaloric effect, Phys. Rep., 489, 89, 10.1016/j.physrep.2009.12.006
Carrey, 2011, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization, J. Appl. Phys., 109, 10.1063/1.3551582
Kalita, 2015, Mechanisms of AC losses in magnetic fluids based on substituted manganites, Phys. Chem. Chem. Phys., 17, 18087, 10.1039/C5CP02822A
Tovstolytkin, 2020, Unusual magnetic and calorimetric properties of lanthanum-strontium manganite nanoparticles, J. Magn. Magn Mater., 498, 166088, 10.1016/j.jmmm.2019.166088
Bean, 1959, Superparamagnetism, J. Appl. Phys., 30, S120, 10.1063/1.2185850
Brown, 1963, Thermal fluctuations of a single-domain particles, Phys. Rev., 130, 1677, 10.1103/PhysRev.130.1677
Timopheev, 2008, Simulation of the magnetization reversal of an ensemble of single-domain particles in measurements with a continuous sweep of the magnetic field or temperature, Low Temp. Phys., 34, 446, 10.1063/1.2920171
Yamamoto, 2002, Dependence of the magnetocaloric effect in superparamagnetic nanocomposites on the distribution of magnetic moment size, Scripta Mater., 46, 89, 10.1016/S1359-6462(01)01203-9
Kinoshita, 2004, Influence of size distribution on the magnetocaloric effect of superparamagnetic gold–magnetite nanocomposite, J. Alloys Compd., 365, 281, 10.1016/S0925-8388(03)00663-7
Franco, 2010, Field dependence of the magnetocaloric effect in core-shell nanoparticles, J. Appl. Phys., 107, 10.1063/1.3335514
Bedanta, 2009, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/1/013001
Bodnaruk, 2019, Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters, J. Phys. Condens. Matter, 31, 375801, 10.1088/1361-648X/ab26fa
Rong, 2006, Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles, Adv. Mater., 18, 2984, 10.1002/adma.200601904
Wang, 2011, Finite-size scaling behavior and intrinsic critical exponents of nickel: comparison with the three-dimensional Heisenberg model, Phys. Rev. B, 84, 174440, 10.1103/PhysRevB.84.174440
Waters, 2017, Identification of Curie temperature distributions in magnetic particulate systems, J. Phys. D Appl. Phys., 50, 35LT01, 10.1088/1361-6463/aa7e38
Pisana, 2014, Measurement of the Curie temperature distribution in FePt granular magnetic media, Appl. Phys. Lett., 104, 162407, 10.1063/1.4873543
Coey, 1999, Mixed-valence manganites, Adv. Phys., 48, 167, 10.1080/000187399243455
Souza, 2019, Size control on the magnetism of La0.7Sr0.3MnO3, J. Alloys Compd., 797, 874, 10.1016/j.jallcom.2019.05.004
Markovich, 2014, Chapter one magnetic properties of perovskite manganites and their modifications, vol. 22
Phan, 2007, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn Mater., 308, 325, 10.1016/j.jmmm.2006.07.025
Dagotto, 2001, Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep., 344, 1, 10.1016/S0370-1573(00)00121-6
Han, 2017, The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3, J. Magn. Magn Mater., 423, 171, 10.1016/j.jmmm.2016.09.083
Malavasi, 2008, Role of defect chemistry in the properties of perovskite manganites, J. Mater. Chem., 18, 3295, 10.1039/b800099a
Pashchenko, 2014, Influence of structure defects on functional properties of magnetoresistance (Nd0.7Sr0.3)1−xMn1+xO3 ceramics, Acta Mater., 70, 218, 10.1016/j.actamat.2014.02.014
Pashchenko, 2016, The role of structural and magnetic inhomogeneities in the formation of magneto-transport properties of the functional magnetoresistance La0.6-xSmxSr0.3Mn1.1O3-d ceramics, J. Magn. Magn Mater., 416, 457, 10.1016/j.jmmm.2016.05.010
Pashchenko, 2010, Impact of superstoichiometric manganese and sintering temperature on defectiveness of structure and magne-toresistive properties of La1-xMn1-xO3±δ ceramics, Metallofiz. Noveishie Tekhnol., 32, 487
Pashchenko, 2012, Effect of hyperstoichiometric manganese on the structure and transport, magnetic, and magnetoresistance properties of manganite-lanthanum (La0.7Ca0.3)1-xMn1+xO3 perovskites, Tech. Phys., 57, 1508, 10.1134/S1063784212110217
Sazanovich, 2012, Influence of nonstoichiometry on magnetocaloric effect in (La0.7Ca0.3)1-xMn1+xO3, Acta Phys. Pol., A, 122, 162, 10.12693/APhysPolA.122.162
Pashchenko, 2014, Structure, phase transitions, 55Mn NMR, 57Fe Mossbauer studies and magnetoresistive properties of La0.6Sr0.3Mn1.1−xFexO3, J. Magn. Magn Mater., 369, 122, 10.1016/j.jmmm.2014.06.009
