Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: from a monomer to a dimer

Science in China Series B: Chemistry - Tập 61 - Trang 300-305 - 2017
Wenqing Wang1, Lei Wang1, Sheng Chen1, Wenbang Yang1, Zaichao Zhang2, Xinping Wang1
1State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
2School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an, China

Tóm tắt

Two tetraazacyclophane dications (12+ and 22+) with different remote substituents have been synthesized, isolated and characterized. Their electronic structures and physical property were studied by various spectroscopic techniques, single crystal X-ray diffraction, super conducting quantum interference device (SQUID) measurements and theoretical calculations. The dications have triplet ground states with ferromagnetic interaction exceeding the thermal energy at room temperature. The solid-state structures of these species were tunable by substituent effect, with 12+ as a monomer and 22+ as a dimer.

Tài liệu tham khảo

Salem L, Rowland C. Angew Chem Int Ed, 1972, 11: 92–111 Borden WT. Diradicals. New York: Wiley, 1982 Rajca A. Chem Rev, 1994, 94: 871–893 Schmittel M, Burghart A. Angew Chem Int Ed, 1997, 36: 2550–2589 Power PP. Chem Rev, 2003, 103: 789–810 Nishinaga T, Komatsu K. Org Biomol Chem, 2005, 3: 561–569 Hicks RG. Org Biomol Chem, 2007, 5: 1321–1338 Breher F. Coordin Chem Rev, 2007, 251: 1007–1043 Hicks RG. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds. Chichester, U.K.: Wiley, 2010 Martin D, Soleilhavoup M, Bertrand G. Chem Sci, 2011, 2: 389–399 Hankache J, Wenger OS. Chem Rev, 2011, 111: 5138–5178 Mas-Torrent M, Crivillers N, Rovira C, Veciana J. Chem Rev, 2012, 112: 2506–2527 Heckmann A, Lambert C. Angew Chem Int Ed, 2012, 51: 326–392 Abe M, Ye J, Mishima M. Chem Soc Rev, 2012, 41: 3808–3820 Sun Z, Ye Q, Chi C, Wu J. Chem Soc Rev, 2012, 41: 7857–7889 Casado J, Ponce Ortiz R, López Navarrete JT. Chem Soc Rev, 2012, 41: 5672–5686 Chivers T, Konu J. In: Chivers T, Ed. Comprehensive Inorganic Chemistry II: From Elements to Applications. Volume 1: Main-Group Elements, Including Noble Gases. Amsterdam: Elsevier, 2013. 349–373 Abe M. Chem Rev, 2013, 113: 7011–7088 Rassat A, Sieveking HU. Angew Chem Int Ed, 1972, 11: 303–304 Veciana J, Rovira C, Crespo MI, Armet O, Domingo VM, Palacio F. J Am Chem Soc, 1991, 113: 2552–2561 Inoue K, Iwamura H. Angew Chem Int Ed, 1995, 34: 927–928 Shultz DA, Fico RM, Lee H, Kampf JW, Kirschbaum K, Pinkerton AA, Boyle PD. J Am Chem Soc, 2003, 125: 15426–15432 Hiraoka S, Okamoto T, Kozaki M, Shiomi D, Sato K, Takui T, Okada K. J Am Chem Soc, 2004, 126: 58–59 Fukuzaki E, Nishide H. J Am Chem Soc, 2006, 128: 996–1001 Rajca A, Takahashi M, Pink M, Spagnol G, Rajca S. J Am Chem Soc, 2007, 129: 10159–10170 Rajca A, Shiraishi K, Rajca S. Chem Commun, 2009, 294: 4372 Boratyński PJ, Pink M, Rajca S, Rajca A. Angew Chim Int Ed, 2010, 49: 5459–5462 Suzuki S, Furui T, Kuratsu M, Kozaki M, Shiomi D, Sato K, Takui T, Okada K. J Am Chem Soc, 2010, 132: 15908–15910 Gallagher NM, Bauer JJ, Pink M, Rajca S, Rajca A. J Am Chem Soc, 2016, 138: 9377–9380 Bredas JL, Street GB. Acc Chem Res, 1985, 18: 309–315 Spangler CW, He M. J Chem Soc Perkin Trans 1, 1995, 715–720 de Melo CP, Silbey R. J Chem Phys, 1988, 88: 2567–2571 Lai CM, Meng HF. Phys Rev B, 1996, 54: 16365–16368 Bulovic V, Gu G, Burrows PE, Forrest SR, Thompson ME. Nature, 1996, 380: 29–29 Tamoto N, Adachi C, Nagai K. Chem Mater, 1997, 9: 1077–1085 Bellmann E, Shaheen SE, Thayumanavan S, Barlow S, Grubbs RH, Marder