Persistent and Stable Organic Radicals: Design, Synthesis, and Applications
Tài liệu tham khảo
Ratera, 2012, Playing with organic radicals as building blocks for functional molecular materials, Chem. Soc. Rev., 41, 303, 10.1039/C1CS15165G
Gomberg, 1900, An instance of trivalent carbon: triphenylmethyl, J. Am. Chem. Soc., 22, 757, 10.1021/ja02049a006
Janoschka, 2012, Powering up the future: radical polymers for battery applications, Adv. Mater., 24, 6397, 10.1002/adma.201203119
Yuan, 2019, Air-stable n-type thermoelectric materials enabled by organic diradicaloids, Angew. Chem. Int. Ed. Engl., 58, 4958, 10.1002/anie.201814544
Minami, 2012, Diradical character view of singlet fission, J. Phys. Chem. Lett., 3, 145, 10.1021/jz2015346
Peng, 2015, Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet, Angew. Chem. Int. Ed. Engl., 54, 7091, 10.1002/anie.201500242
Zhang, 2016, Stable organic radical polymers: synthesis and applications, Polym. Chem., 7, 5589, 10.1039/C6PY00996D
Casado, 2017, Para-quinodimethanes: a unified review of the quinoidal-versus-aromatic competition and its implications, Top. Curr. Chem. (Cham), 375, 73, 10.1007/s41061-017-0163-2
Liu, 2019, Global aromaticity in macrocyclic polyradicaloids: huckel's rule or baird's rule?, Acc. Chem. Res., 52, 2309, 10.1021/acs.accounts.9b00257
Hatano, 2012, A peroxide-bridged imidazole dimer formed from a photochromic naphthalene-bridged imidazole dimer, Phys. Chem. Chem. Phys., 14, 5855, 10.1039/c2cp40239d
Chen, 2020, Engineering stable radicals using photochromic triggers, Nat. Commun., 11, 945, 10.1038/s41467-020-14798-9
Peña-Alvarez, 2018, Molecules under pressure: the case of [n] cycloparaphenylenes, Chem. Mater., 31, 6443, 10.1021/acs.chemmater.8b04173
Ni, 2020, A chichibabin's hydrocarbon-based molecular cage: the impact of structural rigidity on dynamics, stability, and electronic properties, J. Am. Chem. Soc., 142, 12730, 10.1021/jacs.0c04876
Zeng, 2012, Stable tetrabenzo-chichibabin's hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms, J. Am. Chem. Soc., 134, 14513, 10.1021/ja3050579
Kahr, 1993, Crystal structure and magnetic susceptibility of a hydrocarbon free radical: tris(3,5-di-tert-butylphenyl)methyl, Chem. Mater., 5, 729, 10.1021/cm00029a027
Neumann, 1986, Sterically hindered free radicals. 14. substituent-dependent stabilization of para-substituted triphenylmethyl radicals, J. Am. Chem. Soc., 108, 3762, 10.1021/ja00273a034
Guo, 2019, High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle, Nat. Mater., 18, 977, 10.1038/s41563-019-0433-1
Veciana, 2010, Chapter 2. Polychlorotriphenylmethyl radicals: towards multifunctional molecular materials, 33
Zeng, 2015, Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals, Chem. Soc. Rev., 44, 6578, 10.1039/C5CS00051C
Thiele, 1904, Ueber einen chinoïden Kohlenwasserstoff, Ber. Dtsch. Chem. Ges., 37, 1463, 10.1002/cber.19040370245
Tschitschibabin, 1907, Über einige phenylierte derivate des p, p-ditolyls, Ber. Dtsch. Chem. Ges., 40, 1810, 10.1002/cber.19070400282
Montgomery, 1986, The molecular structures of Thiele's and Chichibabin's hydrocarbons, J. Am. Chem. Soc., 108, 6004, 10.1021/ja00279a056
Takahashi, 2005, Extensive quinoidal oligothiophenes with dicyanomethylene groups at terminal positions as highly amphoteric redox molecules, J. Am. Chem. Soc., 127, 8928, 10.1021/ja051840m
