Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia
Tóm tắt
Fe-doped La0.77Sr0.23Mn1 − y
Fe
y
O3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 − y
Fe
y
O3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.
Tài liệu tham khảo
Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622
Sobha K, Sarendranath K, Meena V, Jwala TK, Swetha N, Latha KSM (2010) Emerging trends in nanobiotechnology. Biotechnol Mol Biol Rev 5:001–012
Kalita VM, Tovstolytkin AI, Ryabchenko SM, Yelenich OY, Solopan SO, Belous AG (2015) Mechanisms of AC losses in magnetic fluids based on substituted manganites. Phys Chem Chem Phys 17:18087–18097
Vatta LL, Sanderson DR, Koch KR (2006) Magnetic nanoparticles: properties and potential applications. Pure Appl Chem 78:1793–1801
Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110
Bubnovskaya L, Belous A, Solopan S, Kovelskaya A, Bovkun L, Podoltsev A, Kondratenko I, Osinsky S (2014) Magnetic fluid hyperthermia of rodent tumors using manganese perovskite nanoparticles. J Nanoparticles 2014:278761
Carrey J, Mehdaoui B, Respaund M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921
Solopan S, Belous A, Yelenich A, Bubnovskaya L, Kovelskaya A, Podoltsev A, Kondratenko I, Osinsky S (2011) Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia. Exp Oncol 33:131–135
Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–474
Yelenich OV, Solopan SO, Kolodiazhnyi TV, Greneche JM, Belous AG (2015) Synthesis of iron oxide nanoparticles by different methods and study of their properties. Solid Stat Phen 230:108–113
Nikiforov VN, Koksharov Yu A, Polyakov SN, Malakho AP, Volkov AV, Moskvina MA, Khomutov GB, Irkhin VY (2013) Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film. J Alloys Compounds 569:58–61
Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403–405
Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120–129
Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallography B25:925–946
García I, Echeberria J, Kakazei GN, Golub VO, Saliuk OY, Ilyn M, Guslienko KY, Gonzílez JM (2012) Evolution of the magnetic properties of Co10Cu90 nanoparticles prepared by wet chemistry with thermal annealing. J Nanosci Nanotechno 9:7529–7534
Gyergyek S, Makovec D, Mertelj A, Huskic M, Drofenic M (2010) Superparamagnetic nanocomposite particles synthesized using the mini-emulsion technique. Colloids Surf A Physicochem Eng Aspects 366:113–119
Solopan SO, V’yunov OI, Belous AG, Polek TI, Tovstolytkin AI (2012) Effect of nanoparticles agglomeration on electrical properties of La1 − x A x MnO3 (A = Sr. Ba) nanopowder and ceramic solid solutions. Solid Stat Sci 14:501–505
Belous AG, Vyunov OI, Pashkova EV, Yanchevskii OZ, Tovstolytkin AI, Pogorily AN (2003) Effects of chemical composition and sintering temperature on the structure of La1 − x Sr x MnO3 ± γ solid solutions. Inorg Mater 39:161–170
Barandiaran JM, Greneche JM, Herandez T, Plazaola F, Rojo T (2002) Non-conventional magnetic order in Fe-substituted La0.7Sr0.3MnO3 giant-magnetoresistance manganites. J Phys Condens Matter 14:12563–12573
Drofenik M, Lisjak D, Makovec D (2005) The synthesis and properties of magnetic nanoparticles. Mater Sci Forum 494:129–136
Pradhan AK, Bah R, Konda RB, Mudle R, Mustafa H, Bamiduro O, Rakhimov RR, Wei X, Sellmyer DJ (2008) Synthesis and magnetic characterization of manganite-based composite nanoparticles for biomedical applications. J Appl Phys 103:07F704–3
Rashid A, Ahmed A, Ahmad SN, Shaheen SA, Manzoor S (2013) Study of specific absorption rate of strontium doped lanthanum manganite nanoparticles for self-controlled hyperthermia applications. J Magn Magn Mater 347:39–44
Vasseur S, Duguet E, Portier J, Goglio G, Mornet S, Hadova E, Knizek K, Marysko M, Veverka P, Pollert E (2006) Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. J Magn Magn Mater 302:315–320
Keshri S, Kumar V, Wisniewski P, Kamrin AS (2014) Synthesis and characterization of LSMO manganite-based biocomposite. Phase Transit 87:468–476
Peddis D, Orrù F, Ardu A, Cannas C, Musinu A, Piccaluga G (2012) Interparticle Interactions and magnetic anisotropy in cobalt ferrite nanoparticles: influence of molecular coating. Chem Mater 24:1062–1071
Veverka M, Zaveta K, Kaman O, Veverka P, Knizek K, Pollert E, Burian M, Kaspar P (2014) Magnetic heating by silica-coated Co–Zn ferrite particles. J Phys D Appl Phys 47:065503–065511
Hernandes T, Plazaola F, Rojo T, Barandiaran JM (2001) Fe doping in La0.7Sr0.3MnO3 magnetoresistant perovskite. J Alloys Compounds 323–324:440–443
Yelenich OV, Solopan SO, Kolodiazhnyi TV, Dzyublyuk VV, Tovstolytkin AI, Belous AG (2014) Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles. Mater Chem Phys 146:129–135
Kalita VM, Lozenko AF, Ryabchenko SM, Timopheeev AA, Trotsenko RA, Danilenko IA, Konstantinova TE (2008) Magnetic properties of La0.7Sr0.3MnO3 nanopowders. Low Temp Phys 34:436–445