Persistent and Stable Organic Radicals: Design, Synthesis, and Applications

Chem - Tập 7 - Trang 288-332 - 2021
Z.X. Chen1, Y. Li1, F. Huang1
1Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China

Tài liệu tham khảo

Ratera, 2012, Playing with organic radicals as building blocks for functional molecular materials, Chem. Soc. Rev., 41, 303, 10.1039/C1CS15165G

Hicks, 2007, What's new in stable radical chemistry?, Org. Biomol. Chem., 5, 1321, 10.1039/b617142g

Gomberg, 1900, An instance of trivalent carbon: triphenylmethyl, J. Am. Chem. Soc., 22, 757, 10.1021/ja02049a006

Janoschka, 2012, Powering up the future: radical polymers for battery applications, Adv. Mater., 24, 6397, 10.1002/adma.201203119

Yuan, 2019, Air-stable n-type thermoelectric materials enabled by organic diradicaloids, Angew. Chem. Int. Ed. Engl., 58, 4958, 10.1002/anie.201814544

Minami, 2012, Diradical character view of singlet fission, J. Phys. Chem. Lett., 3, 145, 10.1021/jz2015346

Peng, 2015, Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet, Angew. Chem. Int. Ed. Engl., 54, 7091, 10.1002/anie.201500242

Abe, 2013, Diradicals. Chem. Rev., 113, 7011, 10.1021/cr400056a

Zhang, 2016, Stable organic radical polymers: synthesis and applications, Polym. Chem., 7, 5589, 10.1039/C6PY00996D

Casado, 2017, Para-quinodimethanes: a unified review of the quinoidal-versus-aromatic competition and its implications, Top. Curr. Chem. (Cham), 375, 73, 10.1007/s41061-017-0163-2

Liu, 2019, Global aromaticity in macrocyclic polyradicaloids: huckel's rule or baird's rule?, Acc. Chem. Res., 52, 2309, 10.1021/acs.accounts.9b00257

Hatano, 2012, A peroxide-bridged imidazole dimer formed from a photochromic naphthalene-bridged imidazole dimer, Phys. Chem. Chem. Phys., 14, 5855, 10.1039/c2cp40239d

Chen, 2020, Engineering stable radicals using photochromic triggers, Nat. Commun., 11, 945, 10.1038/s41467-020-14798-9

Peña-Alvarez, 2018, Molecules under pressure: the case of [n] cycloparaphenylenes, Chem. Mater., 31, 6443, 10.1021/acs.chemmater.8b04173

Ni, 2020, A chichibabin's hydrocarbon-based molecular cage: the impact of structural rigidity on dynamics, stability, and electronic properties, J. Am. Chem. Soc., 142, 12730, 10.1021/jacs.0c04876

Zeng, 2012, Stable tetrabenzo-chichibabin's hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms, J. Am. Chem. Soc., 134, 14513, 10.1021/ja3050579

Kahr, 1993, Crystal structure and magnetic susceptibility of a hydrocarbon free radical: tris(3,5-di-tert-butylphenyl)methyl, Chem. Mater., 5, 729, 10.1021/cm00029a027

Neumann, 1986, Sterically hindered free radicals. 14. substituent-dependent stabilization of para-substituted triphenylmethyl radicals, J. Am. Chem. Soc., 108, 3762, 10.1021/ja00273a034

Guo, 2019, High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle, Nat. Mater., 18, 977, 10.1038/s41563-019-0433-1

Veciana, 2010, Chapter 2. Polychlorotriphenylmethyl radicals: towards multifunctional molecular materials, 33

Zeng, 2015, Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals, Chem. Soc. Rev., 44, 6578, 10.1039/C5CS00051C

Thiele, 1904, Ueber einen chinoïden Kohlenwasserstoff, Ber. Dtsch. Chem. Ges., 37, 1463, 10.1002/cber.19040370245

Tschitschibabin, 1907, Über einige phenylierte derivate des p, p-ditolyls, Ber. Dtsch. Chem. Ges., 40, 1810, 10.1002/cber.19070400282