SR, Kippelen B, Peyghambarian N. Chem Mater, 1998, 10: 1668–1676 Borsenberger PM, Weiss DS. Organic Photoreceptors for Xerography. New York: Marcel Dekker, 1998 Harris MC, Buchwald SL. J Org Chem, 2000, 65: 5327–5333 Mitschke U, Bäuerle P. J Mater Chem, 2000, 10: 1471–1507 Nelsen SF, Ismagilov RF, Powell DR. J Am Chem Soc, 1997, 119: 10213–10222 Nelsen SF, Li G, Schultz KP, Tran HQ, Guzei IA, Evans DH. J Am Chem Soc, 2008, 130: 11620–11622 Jalilov AS, Li G, Nelsen SF, Guzei IA, Wu Q. J Am Chem Soc, 2010, 132: 6176–6182 Jalilov AS, Nelsen SF, Guzei IA, Wu Q. Angew Chem Int Ed, 2011, 50: 6860–6863 Yokoyama Y, Sakamaki D, Ito A, Tanaka K, Shiro M. Angew Chem Int Ed, 2012, 51: 9403–9406 Zalibera M, Jalilov AS, Stoll S, Guzei IA, Gescheidt G, Nelsen SF. J Phys Chem A, 2013, 117: 1439–1448 Kamada K, Fuku-en S, Minamide S, Ohta K, Kishi R, Nakano M, Matsuzaki H, Okamoto H, Higashikawa H, Inoue K, Kojima S, Yamamoto Y. J Am Chem Soc, 2013, 135: 232–241 Zheng X, Wang X, Qiu Y, Li Y, Zhou C, Sui Y, Li Y, Ma J, Wang X. J Am Chem Soc, 2013, 135: 14912–14915 Su Y, Wang X, Zheng X, Zhang Z, Song Y, Sui Y, Li Y, Wang X. Angew Chem Int Ed, 2014, 53: 2857–2861 Su Y, Wang X, Li Y, Song Y, Sui Y, Wang X. Angew Chem Int Ed, 2015, 54: 1634–1637 Li T, Tan G, Shao D, Li J, Zhang Z, Song Y, Sui Y, Chen S, Fang Y, Wang X. J Am Chem Soc, 2016, 138: 10092–10095 Su Y, Wang X, Wang L, Zhang Z, Wang X, Song Y, Power PP. Chem Sci, 2016, 7: 6514–6518 Burrezo PM, Lin NT, Nakabayashi K, Ohkoshi SI, Calzado EM, Boj PG, Díaz García MA, Franco C, Rovira C, Veciana J, Moos M, Lambert C, López Navarrete JT, Tsuji H, Nakamura E, Casado J. Angew Chem Int Ed, 2017, 56: 2898–2902 Ito A, Urabe M, Tanaka K. Angew Chem Int Ed, 2003, 42: 921–924 Ito A, Urabe M, Tanaka K. Angew Chem Int Ed, 2009, 48: 5785–5785 Wienk MM, Janssen RAJ. J Am Chem Soc, 1996, 118: 10626–10628 Fukuzaki E, Nishide H. J Am Chem Soc, 2006, 128: 996–1001 Hauck SI, Lakshmi KV, Hartwig JF. Org Lett, 1999, 1: 2057–2060 Ito A, Ono Y, Tanaka K. Angew Chem Int Ed, 2000, 39: 1072−1075 Kulszewicz-Bajer I, Maurel V, Gambarelli S, Wielgus I, Djurado D. Phys Chem Chem Phys, 2009, 11: 1362–1368 Tsue H, Ishibashi K, Tamura R. Top Heterocycl Chem, 2008, 17: 73–96 Wang MX. Chem Commun, 2008, 27: 4541 Wang MX. Acc Chem Res, 2012, 45: 182–195 Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Pron A. Chem Soc Rev, 2013, 42: 8895–8999 Ito A. J Mater Chem C, 2016, 4: 4614–4625 Spin contamination errors were corrected by approximate spin-projection method. S2 before spin projection were 2.0267 and 2.0231 for the triplet states; 1.0045 and 1.0016 for the open-shell singlet states of 1 2+ and 2 2+, respectively. Kitagawa Y, Saito T, Ito M, Shoji M, Koizumi K, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K. Chem Phys Lett, 2007, 442: 445–450 Krossing I. Chem Eur J, 2001, 7: 490–502 X-ray data for 1 2+ and 2 2+ are listed in Table S1 in the Supporting Information online. CCDC-1534033 and 1543240 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif All calculations were performed using the Gaussian 09 program suite. Frisch MJ, et al. Gaussian 09. Revision B.01. Wallingford, CT: Gaussian, Inc., 2010. See Supporting Information for coordinates and full citation Bondi A. J Phys Chem, 1964, 68: 441–451 Haldane FDM. Phys Lett A, 1983, 93: 464–468 Haldane FDM. Phys Rev Lett, 1983, 50: 1153–1156 Zheludev A, Honda Z, Chen Y, Broholm CL, Katsumata K, Shapiro SM. Phys Rev Lett, 2002, 88: 077206 Stone MB, Zaliznyak IA, Hong T, Broholm CL, Reich DH. Nature, 2006, 440: 187–190