Zubov, 2017, Magnetic and magnetocaloric properties of the La0.9-xAgxMn1.1O3 compounds, Low Temp. Phys., 43, 1190, 10.1063/1.5008411
Pashchenko, 2013, Structural and magnetic heterogeneities, phase transitions, 55Mn NMR, and magnetoresistive properties of La0.6Sr0.3−xBixMn1.1O3, Phys. Solid State, 55, 321, 10.1134/S1063783413020236
Pashchenko, 2017, Structure, phase transitions, 55Mn NMR, magnetic and magnetotransport properties of the magnetoresistance La0.9-xAgxMn1.1O3-d ceramics, J. Alloys Compd., 709, 779, 10.1016/j.jallcom.2017.03.093
Boucher, 1971, Magnetic structure of Mn3O4 by neutron diffraction, J. Appl. Phys., 42, 1615, 10.1063/1.1660364
Patterson, 1939, The scherrer formula for X-ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978
Warren, 1941, X-Ray diffraction methods, J. Appl. Phys., 12, 375, 10.1063/1.1712915
Moradi, 2014, Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method, J. Solid State Chem., 215, 1, 10.1016/j.jssc.2014.03.011
Andrade, 2014, Magnetic and structural investigations on La0.6Sr0.4MnO3 nanostructured manganite: evidence of a ferrimagnetic shell, J. Solid State Chem., 219, 87, 10.1016/j.jssc.2014.07.013
Ho, 1993, Measurement of effective magnetic anisotropy of nanocrystalline Fe-Cu-Nb-Si-B soft magnetic alloys, J. Appl. Phys., 74, 6788, 10.1063/1.355078
Manh, 2014, Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications, Phys. Biol., 444, 94, 10.1016/j.physb.2014.03.025
Stoner, 1991, A mechanism of magnetic hysteresis in heterogeneous alloys, IEEE Trans. Magn., 27, 3475, 10.1109/TMAG.1991.1183750
Knobel, 2008, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems, J. Nanosci. Nanotechnol., 8, 2836, 10.1166/jnn.2008.15348
Guimaraes, 2017, 330
Andersson, 1997, Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system, Phys. Rev. B, 56, 13983, 10.1103/PhysRevB.56.13983
Kalita, 2017, Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum–strontium manganite nanoparticles, Phys. Chem. Chem. Phys., 19, 27015, 10.1039/C7CP05547A
Worm, 1998, On the superparamagnetic—stable single domain transition for magnetite, and frequency dependence of susceptibility, Geophys. J. Int., 133, 201, 10.1046/j.1365-246X.1998.1331468.x
Landau, 1937, On the theory of phase transitions, Zh. Eks. Teor. Fiz., 7, 19
Arrott, 1967, Approximate equation of state for nickel near its critical temperature, Phys. Rev. Lett., 19, 786, 10.1103/PhysRevLett.19.786
Snarskii, 2016
Pecharsky, 1999, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn Mater., 200, 44, 10.1016/S0304-8853(99)00397-2
Zhao, 2011, Synthesis and magnetocaloric properties of La0.85K0.15MnO3 nanoparticles, Adv. Powder Technol., 22, 68, 10.1016/j.apt.2010.03.012
Zhong, 1999, Structure and magnetic entropy change of polycrystalline La1−xKxMnO3+δ, J. Magn. Magn Mater., 195, 112, 10.1016/S0304-8853(98)01080-4
Zhao, 2015, Tuning of Curie temperature and magnetocaloric effect via annealing condition change in La0.8K0.2MnO3 manganites, J. Supercond. Nov. Magnetism, 28, 3693, 10.1007/s10948-015-3210-7
McMichael, 1992, Magnetocaloric effect in superparamagnets, J. Magn. Magn Mater., 111, 29, 10.1016/0304-8853(92)91049-Y
Nisha, 2012, Critical behaviour and magnetocaloric effect of nano crystalline La0.67Ca0.33Mn1-xFexO3 (x = 0.05, 0.2) synthesized by nebulized spray pyrolysis, Mater. Chem. Phys., 136, 66, 10.1016/j.matchemphys.2012.06.029
Baaziz, 2015, Size reduction effect on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.9Sr0.1MnO3 nanoparticles, Solid State Commun., 208, 45, 10.1016/j.ssc.2015.02.015
Thanh, 2015, Critical behavior in double-exchange ferromagnets of Pr0.6Sr0.4MnO3 nanoparticles, IEEE Trans. Magn., 51, 1
De Oliveira, 2010, Theoretical aspects of the magnetocaloric effect, Phys. Rep., 489, 89, 10.1016/j.physrep.2009.12.006
Lavanov, 2018, Change in the entropy during a first-order phase transition induced by a magnetic field in an isotropic non-Heisenberg ferromagnet, Low Temp. Phys., 44, 322, 10.1063/1.5030455
Pashchenko, 2017, Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure, J. Exp. Theor. Phys., 124, 100, 10.1134/S1063776116150127