Montgomery, 1986, The molecular structures of Thiele's and Chichibabin's hydrocarbons, J. Am. Chem. Soc., 108, 6004, 10.1021/ja00279a056

Takahashi, 2005, Extensive quinoidal oligothiophenes with dicyanomethylene groups at terminal positions as highly amphoteric redox molecules, J. Am. Chem. Soc., 127, 8928, 10.1021/ja051840m

Casado, 2012, Quinoidal oligothiophenes: new properties behind an unconventional electronic structure, Chem. Soc. Rev., 41, 5672, 10.1039/c2cs35079c

Pappenfus, 2002, A π-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor, J. Am. Chem. Soc., 124, 4184, 10.1021/ja025553j

Katz, 2000, A soluble and air-stable organic semiconductor with high electron mobility, Nature, 404, 478, 10.1038/35006603

Facchetti, 2000, Angew. Chem. Int. Ed. Engl., 39, 4547, 10.1002/1521-3773(20001215)39:24<4547::AID-ANIE4547>3.0.CO;2-J

Chesterfield, 2003, High electron mobility and ambipolar transport in organic thin-film transistors based on a π-stacking quinoidal terthiophene, Adv. Mater., 15, 1278, 10.1002/adma.200305200

Zhang, 2019, Stable cross-conjugated tetrathiophene diradical, Angew. Chem. Int. Ed. Engl., 58, 11291, 10.1002/anie.201904153

Yazyev, 2013, A guide to the design of electronic properties of graphene nanoribbons, Acc. Chem. Res., 46, 2319, 10.1021/ar3001487

Zeng, 2013, Tetracyanoquaterrylene and tetracyanohexarylenequinodimethanes with tunable ground states and strong near-infrared absorption, Angew. Chem. Int. Ed. Engl., 52, 8561, 10.1002/anie.201305348

Zeng, 2013, Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states, J. Am. Chem. Soc., 135, 6363, 10.1021/ja402467y

Huang, 2012, An overview of the applications of graphene-based materials in supercapacitors, Small, 8, 1805, 10.1002/smll.201102635

Wu, 2008, Organic solar cells with solution-processed graphene transparent electrodes, Appl. Phys. Lett., 92, 263302, 10.1063/1.2924771

Kubo, 2005, Synthesis, intermolecular interaction, and semiconductive behavior of a delocalized singlet biradical hydrocarbon, Angew. Chem. Int. Ed. Engl., 44, 6564, 10.1002/anie.200502303

Shimizu, 2010, Alternating covalent bonding interactions in a one-dimensional chain of a phenalenyl-based singlet biradical molecule having kekulé structures, J. Am. Chem. Soc., 132, 14421, 10.1021/ja1037287

Shimizu, 2012, Aromaticity and π-bond covalency: prominent intermolecular covalent bonding interaction of a Kekule hydrocarbon with very significant singlet biradical character, Chem. Commun. (Camb.), 48, 5629, 10.1039/c2cc31955a

Sun, 2014, Zethrenes, extended p-quinodimethanes, and periacenes with a singlet biradical ground state, Acc. Chem. Res., 47, 2582, 10.1021/ar5001692

Li, 2012, Kinetically blocked stable heptazethrene and octazethrene: closed-shell or open-shell in the ground state?, J. Am. Chem. Soc., 134, 14913, 10.1021/ja304618v

Huang, 2016, Higher order π-conjugated polycyclic hydrocarbons with open-shell singlet ground state: nonazethrene versus nonacene, J. Am. Chem. Soc., 138, 10323, 10.1021/jacs.6b06188

Wu, 2018, Toward two-dimensional π-conjugated covalent organic radical frameworks, Angew. Chem. Int. Ed. Engl., 57, 8007, 10.1002/anie.201801998

Zeng, 2016, Super-heptazethrene, Angew. Chem. Int. Ed. Engl., 55, 8615, 10.1002/anie.201602997

Hu, 2016, Toward tetraradicaloid: the effect of fusion mode on radical character and chemical reactivity, J. Am. Chem. Soc., 138, 1065, 10.1021/jacs.5b12532

