Critical phenomena of magnetization, magnetocaloric effect, and superparamagnetism in nanoparticles of non-stoichiometric manganite

Journal of Alloys and Compounds - Tập 836 - Trang 155440 - 2020
N.A. Liedienov1,2, V.M. Kalita3,4,5, A.V. Pashchenko1,2,4, Yu.I. Dzhezherya3,4, I.V. Fesych6, Quanjun Li1, G.G. Levchenko1,2
1State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University, 130012, Changchun, China
2Donetsk Institute for Physics and Engineering named after O.O. Galkin NAS of Ukraine, 03028, Kyiv, Ukraine
3National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
4Institute of Magnetism NAS of Ukraine and MES of Ukraine, Kyiv 03142, Ukraine
5Institute of Physics, NAS of Ukraine, Kyiv, 03028, Ukraine
6Taras Shevchenko National University of Kyiv, 01030 Kyiv, Ukraine

Tài liệu tham khảo

Prasad, 2008, TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia, J. Biomed. Mater. Res. B Appl. Biomater., 85, 409, 10.1002/jbm.b.30959 Pollert, 2010, Core-shell La1xSrxMnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia, Philos. Trans. A. Math. Phys. Eng. Sci., 368, 4389, 10.1098/rsta.2010.0123 Belous, 2014, Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine, AIP Conference Proceedings, 1627, 13, 10.1063/1.4901650 Shlapa, 2016, Iron-doped (La,Sr)MnO3 manganites as promising mediators of self-controlled magnetic nanohyperthermia, Nanoscale Res. Lett., 11, 24, 10.1186/s11671-015-1223-6 Shlapa, 2017, Lanthanum-strontium manganites for magnetic nanohyperthermia: fine tuning of parameters by substitutions in lanthanum sublattice, J. Alloys Compd., 702, 31, 10.1016/j.jallcom.2017.01.222 Meenach, 2012, Controlled synergistic delivery of paclitaxel and heat from poly (β-amino ester)/iron oxide-based hydrogel nanocomposites, Int. J. Pharm., 427, 177, 10.1016/j.ijpharm.2012.01.052 Oliveira, 2013, Magnetic field triggered drug release from polymersomes for cancer therapeutics, J. Contr. Release, 169, 165, 10.1016/j.jconrel.2013.01.013 Ulbrich, 2016, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies, Chem. Rev., 116, 5338, 10.1021/acs.chemrev.5b00589 Hervault, 2016, Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications, Nanoscale, 8, 12152, 10.1039/C5NR07773G Moise, 2018, The potential of magnetic hyperthermia for triggering the differentiation of cancer cells, Nanoscale, 10, 20519, 10.1039/C8NR05946B Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04 Franco, 2012, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models, Annu. Rev. Mater. Res., 42, 305, 10.1146/annurev-matsci-062910-100356 Prabhakaran, 2017, The structural, magnetic and magnetic entropy changes on CoFe2O4/CoFe2 composites for magnetic refrigeration application, J. Magn. Magn Mater., 444, 297, 10.1016/j.jmmm.2017.08.008 Franco, 2018, A. Conde Magnetocaloric effect: from materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005 Pecharsky, 2001, Thermodynamics of the magnetocaloric effect, Phys. Rev. B, 64, 144406, 10.1103/PhysRevB.64.144406 Oliveira, 2010, Theoretical aspects of the magnetocaloric effect, Phys. Rep., 489, 89, 10.1016/j.physrep.2009.12.006 Carrey, 2011, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization, J. Appl. Phys., 109, 10.1063/1.3551582 Kalita, 2015, Mechanisms of AC losses in magnetic fluids based on substituted manganites, Phys. Chem. Chem. Phys., 17, 18087, 10.1039/C5CP02822A Tovstolytkin, 2020, Unusual magnetic and calorimetric properties of lanthanum-strontium manganite nanoparticles, J. Magn. Magn Mater., 498, 166088, 10.1016/j.jmmm.2019.166088 Bean, 1959, Superparamagnetism, J. Appl. Phys., 30, S120, 10.1063/1.2185850 Brown, 1963, Thermal fluctuations of a single-domain particles, Phys. Rev., 130, 1677, 10.1103/PhysRev.130.1677 Timopheev, 2008, Simulation of the magnetization reversal of an ensemble of single-domain