Macrocyclic Polyradicaloids with Unusual Super-ring Structure and Global Aromaticity

Chem - Tập 4 - Trang 1586-1595 - 2018
Chunchen Liu1, María Eugenia Sandoval-Salinas2,3, Yongseok Hong4, Tullimilli Y. Gopalakrishna1, Hoa Phan1, Naoki Aratani5, Tun Seng Herng6, Jun Ding6, Hiroko Yamada5, Dongho Kim4, David Casanova2,7, Jishan Wu1
1Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
2Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHJ) & Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastián, Euskadi, Spain
3Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computational, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
4Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Korea
5Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
6Department of Materials Science & Engineering, National University of Singapore, Singapore 119260, Singapore
7Basque Foundation for Science (Ikerbasque), Bilbao 48013, Euskadi, Spain

Tài liệu tham khảo

Hückel, 1931, Quantentheoretische beiträge zum benzolproblem, Z. Phys., 70, 204 Heilbronner, 1964, Hückel molecular orbitals of Möbius-type conformations of annulenes, Tetrahedron Lett., 29, 1923, 10.1016/S0040-4039(01)89474-0 Ajami, 2003, Synthesis of a Möbius aromatic hydrocarbon, Nature, 426, 819, 10.1038/nature02224 Stępień, 2007, Expanded porphyrin with a split personality: a Hückel–Möbius aromaticity switch, Angew. Chem. Int. Ed., 46, 7869, 10.1002/anie.200700555 Tanaka, 2008, Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity, Angew. Chem. Int. Ed., 47, 681, 10.1002/anie.200704407 Yoon, 2009, Möbius aromaticity and antiaromaticity in expanded porphyrins, Nat. Chem., 1, 113, 10.1038/nchem.172 Stępień, 2011, Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids, Angew. Chem. Int. Ed., 50, 4288, 10.1002/anie.201003353 Baird, 1972, Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ∗ state of cyclic hydrocarbons, J. Am. Chem. Soc., 94, 4941, 10.1021/ja00769a025 Gogonea, 1998, Consequences of triplet aromaticity in 4nπ-electron annulenes: calculation of magnetic shieldings for open-shell species, Angew. Chem. Int. Ed., 37, 1945, 10.1002/(SICI)1521-3773(19980803)37:13/14<1945::AID-ANIE1945>3.0.CO;2-E Soncini, 2008, Ring-current aromaticity in open-shell systems, Chem. Phys. Lett., 450, 431, 10.1016/j.cplett.2007.11.053 Karadakov, 2008, Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene, J. Phys. Chem. A., 112, 7303, 10.1021/jp8037335 Karadakov, 2008, Aromaticity and antiaromaticity in the low-lying electronic states of cyclooctatetraene, J. Phys. Chem. A., 112, 12707, 10.1021/jp8067365 Feixas, 2011, Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds, Phys. Chem. Chem. Phys., 13, 20690, 10.1039/c1cp22239b Ottosson, 2012, Organic photochemistry: exciting excited-state aromaticity, Nat. Chem., 4, 969, 10.1038/nchem.1518 Soncini, 2013, Counter-rotating spin-polarised ring currents in odd-electron carbocycles, Chem. Eur. J., 19, 1740, 10.1002/chem.201202572 Rosenberg, 2014, Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations, Chem. Rev., 114, 5379, 10.1021/cr300471v Wörner, 2006, Photoelectron spectroscopic study of the first singlet and triplet states of the cyclopentadienyl cation, Angew. Chem. Int. Ed., 45, 293, 10.1002/anie.200503032 Sung, 2015, Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird's rule, Nat. Chem., 7, 418, 10.1038/nchem.2233 Jorner, 2016, Analysis of a compound class with triplet states stabilized by potentially Baird aromatic [10]annulenyl dicationic rings, Chem. Eur. J., 22, 2793, 10.1002/chem.201504924 Nakagami, 2012, The origin of global and macrocyclic aromaticity in porphyrinoids, Org. Biomol. Chem., 10, 5219, 10.1039/c2ob25692d Tanaka, 2017, Chemistry of meso-aryl-substituted expanded porphyrins: aromaticity and molecular twist, Chem. Rev., 117, 2584, 10.1021/acs.chemrev.6b00371 Stępień, 2008, Aromaticity and tautomerism in porphyrins and porphyrinoids, Top. Heterocycl. Chem., 19, 82 Peeks, 2017, Aromatic and antiaromatic ring currents in a molecular nanoring, Nature, 541, 200, 10.1038/nature20798 Clar, 1972 Dickens, 2013, An analysis of topological ring-currents and their use in assessing the annulene-within-an-annulene model for super-ring conjugated systems, Croat. Chem. Acta, 86, 387, 10.5562/cca2291 Dickens, 2014, Ring-current assessment of the annulene-within-an-annulene model for some large coupled super-ring conjugated-systems, Croat. Chem. Acta, 87, 221, 10.5562/cca2397 Barth, 1966, Dibenzo[ghi,mno]fluoranthene, J. Am. Chem. Soc., 88, 380, 10.1021/ja00954a049 Barth, 1971, The