Lu, 2016, Stable 3,6-linked fluorenyl radical oligomers with intramolecular antiferromagnetic coupling and polyradical characters, J. Am. Chem. Soc., 138, 13048, 10.1021/jacs.6b08138

Lu, 2017, Fluorenyl based macrocyclic polyradicaloids, J. Am. Chem. Soc., 139, 13173, 10.1021/jacs.7b07335

Casanova, 2009, Restricted active space spin-flip configuration interaction approach: theory, implementation and examples, Phys. Chem. Chem. Phys., 11, 9779, 10.1039/b911513g

Ni, 2020, 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states, Nat. Chem., 12, 242, 10.1038/s41557-019-0399-2

Chase, 2011, Indeno[1,2-b]fluorenes: fully conjugated antiaromatic analogues of acenes, Angew. Chem. Int. Ed. Engl., 50, 1127, 10.1002/anie.201006312

Chase, 2011, Electron-accepting 6,12-diethynylindeno[1,2-b]fluorenes: synthesis, crystal structures, and photophysical properties, Angew. Chem. Int. Ed. Engl., 50, 11103, 10.1002/anie.201104797

Chase, 2012, 6,12-diarylindeno[1,2-b]fluorenes: syntheses, photophysics, and ambipolar ofets, J. Am. Chem. Soc., 134, 10349, 10.1021/ja303402p

Rudebusch, 2016, Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals, Nat. Chem., 8, 753, 10.1038/nchem.2518

Dressler, 2018, Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets, Nat. Chem., 10, 1134, 10.1038/s41557-018-0133-5

Barker, 2020, Molecule isomerism modulates the diradical properties of stable singlet diradicaloids, J. Am. Chem. Soc., 142, 1548, 10.1021/jacs.9b11898

Yuen, 2015, Importance of unpaired electrons in organic electronics, J. Polym. Sci. Part A: Polym. Chem., 53, 287, 10.1002/pola.27321

Li, 2017, A review on the origin of synthetic metal radical: singlet open-shell radical ground state?, J. Phys. Chem. C, 121, 8579, 10.1021/acs.jpcc.6b12936

Liu, 2017, Toward benzobis(thiadiazole)-based diradicaloids, Chem. Asian J., 12, 2177, 10.1002/asia.201700732

London, 2019, A high-spin ground-state donor-acceptor conjugated polymer, Sci. Adv., 5, eaav2336, 10.1126/sciadv.aav2336

Williams, 1969, The structure of galvinoxyl, a stable phenoxyl radical, Mol. Phys., 16, 145, 10.1080/00268976.1969.10310426

Wittman, 2013, A C-C bonded phenoxyl radical dimer with a zero bond dissociation free energy, J. Am. Chem. Soc., 135, 12956, 10.1021/ja406500h

Porter, 2014, Preparation, structural characterization, and thermochemistry of an isolable 4-arylphenoxyl radical, J. Org. Chem., 79, 9451, 10.1021/jo501531a

Dimroth, 1963, Bis-phenoxy-radicals of the polyphenyl series, Angew. Chem. Int. Ed. Engl., 2, 620, 10.1002/anie.196306203

Yang, 1960, Synthesis of a stable biradical 1, J. Am. Chem. Soc., 82, 6208, 10.1021/ja01508a067

Bock, 1993, The triplet biradical tris(3,5-di-tert-butyl-4-oxophenylene)methane: crystal structure, and spin and charge distribution, Angew. Chem. Int. Ed. Engl., 32, 416, 10.1002/anie.199304161

Sakamaki, 2015, A triphenylamine with two phenoxy radicals having unusual bonding patterns and a closed-shell electronic state, Angew. Chem. Int. Ed. Engl., 54, 8267, 10.1002/anie.201502949

Zhou, 2019, Aromatic inorganic acid radical, Sci. China Chem., 62, 1656, 10.1007/s11426-019-9641-2

Tan, 2017, Isolable bis(triarylamine) dications: analogues of Thiele's, Chichibabin's, and Muller's hydrocarbons, Acc. Chem. Res., 50, 1997, 10.1021/acs.accounts.7b00229