Casado, 2012, Quinoidal oligothiophenes: new properties behind an unconventional electronic structure, Chem. Soc. Rev., 41, 5672, 10.1039/c2cs35079c
Pappenfus, 2002, A π-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor, J. Am. Chem. Soc., 124, 4184, 10.1021/ja025553j
Katz, 2000, A soluble and air-stable organic semiconductor with high electron mobility, Nature, 404, 478, 10.1038/35006603
Facchetti, 2000, Angew. Chem. Int. Ed. Engl., 39, 4547, 10.1002/1521-3773(20001215)39:24<4547::AID-ANIE4547>3.0.CO;2-J
Chesterfield, 2003, High electron mobility and ambipolar transport in organic thin-film transistors based on a π-stacking quinoidal terthiophene, Adv. Mater., 15, 1278, 10.1002/adma.200305200
Zhang, 2019, Stable cross-conjugated tetrathiophene diradical, Angew. Chem. Int. Ed. Engl., 58, 11291, 10.1002/anie.201904153
Yazyev, 2013, A guide to the design of electronic properties of graphene nanoribbons, Acc. Chem. Res., 46, 2319, 10.1021/ar3001487
Zeng, 2013, Tetracyanoquaterrylene and tetracyanohexarylenequinodimethanes with tunable ground states and strong near-infrared absorption, Angew. Chem. Int. Ed. Engl., 52, 8561, 10.1002/anie.201305348
Zeng, 2013, Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states, J. Am. Chem. Soc., 135, 6363, 10.1021/ja402467y
Huang, 2012, An overview of the applications of graphene-based materials in supercapacitors, Small, 8, 1805, 10.1002/smll.201102635
Wu, 2008, Organic solar cells with solution-processed graphene transparent electrodes, Appl. Phys. Lett., 92, 263302, 10.1063/1.2924771
Kubo, 2005, Synthesis, intermolecular interaction, and semiconductive behavior of a delocalized singlet biradical hydrocarbon, Angew. Chem. Int. Ed. Engl., 44, 6564, 10.1002/anie.200502303
Shimizu, 2010, Alternating covalent bonding interactions in a one-dimensional chain of a phenalenyl-based singlet biradical molecule having kekulé structures, J. Am. Chem. Soc., 132, 14421, 10.1021/ja1037287
Shimizu, 2012, Aromaticity and π-bond covalency: prominent intermolecular covalent bonding interaction of a Kekule hydrocarbon with very significant singlet biradical character, Chem. Commun. (Camb.), 48, 5629, 10.1039/c2cc31955a
Sun, 2014, Zethrenes, extended p-quinodimethanes, and periacenes with a singlet biradical ground state, Acc. Chem. Res., 47, 2582, 10.1021/ar5001692
Li, 2012, Kinetically blocked stable heptazethrene and octazethrene: closed-shell or open-shell in the ground state?, J. Am. Chem. Soc., 134, 14913, 10.1021/ja304618v
Huang, 2016, Higher order π-conjugated polycyclic hydrocarbons with open-shell singlet ground state: nonazethrene versus nonacene, J. Am. Chem. Soc., 138, 10323, 10.1021/jacs.6b06188
Wu, 2018, Toward two-dimensional π-conjugated covalent organic radical frameworks, Angew. Chem. Int. Ed. Engl., 57, 8007, 10.1002/anie.201801998
Hu, 2016, Toward tetraradicaloid: the effect of fusion mode on radical character and chemical reactivity, J. Am. Chem. Soc., 138, 1065, 10.1021/jacs.5b12532
Lu, 2016, Stable 3,6-linked fluorenyl radical oligomers with intramolecular antiferromagnetic coupling and polyradical characters, J. Am. Chem. Soc., 138, 13048, 10.1021/jacs.6b08138
Lu, 2017, Fluorenyl based macrocyclic polyradicaloids, J. Am. Chem. Soc., 139, 13173, 10.1021/jacs.7b07335