particles in measurements with a continuous sweep of the magnetic field or temperature, Low Temp. Phys., 34, 446, 10.1063/1.2920171 Yamamoto, 2002, Dependence of the magnetocaloric effect in superparamagnetic nanocomposites on the distribution of magnetic moment size, Scripta Mater., 46, 89, 10.1016/S1359-6462(01)01203-9 Kinoshita, 2004, Influence of size distribution on the magnetocaloric effect of superparamagnetic gold–magnetite nanocomposite, J. Alloys Compd., 365, 281, 10.1016/S0925-8388(03)00663-7 Franco, 2010, Field dependence of the magnetocaloric effect in core-shell nanoparticles, J. Appl. Phys., 107, 10.1063/1.3335514 Bedanta, 2009, J. Phys. D Appl. Phys., 42, 10.1088/0022-3727/42/1/013001 Bodnaruk, 2019, Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters, J. Phys. Condens. Matter, 31, 375801, 10.1088/1361-648X/ab26fa Rong, 2006, Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles, Adv. Mater., 18, 2984, 10.1002/adma.200601904 Wang, 2011, Finite-size scaling behavior and intrinsic critical exponents of nickel: comparison with the three-dimensional Heisenberg model, Phys. Rev. B, 84, 174440, 10.1103/PhysRevB.84.174440 Waters, 2017, Identification of Curie temperature distributions in magnetic particulate systems, J. Phys. D Appl. Phys., 50, 35LT01, 10.1088/1361-6463/aa7e38 Pisana, 2014, Measurement of the Curie temperature distribution in FePt granular magnetic media, Appl. Phys. Lett., 104, 162407, 10.1063/1.4873543 Coey, 1999, Mixed-valence manganites, Adv. Phys., 48, 167, 10.1080/000187399243455 Souza, 2019, Size control on the magnetism of La0.7Sr0.3MnO3, J. Alloys Compd., 797, 874, 10.1016/j.jallcom.2019.05.004 Markovich, 2014, Chapter one magnetic properties of perovskite manganites and their modifications, vol. 22 Phan, 2007, Review of the magnetocaloric effect in manganite materials, J. Magn. Magn Mater., 308, 325, 10.1016/j.jmmm.2006.07.025 Dagotto, 2001, Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep., 344, 1, 10.1016/S0370-1573(00)00121-6 Han, 2017, The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3, J. Magn. Magn Mater., 423, 171, 10.1016/j.jmmm.2016.09.083 Malavasi, 2008, Role of defect chemistry in the properties of perovskite manganites, J. Mater. Chem., 18, 3295, 10.1039/b800099a Pashchenko, 2014, Influence of structure defects on functional properties of magnetoresistance (Nd0.7Sr0.3)1−xMn1+xO3 ceramics, Acta Mater., 70, 218, 10.1016/j.actamat.2014.02.014 Pashchenko, 2016, The role of structural and magnetic inhomogeneities in the formation of magneto-transport properties of the functional magnetoresistance La0.6-xSmxSr0.3Mn1.1O3-d ceramics, J. Magn. Magn Mater., 416, 457, 10.1016/j.jmmm.2016.05.010 Pashchenko, 2010, Impact of superstoichiometric manganese and sintering temperature on defectiveness of structure and magne-toresistive properties of La1-xMn1-xO3±δ ceramics, Metallofiz. Noveishie Tekhnol., 32, 487 Pashchenko, 2012, Effect of hyperstoichiometric manganese on the structure and transport, magnetic, and magnetoresistance properties of manganite-lanthanum (La0.7Ca0.3)1-xMn1+xO3 perovskites, Tech. Phys., 57, 1508, 10.1134/S1063784212110217 Sazanovich, 2012, Influence of nonstoichiometry on magnetocaloric effect in (La0.7Ca0.3)1-xMn1+xO3, Acta Phys. Pol., A, 122, 162, 10.12693/APhysPolA.122.162 Pashchenko, 2014, Structure, phase transitions, 55Mn NMR, 57Fe Mossbauer studies and magnetoresistive properties of La0.6Sr0.3Mn1.1−xFexO3, J. Magn. Magn Mater., 369, 122, 10.1016/j.jmmm.2014.06.009 Zubov, 2017, Magnetic and magnetocaloric properties of the La0.9-xAgxMn1.1O3 compounds, Low Temp. Phys., 43, 1190, 10.1063/1.5008411 Pashchenko, 2013, Structural and magnetic heterogeneities, phase transitions, 55Mn NMR, and magnetoresistive properties of La0.6Sr0.3−xBixMn1.1O3, Phys. Solid State, 