Su, 2015, Nitrogen analogues of Thiele's hydrocarbon, Angew. Chem. Int. Ed. Engl., 54, 1634, 10.1002/anie.201410256

Su, 2014, Tuning ground states of bis(triarylamine) dications: from a closed-shell singlet to a diradicaloid with an excited triplet state, Angew. Chem. Int. Ed. Engl., 53, 2857, 10.1002/anie.201309458

Li, 2016, Magnetic bistability in a discrete organic radical, J. Am. Chem. Soc., 138, 10092, 10.1021/jacs.6b05863

Kurata, 2016, Isolation and characterization of persistent radical cation and dication of 2,7-bis(dianisylamino)pyrene, J. Org. Chem., 81, 137, 10.1021/acs.joc.5b02425

Pan, 2013, Isolation and X-ray crystal structures of triarylphosphine radical cations, J. Am. Chem. Soc., 135, 3414, 10.1021/ja4012113

Li, 2018, Syntheses, structures and theoretical calculations of stable triarylarsine radical cations, Chem. Commun. (Camb.), 54, 1493, 10.1039/C7CC09544A

Pan, 2013, Stable tetraaryldiphosphine radical cation and dication, J. Am. Chem. Soc., 135, 5561, 10.1021/ja402492u

Yuan, 2016, A boron-centered radical: a potassium-crown ether stabilized boryl radical anion, Chem. Commun. (Camb.), 52, 12714, 10.1039/C6CC06918E

Feng, 2019, A main-group element radical based one-dimensional magnetic chain, Angew. Chem. Int. Ed. Engl., 58, 6084, 10.1002/anie.201901177

Mukai, 1967, Anomaly in the χ-T curve of galvinoxyl radical, J. Phys. Soc. Jpn., 23, 125, 10.1143/JPSJ.23.125

Takahashi, 1991, Discovery of a quasi-1D organic ferromagnet, p-NPNN, Phys. Rev. Lett., 67, 746, 10.1103/PhysRevLett.67.746

Banister, 1996, Spontaneous magnetization in a sulfur–nitrogen radical at 36 K, Angew. Chem. Int. Ed. Engl., 35, 2533, 10.1002/anie.199625331

Banister, 1995, The first solid state paramagnetic 1,2,3,5-dithiadiazolyl radical; X-ray crystal structure of [p-NCC6F4CNSSN]?˙, J. Chem. Soc. Chem. Commun., 679, 10.1039/c39950000679

Jiang, 2019, Organic radical-linked covalent triazine framework with paramagnetic behavior, ACS Nano, 13, 5251, 10.1021/acsnano.8b09634

Jin, 2017, Two-dimensional sp2 carbon-conjugated covalent organic frameworks, Science, 357, 673, 10.1126/science.aan0202

Phan, 2019, Room-temperature magnets based on 1,3,5-triazine-linked porous organic radical frameworks, Chem, 5, 1223, 10.1016/j.chempr.2019.02.024

Sugawara, 2011, Interplay between magnetism and conductivity derived from spin-polarized donor radicals, Chem. Soc. Rev., 40, 3105, 10.1039/c0cs00157k

Kumai, 1994, Intramolecular exchange interaction in a novel cross-conjugated spin system composed of .pi.-ion radical and nitronyl nitroxide, J. Am. Chem. Soc., 116, 4523, 10.1021/ja00089a070

Sakurai, 2000, Design, preparation, and electronic structure of high-spin cation diradicals derived from amine-based spin-polarized donors, J. Am. Chem. Soc., 122, 9723, 10.1021/ja994547t

Matsushita, 2007, Negative magneto-resistance observed on an ion-radical salt of a ttf-based spin-polarized donor, Chem. Lett., 36, 110, 10.1246/cl.2007.110

Matsushita, 2008, Molecule-based system with coexisting conductivity and magnetism and without magnetic inorganic ions, Phys. Rev. B, 77, 195208, 10.1103/PhysRevB.77.195208

Komatsu, 2010, Influence of magnetic field upon the conductance of a unicomponent crystal of a tetrathiafulvalene-based nitronyl nitroxide, J. Am. Chem. Soc., 132, 4528, 10.1021/ja9109538