Casanova, 2009, Restricted active space spin-flip configuration interaction approach: theory, implementation and examples, Phys. Chem. Chem. Phys., 11, 9779, 10.1039/b911513g
Ni, 2020, 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states, Nat. Chem., 12, 242, 10.1038/s41557-019-0399-2
Chase, 2011, Indeno[1,2-b]fluorenes: fully conjugated antiaromatic analogues of acenes, Angew. Chem. Int. Ed. Engl., 50, 1127, 10.1002/anie.201006312
Chase, 2011, Electron-accepting 6,12-diethynylindeno[1,2-b]fluorenes: synthesis, crystal structures, and photophysical properties, Angew. Chem. Int. Ed. Engl., 50, 11103, 10.1002/anie.201104797
Chase, 2012, 6,12-diarylindeno[1,2-b]fluorenes: syntheses, photophysics, and ambipolar ofets, J. Am. Chem. Soc., 134, 10349, 10.1021/ja303402p
Rudebusch, 2016, Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals, Nat. Chem., 8, 753, 10.1038/nchem.2518
Dressler, 2018, Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets, Nat. Chem., 10, 1134, 10.1038/s41557-018-0133-5
Barker, 2020, Molecule isomerism modulates the diradical properties of stable singlet diradicaloids, J. Am. Chem. Soc., 142, 1548, 10.1021/jacs.9b11898
Yuen, 2015, Importance of unpaired electrons in organic electronics, J. Polym. Sci. Part A: Polym. Chem., 53, 287, 10.1002/pola.27321
Li, 2017, A review on the origin of synthetic metal radical: singlet open-shell radical ground state?, J. Phys. Chem. C, 121, 8579, 10.1021/acs.jpcc.6b12936
Liu, 2017, Toward benzobis(thiadiazole)-based diradicaloids, Chem. Asian J., 12, 2177, 10.1002/asia.201700732
London, 2019, A high-spin ground-state donor-acceptor conjugated polymer, Sci. Adv., 5, eaav2336, 10.1126/sciadv.aav2336
Williams, 1969, The structure of galvinoxyl, a stable phenoxyl radical, Mol. Phys., 16, 145, 10.1080/00268976.1969.10310426
Wittman, 2013, A C-C bonded phenoxyl radical dimer with a zero bond dissociation free energy, J. Am. Chem. Soc., 135, 12956, 10.1021/ja406500h
Porter, 2014, Preparation, structural characterization, and thermochemistry of an isolable 4-arylphenoxyl radical, J. Org. Chem., 79, 9451, 10.1021/jo501531a
Dimroth, 1963, Bis-phenoxy-radicals of the polyphenyl series, Angew. Chem. Int. Ed. Engl., 2, 620, 10.1002/anie.196306203
Bock, 1993, The triplet biradical tris(3,5-di-tert-butyl-4-oxophenylene)methane: crystal structure, and spin and charge distribution, Angew. Chem. Int. Ed. Engl., 32, 416, 10.1002/anie.199304161
Sakamaki, 2015, A triphenylamine with two phenoxy radicals having unusual bonding patterns and a closed-shell electronic state, Angew. Chem. Int. Ed. Engl., 54, 8267, 10.1002/anie.201502949
Tan, 2017, Isolable bis(triarylamine) dications: analogues of Thiele's, Chichibabin's, and Muller's hydrocarbons, Acc. Chem. Res., 50, 1997, 10.1021/acs.accounts.7b00229
Su, 2015, Nitrogen analogues of Thiele's hydrocarbon, Angew. Chem. Int. Ed. Engl., 54, 1634, 10.1002/anie.201410256
Su, 2014, Tuning ground states of bis(triarylamine) dications: from a closed-shell singlet to a diradicaloid with an excited triplet state, Angew. Chem. Int. Ed. Engl., 53, 2857, 10.1002/anie.201309458
Li, 2016, Magnetic bistability in a discrete organic radical, J. Am. Chem. Soc., 138, 10092, 10.1021/jacs.6b05863