55, 321, 10.1134/S1063783413020236 Pashchenko, 2017, Structure, phase transitions, 55Mn NMR, magnetic and magnetotransport properties of the magnetoresistance La0.9-xAgxMn1.1O3-d ceramics, J. Alloys Compd., 709, 779, 10.1016/j.jallcom.2017.03.093 Boucher, 1971, Magnetic structure of Mn3O4 by neutron diffraction, J. Appl. Phys., 42, 1615, 10.1063/1.1660364 Patterson, 1939, The scherrer formula for X-ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978 Warren, 1941, X-Ray diffraction methods, J. Appl. Phys., 12, 375, 10.1063/1.1712915 Moradi, 2014, Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method, J. Solid State Chem., 215, 1, 10.1016/j.jssc.2014.03.011 Andrade, 2014, Magnetic and structural investigations on La0.6Sr0.4MnO3 nanostructured manganite: evidence of a ferrimagnetic shell, J. Solid State Chem., 219, 87, 10.1016/j.jssc.2014.07.013 Ho, 1993, Measurement of effective magnetic anisotropy of nanocrystalline Fe-Cu-Nb-Si-B soft magnetic alloys, J. Appl. Phys., 74, 6788, 10.1063/1.355078 Manh, 2014, Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications, Phys. Biol., 444, 94, 10.1016/j.physb.2014.03.025 Stoner, 1991, A mechanism of magnetic hysteresis in heterogeneous alloys, IEEE Trans. Magn., 27, 3475, 10.1109/TMAG.1991.1183750 Knobel, 2008, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems, J. Nanosci. Nanotechnol., 8, 2836, 10.1166/jnn.2008.15348 Guimaraes, 2017, 330 Andersson, 1997, Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system, Phys. Rev. B, 56, 13983, 10.1103/PhysRevB.56.13983 Kalita, 2017, Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum–strontium manganite nanoparticles, Phys. Chem. Chem. Phys., 19, 27015, 10.1039/C7CP05547A Worm, 1998, On the superparamagnetic—stable single domain transition for magnetite, and frequency dependence of susceptibility, Geophys. J. Int., 133, 201, 10.1046/j.1365-246X.1998.1331468.x Landau, 1937, On the theory of phase transitions, Zh. Eks. Teor. Fiz., 7, 19 Arrott, 1967, Approximate equation of state for nickel near its critical temperature, Phys. Rev. Lett., 19, 786, 10.1103/PhysRevLett.19.786 Snarskii, 2016 Pecharsky, 1999, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn Mater., 200, 44, 10.1016/S0304-8853(99)00397-2 Zhao, 2011, Synthesis and magnetocaloric properties of La0.85K0.15MnO3 nanoparticles, Adv. Powder Technol., 22, 68, 10.1016/j.apt.2010.03.012 Zhong, 1999, Structure and magnetic entropy change of polycrystalline La1−xKxMnO3+δ, J. Magn. Magn Mater., 195, 112, 10.1016/S0304-8853(98)01080-4 Zhao, 2015, Tuning of Curie temperature and magnetocaloric effect via annealing condition change in La0.8K0.2MnO3 manganites, J. Supercond. Nov. Magnetism, 28, 3693, 10.1007/s10948-015-3210-7 McMichael, 1992, Magnetocaloric effect in superparamagnets, J. Magn. Magn Mater., 111, 29, 10.1016/0304-8853(92)91049-Y Nisha, 2012, Critical behaviour and magnetocaloric effect of nano crystalline La0.67Ca0.33Mn1-xFexO3 (x = 0.05, 0.2) synthesized by nebulized spray pyrolysis, Mater. Chem. Phys., 136, 66, 10.1016/j.matchemphys.2012.06.029 Baaziz, 2015, Size reduction effect on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.9Sr0.1MnO3 nanoparticles, Solid State Commun., 208, 45, 10.1016/j.ssc.2015.02.015 Thanh, 2015, Critical behavior in double-exchange ferromagnets of Pr0.6Sr0.4MnO3 nanoparticles, IEEE Trans. Magn., 51, 1 De Oliveira, 2010, Theoretical aspects of the magnetocaloric effect, Phys. Rep., 489, 89, 10.1016/j.physrep.2009.12.006 Lavanov, 2018, Change in the entropy during a first-order phase transition induced by a magnetic field in an isotropic non-Heisenberg ferromagnet, Low Temp. Phys., 44, 322, 10.1063/1.5030455 Pashchenko, 2017, Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure, J. Exp. Theor. Phys., 124, 100, 10.1134/S1063776116150127