Dongmin Kang, 2017, Charge-transport model for conducting polymers, Nat. Mater., 16, 252, 10.1038/nmat4784

Fratini, 2020, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater., 19, 491, 10.1038/s41563-020-0647-2

Lutkenhaus, 2018, A radical advance for conducting polymers, Science, 359, 1334, 10.1126/science.aat1298

Chen, 1993, Polyalkylthiophenes with the smallest bandgap and the highest intrinsic conductivity, Synth. Met., 60, 175, 10.1016/0379-6779(93)91240-3

Ikenoue, 1991, A novel substituted poly(isothianaphthene), Synth. Met., 40, 1, 10.1016/0379-6779(91)91483-Q

Ajayaghosh, 2003, Donor-acceptor type low band gap polymers: polysquaraines and related systems, Chem. Soc. Rev., 32, 181, 10.1039/B204251G

Gao, 2019, Incorporation of 1,3-free-2,6-connected azulene units into the backbone of conjugated polymers: improving proton responsiveness and electrical conductivity, ACS Macro Lett., 8, 1360, 10.1021/acsmacrolett.9b00657

Dexter Tam, 2019, Proquinoidal-conjugated polymer as an effective strategy for the enhancement of electrical conductivity and thermoelectric properties, Chem. Mater., 31, 8543, 10.1021/acs.chemmater.9b03684

Joo, 2018, Thermoelectric performance of an open-shell donor-acceptor conjugated polymer doped with a radical-containing small molecule, Macromolecules, 51, 3886, 10.1021/acs.macromol.8b00582

Huang, 2020, Open-shell donor-acceptor conjugated polymers with high electrical conductivity, Adv. Funct. Mater., 30, 1909805, 10.1002/adfm.201909805

Rostro, 2013, Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups, ACS Appl. Mater. Interfaces, 5, 9896, 10.1021/am403223s

Rostro, 2014, Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state, Macromolecules, 47, 3713, 10.1021/ma500626t

Joo, 2018, A nonconjugated radical polymer glass with high electrical conductivity, Science, 359, 1391, 10.1126/science.aao7287

Zhang, 2014, Two-dimensional π-expanded quinoidal terthiophenes terminated with dicyanomethylenes as n-type semiconductors for high-performance organic thin-film transistors, J. Am. Chem. Soc., 136, 16176, 10.1021/ja510003y

Yang, 2020, Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity, J. Am. Chem. Soc., 142, 4329, 10.1021/jacs.9b12683

Tomlinson, 2014, Radical polymers and their application to organic electronic devices, Macromolecules, 47, 6145, 10.1021/ma5014572

Soloveichik, 2015, Flow batteries: current status and trends, Chem. Rev., 115, 11533, 10.1021/cr500720t

Winsberg, 2017, Redox-flow batteries: from metals to organic redox-active materials, Angew. Chem. Int. Ed. Engl., 56, 686, 10.1002/anie.201604925

Liu, 2019, A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical, Chem, 5, 1861, 10.1016/j.chempr.2019.04.021

Dou, 2015, Low-bandgap near-IR conjugated polymers/molecules for organic electronics, Chem. Rev., 115, 12633, 10.1021/acs.chemrev.5b00165

Ai, 2018, Efficient radical-based light-emitting diodes with doublet emission, Nature, 563, 536, 10.1038/s41586-018-0695-9

Hattori, 2014, Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical, Angew. Chem. Int. Ed. Engl., 53, 11845, 10.1002/anie.201407362

Ai, 2018, A stable room-temperature luminescent biphenylmethyl radical, Angew. Chem. Int. Ed. Engl., 57, 2869, 10.1002/anie.201713321

Gao, 2017, Novel luminescent benzimidazole-substituent tris(2,4,6-trichlorophenyl)methyl radicals: photophysics, stability, and highly efficient red-orange electroluminescence, Chem. Mater., 29, 6733, 10.1021/acs.chemmater.7b01521