Kurata, 2016, Isolation and characterization of persistent radical cation and dication of 2,7-bis(dianisylamino)pyrene, J. Org. Chem., 81, 137, 10.1021/acs.joc.5b02425
Pan, 2013, Isolation and X-ray crystal structures of triarylphosphine radical cations, J. Am. Chem. Soc., 135, 3414, 10.1021/ja4012113
Li, 2018, Syntheses, structures and theoretical calculations of stable triarylarsine radical cations, Chem. Commun. (Camb.), 54, 1493, 10.1039/C7CC09544A
Pan, 2013, Stable tetraaryldiphosphine radical cation and dication, J. Am. Chem. Soc., 135, 5561, 10.1021/ja402492u
Yuan, 2016, A boron-centered radical: a potassium-crown ether stabilized boryl radical anion, Chem. Commun. (Camb.), 52, 12714, 10.1039/C6CC06918E
Feng, 2019, A main-group element radical based one-dimensional magnetic chain, Angew. Chem. Int. Ed. Engl., 58, 6084, 10.1002/anie.201901177
Mukai, 1967, Anomaly in the χ-T curve of galvinoxyl radical, J. Phys. Soc. Jpn., 23, 125, 10.1143/JPSJ.23.125
Takahashi, 1991, Discovery of a quasi-1D organic ferromagnet, p-NPNN, Phys. Rev. Lett., 67, 746, 10.1103/PhysRevLett.67.746
Banister, 1996, Spontaneous magnetization in a sulfur–nitrogen radical at 36 K, Angew. Chem. Int. Ed. Engl., 35, 2533, 10.1002/anie.199625331
Banister, 1995, The first solid state paramagnetic 1,2,3,5-dithiadiazolyl radical; X-ray crystal structure of [p-NCC6F4CNSSN]?˙, J. Chem. Soc. Chem. Commun., 679, 10.1039/c39950000679
Jiang, 2019, Organic radical-linked covalent triazine framework with paramagnetic behavior, ACS Nano, 13, 5251, 10.1021/acsnano.8b09634
Jin, 2017, Two-dimensional sp2 carbon-conjugated covalent organic frameworks, Science, 357, 673, 10.1126/science.aan0202
Phan, 2019, Room-temperature magnets based on 1,3,5-triazine-linked porous organic radical frameworks, Chem, 5, 1223, 10.1016/j.chempr.2019.02.024
Sugawara, 2011, Interplay between magnetism and conductivity derived from spin-polarized donor radicals, Chem. Soc. Rev., 40, 3105, 10.1039/c0cs00157k
Kumai, 1994, Intramolecular exchange interaction in a novel cross-conjugated spin system composed of .pi.-ion radical and nitronyl nitroxide, J. Am. Chem. Soc., 116, 4523, 10.1021/ja00089a070
Sakurai, 2000, Design, preparation, and electronic structure of high-spin cation diradicals derived from amine-based spin-polarized donors, J. Am. Chem. Soc., 122, 9723, 10.1021/ja994547t
Matsushita, 2007, Negative magneto-resistance observed on an ion-radical salt of a ttf-based spin-polarized donor, Chem. Lett., 36, 110, 10.1246/cl.2007.110
Matsushita, 2008, Molecule-based system with coexisting conductivity and magnetism and without magnetic inorganic ions, Phys. Rev. B, 77, 195208, 10.1103/PhysRevB.77.195208
Komatsu, 2010, Influence of magnetic field upon the conductance of a unicomponent crystal of a tetrathiafulvalene-based nitronyl nitroxide, J. Am. Chem. Soc., 132, 4528, 10.1021/ja9109538
Dongmin Kang, 2017, Charge-transport model for conducting polymers, Nat. Mater., 16, 252, 10.1038/nmat4784
Fratini, 2020, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater., 19, 491, 10.1038/s41563-020-0647-2
Lutkenhaus, 2018, A radical advance for conducting polymers, Science, 359, 1334, 10.1126/science.aat1298
Chen, 1993, Polyalkylthiophenes with the smallest bandgap and the highest intrinsic conductivity, Synth. Met., 60, 175, 10.1016/0379-6779(93)91240-3