synthesis of corannulene, J. Am. Chem. Soc., 93, 1730, 10.1021/ja00736a028 Steiner, 2001, Counter-rotating ring currents in coronene and corannulene, Angew. Chem. Int. Ed., 40, 362, 10.1002/1521-3773(20010119)40:2<362::AID-ANIE362>3.0.CO;2-Z Dickens, 2011, Topological ring-current assessment of the ‘annulene-within-an-annulene’ model in [N]-circulenes and some structures related to kekulene, Chem. Phys. Lett., 517, 98, 10.1016/j.cplett.2011.10.002 Baryshnikov, 2014, Aromaticity of the planar hetero[8]circulenes and their doubly charged ions: NICS and GIMIC characterization, Phys. Chem. Chem. Phys., 16, 15367, 10.1039/C4CP00860J Baryshnikov, 2015, Aromaticity of the completely annelated tetraphenylenes: NICS and GIMIC characterization, J. Mol. Model., 21, 136, 10.1007/s00894-015-2683-4 Baryshnikov, 2016, Aromaticity of the doubly charged [8]circulenes, Phys. Chem. Chem. Phys., 18, 8980, 10.1039/C6CP00365F Aihara, 1992, Is superaromaticity a fact or an artifact? The kekulene problem, J. Am. Chem. Soc., 114, 865, 10.1021/ja00029a009 Aihara, 1995, Non-superaromatic reference defined by graph theory for a super-ring molecule, J. Chem. Soc. Faraday Trans., 91, 237, 10.1039/ft9959100237 Aihara, 2008, A simple method for estimating the superaromatic stabilization energy of a super-ring molecule, J. Phys. Chem. A., 112, 4382, 10.1021/jp7103006 Kumar, 2012, Septulene: the heptagonal homologue of Kekulene, Angew. Chem. Int. Ed., 51, 12795, 10.1002/anie.201203266 Myśliwiec, 2013, The fold-in approach to bowl-shaped aromatic compounds: synthesis of chrysaoroles, Angew. Chem. Int. Ed., 52, 1713, 10.1002/anie.201208547 Majewski, 2015, Chrysaorenes: assembling coronoid hydrocarbons via the fold-in synthesis, Chem. Commun., 51, 15094, 10.1039/C5CC06046J Nobusue, 2015, Tetracyclopenta[def,jkl,pqr,vwx]tetraphenylene: a potential tetraradicaloid hydrocarbon, Angew. Chem. Int. Ed., 54, 2090, 10.1002/anie.201410791 Miyoshi, 2015, Non-alternant non-benzenoid Kekulenes: the birth of a new kekulene family, Chem. Soc. Rev., 44, 6560, 10.1039/C5CS00185D Beser, 2016, A C216-nanographene molecule with defined cavity as extended coronoid, J. Am. Chem. Soc., 138, 4322, 10.1021/jacs.6b01181 Majewski, 2016, Octulene: a hyperbolic molecular belt that binds chloride anions, Angew. Chem. Int. Ed., 55, 14072, 10.1002/anie.201608384 Buttrick, 2017, Kekulenes, cycloarenes, and heterocycloarenes: addressing electronic structure and aromaticity through experiments and calculations, Chem. Soc. Rev., 46, 7, 10.1039/C6CS00174B Monaco, 2006, Designing ring-current patterns:  [10,5]-coronene, a circulene with inverted rim and hub currents, J. Phys. Chem. A., 110, 7447, 10.1021/jp0600559 Dickens, 2013, π-Electron ring-currents and bond-currents in [10,5]-coronene and related structures conforming to the ‘Annulene-Within-an-Annulene’ model, Phys. Chem. Chem. Phys., 15, 8245, 10.1039/c3cp00053b Dickens, 2013, The regular [r,s]-coronenes and the ‘annulene-within-an-annulene’ rule, RSC Adv., 3, 15585, 10.1039/c3ra42913j Abe, 2013, Diradicals, Chem. Rev., 113, 7011, 10.1021/cr400056a Zeng, 2015, Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals, Chem. Soc. Rev., 44, 6578, 10.1039/C5CS00051C Kubo, 2015, Recent progress in quinoidal singlet biradical molecules, Chem. Lett., 44, 111, 10.1246/cl.140997 Das, 2016, Fully fused quinoidal/aromatic carbazole macrocycles with poly-radical characters, J. Am. Chem. Soc., 138, 7782, 10.1021/jacs.6b04539 Lu, 2016, Stable 3,6-linked fluorenyl radical oligomers with intramolecular antiferromagnetic coupling and polyradical characters, J. Am. Chem. Soc., 138, 13048, 10.1021/jacs.6b08138 Casanova, 2009, Restricted active space spin-flip configuration interaction approach: theory, implementation and examples, Phys. Chem. Chem. Phys., 11, 9779, 10.1039/b911513g Yamaguchi, 1973, A molecular-orbital theoretical classification of reactions of singlet ground-state molecules, Chem. Phys. Lett., 22, 461, 10.1016/0009-2614(73)87008-3 Wu, 2005, Direct optimization method to study constrained systems within density-functional theory, Phys. Rev. A., 72, 024502, 10.1103/PhysRevA.72.024502 Mandado, 2008, Aromaticity in spin-polarized systems: can rings be simultaneously alpha aromatic and beta antiaromatic?, J. Chem. Phys., 129, 164114, 10.1063/1.2999562 Kruszewski, 1972, Definition of aromaticity basing on the harmonic oscillator model, Tetrahedron Lett., 13, 3839, 10.1016/S0040-4039(01)94175-9 Nakano, 2012, One- and two-photon absorptions in open-shell singlet systems, AIP Conf. Proc., 1504, 136, 10.1063/1.4771708