Abdurahman, 2019, A radical polymer with efficient deep-red luminescence in the condensed state, Mater. Horiz., 6, 1265, 10.1039/C9MH00077A

Abdurahman, 2020, Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes, Nat. Mater., 10.1038/s41563-020-0705-9

Hanna, 2006, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys., 100, 074510, 10.1063/1.2356795

Xia, 2017, Singlet fission: progress and prospects in solar cells, Adv. Mater., 29, 1601652, 10.1002/adma.201601652

Bendikov, 2004, Oligoacenes: theoretical prediction of open-shell singlet diradical ground states, J. Am. Chem. Soc., 126, 7416, 10.1021/ja048919w

Nakano, 2017, Open-shell-character-based molecular design principles: applications to nonlinear optics and singlet fission, Chem. Rec., 17, 27, 10.1002/tcr.201600094

Swenberg, 1968, Bimolecular radiationless transitions in crystalline tetracene, Chem. Phys. Lett., 2, 327, 10.1016/0009-2614(68)80087-9

Smith, 2013, Recent advances in singlet fission, Annu. Rev. Phys. Chem., 64, 361, 10.1146/annurev-physchem-040412-110130

Lukman, 2017, Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids, J. Am. Chem. Soc., 139, 18376, 10.1021/jacs.7b10762

Johnson, 2010, High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran, J. Am. Chem. Soc., 132, 16302, 10.1021/ja104123r

Kawata, 2016, Singlet fission of non-polycyclic aromatic molecules in organic photovoltaics, Adv. Mater., 28, 1585, 10.1002/adma.201504281

Mauck, 2016, Singlet fission via an excimer-like intermediate in 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole derivatives, J. Am. Chem. Soc., 138, 11749, 10.1021/jacs.6b05627

Shen, 2018, Effects of aromatic substituents on the electronic structure and excited state energy levels of diketopyrrolopyrrole derivatives for singlet fission, Phys. Chem. Chem. Phys., 20, 22997, 10.1039/C8CP03216E

Xue, 2018, Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities, Adv. Funct. Mater., 28, 1707444, 10.1002/adfm.201707444

Zeng, 2020, Dopamine semiquinone radical doped PEDOT:PSS: enhanced conductivity, work function and performance in organic solar cells, Adv. Energy Mater., 10, 2000743, 10.1002/aenm.202000743

Li, 2017, Poly(3,4-ethylenedioxythiophene): methylnaphthalene sulfonate formaldehyde condensate: the effect of work function and structural homogeneity on hole injection/extraction properties, Adv. Energy Mater., 7, 1601499, 10.1002/aenm.201601499

Guo, 2019, Semiconductive polymer-doped PEDOT with high work function, conductivity, reversible dispersion, and application in organic solar cells, ACS Sustain. Chem. Eng., 7, 8206, 10.1021/acssuschemeng.8b06215

Champier, 2017, Thermoelectric generators: a review of applications, Energy Convers. Manag., 140, 167, 10.1016/j.enconman.2017.02.070

Kim, 2013, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat. Mater., 12, 719, 10.1038/nmat3635

Lyu, 2016, Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy, ACS Nano, 10, 4472, 10.1021/acsnano.6b00168

Wei, 2019, Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review, Mater. Sci. Eng. C Mater. Bio.l Appl., 104, 109891, 10.1016/j.msec.2019.109891

Jiao, 2015, Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion, Chem. Sci., 6, 3975, 10.1039/C5SC01167A

Lü, 2019, Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion, Nat. Commun., 10, 767, 10.1038/s41467-019-08434-4

Tang, 2019, A supramolecular radical dimer: high-efficiency nir-ii photothermal conversion and therapy, Angew. Chem. Int. Ed. Engl., 58, 15526, 10.1002/anie.201910257

Mi, 2019, Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion, J. Am. Chem. Soc., 141, 14433, 10.1021/jacs.9b07695

Linder, 2015, Superconducting spintronics, Nat. Phys., 11, 307, 10.1038/nphys3242

Matyjaszewski, 2001, Atom transfer radical polymerization, Chem. Rev., 101, 2921, 10.1021/cr940534g