Ikenoue, 1991, A novel substituted poly(isothianaphthene), Synth. Met., 40, 1, 10.1016/0379-6779(91)91483-Q
Ajayaghosh, 2003, Donor-acceptor type low band gap polymers: polysquaraines and related systems, Chem. Soc. Rev., 32, 181, 10.1039/B204251G
Gao, 2019, Incorporation of 1,3-free-2,6-connected azulene units into the backbone of conjugated polymers: improving proton responsiveness and electrical conductivity, ACS Macro Lett., 8, 1360, 10.1021/acsmacrolett.9b00657
Dexter Tam, 2019, Proquinoidal-conjugated polymer as an effective strategy for the enhancement of electrical conductivity and thermoelectric properties, Chem. Mater., 31, 8543, 10.1021/acs.chemmater.9b03684
Joo, 2018, Thermoelectric performance of an open-shell donor-acceptor conjugated polymer doped with a radical-containing small molecule, Macromolecules, 51, 3886, 10.1021/acs.macromol.8b00582
Huang, 2020, Open-shell donor-acceptor conjugated polymers with high electrical conductivity, Adv. Funct. Mater., 30, 1909805, 10.1002/adfm.201909805
Rostro, 2013, Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups, ACS Appl. Mater. Interfaces, 5, 9896, 10.1021/am403223s
Rostro, 2014, Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state, Macromolecules, 47, 3713, 10.1021/ma500626t
Joo, 2018, A nonconjugated radical polymer glass with high electrical conductivity, Science, 359, 1391, 10.1126/science.aao7287
Zhang, 2014, Two-dimensional π-expanded quinoidal terthiophenes terminated with dicyanomethylenes as n-type semiconductors for high-performance organic thin-film transistors, J. Am. Chem. Soc., 136, 16176, 10.1021/ja510003y
Yang, 2020, Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity, J. Am. Chem. Soc., 142, 4329, 10.1021/jacs.9b12683
Tomlinson, 2014, Radical polymers and their application to organic electronic devices, Macromolecules, 47, 6145, 10.1021/ma5014572
Soloveichik, 2015, Flow batteries: current status and trends, Chem. Rev., 115, 11533, 10.1021/cr500720t
Winsberg, 2017, Redox-flow batteries: from metals to organic redox-active materials, Angew. Chem. Int. Ed. Engl., 56, 686, 10.1002/anie.201604925
Liu, 2019, A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical, Chem, 5, 1861, 10.1016/j.chempr.2019.04.021
Dou, 2015, Low-bandgap near-IR conjugated polymers/molecules for organic electronics, Chem. Rev., 115, 12633, 10.1021/acs.chemrev.5b00165
Ai, 2018, Efficient radical-based light-emitting diodes with doublet emission, Nature, 563, 536, 10.1038/s41586-018-0695-9
Hattori, 2014, Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical, Angew. Chem. Int. Ed. Engl., 53, 11845, 10.1002/anie.201407362
Ai, 2018, A stable room-temperature luminescent biphenylmethyl radical, Angew. Chem. Int. Ed. Engl., 57, 2869, 10.1002/anie.201713321
Gao, 2017, Novel luminescent benzimidazole-substituent tris(2,4,6-trichlorophenyl)methyl radicals: photophysics, stability, and highly efficient red-orange electroluminescence, Chem. Mater., 29, 6733, 10.1021/acs.chemmater.7b01521
Abdurahman, 2019, A radical polymer with efficient deep-red luminescence in the condensed state, Mater. Horiz., 6, 1265, 10.1039/C9MH00077A
Abdurahman, 2020, Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes, Nat. Mater., 10.1038/s41563-020-0705-9
Hanna, 2006, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 100, 074510, 10.1063/1.2356795
Xia, 2017, Singlet fission: progress and prospects in solar cells, Adv. Mater., 29, 1601652, 10.1002/adma.201601652
Bendikov, 2004, Oligoacenes: theoretical prediction of open-shell singlet diradical ground states, J. Am. Chem. Soc., 126, 7416, 10.1021/ja048919w
Nakano, 2017, Open-shell-character-based molecular design principles: applications to nonlinear optics and singlet fission, Chem. Rec., 17, 27, 10.1002/tcr.201600094
Swenberg, 1968, Bimolecular radiationless transitions in crystalline tetracene, Chem. Phys. Lett., 2, 327, 10.1016/0009-2614(68)80087-9
Smith, 2013, Recent advances in singlet fission, Annu. Rev. Phys. Chem., 64, 361, 10.1146/annurev-physchem-040412-110130
Lukman, 2017, Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids, J. Am. Chem. Soc., 139, 18376, 10.1021/jacs.7b10762
Johnson, 2010, High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran, J. Am. Chem. Soc., 132, 16302, 10.1021/ja104123r
Kawata, 2016, Singlet fission of non-polycyclic aromatic molecules in organic photovoltaics, Adv. Mater., 28, 1585, 10.1002/adma.201504281
Mauck, 2016, Singlet fission via an excimer-like intermediate in 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole derivatives, J. Am. Chem. Soc., 138, 11749, 10.1021/jacs.6b05627
Shen, 2018, Effects of aromatic substituents on the electronic structure and excited state energy levels of diketopyrrolopyrrole derivatives for singlet fission, Phys. Chem. Chem. Phys., 20, 22997, 10.1039/C8CP03216E
Xue, 2018, Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities, Adv. Funct. Mater., 28, 1707444, 10.1002/adfm.201707444
Zeng, 2020, Dopamine semiquinone radical doped PEDOT:PSS: enhanced conductivity, work function and performance in organic solar cells, Adv. Energy Mater., 10, 2000743, 10.1002/aenm.202000743
Li, 2017, Poly(3,4-ethylenedioxythiophene): methylnaphthalene sulfonate formaldehyde condensate: the effect of work function and structural homogeneity on hole injection/extraction properties, Adv. Energy Mater., 7, 1601499, 10.1002/aenm.201601499
Guo, 2019, Semiconductive polymer-doped PEDOT with high work function, conductivity, reversible dispersion, and application in organic solar cells, ACS Sustain. Chem. Eng., 7, 8206, 10.1021/acssuschemeng.8b06215
Champier, 2017, Thermoelectric generators: a review of applications, Energy Convers. Manag., 140, 167, 10.1016/j.enconman.2017.02.070
Kim, 2013, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat. Mater., 12, 719, 10.1038/nmat3635
Lyu, 2016, Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy, ACS Nano, 10, 4472, 10.1021/acsnano.6b00168
Wei, 2019, Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review, Mater. Sci. Eng. C Mater. Bio.l Appl., 104, 109891, 10.1016/j.msec.2019.109891
Jiao, 2015, Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion, Chem. Sci., 6, 3975, 10.1039/C5SC01167A
Lü, 2019, Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion, Nat. Commun., 10, 767, 10.1038/s41467-019-08434-4
Tang, 2019, A supramolecular radical dimer: high-efficiency nir-ii photothermal conversion and therapy, Angew. Chem. Int. Ed. Engl., 58, 15526, 10.1002/anie.201910257
Mi, 2019, Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion, J. Am. Chem. Soc., 141, 14433, 10.1021/jacs.9b07695