Diindenoanthracene Diradicaloids Enable Rational, Incremental Tuning of Their Singlet-Triplet Energy Gaps

Chem - Tập 6 - Trang 1353-1368 - 2020
Justin J. Dressler1, Abel Cárdenas Valdivia2, Ryohei Kishi3, Gabriel E. Rudebusch1, Austin M. Ventura1, Brian E. Chastain1, Carlos J. Gómez-García4, Lev N. Zakharov5, Masayoshi Nakano3,6,7,8, Juan Casado2, Michael M. Haley1,9
1Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA
2Department of Physical Chemistry, University of Malaga, Campus de Teatinos, s/n, 29071 Malaga, Spain
3Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
4Department of Inorganic Chemistry and Instituto de Ciencia Molecular, Universidad de Valencia, C/José Beltrán 2, 46980 Paterna, Spain
5CAMCOR, University of Oregon, Eugene, OR 97403-1433, USA
6Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
7Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
8Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
9Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403-6231, USA

Tài liệu tham khảo

Y Gopalakrishna, 2018, From open-shell singlet diradicaloids to polyradicaloids, Chem. Commun (Camb)., 54, 2186, 10.1039/C7CC09949E Morita, 2011, Synthetic organic spin chemistry for structurally well–defined open-shell graphene fragments, Nat. Chem., 3, 197, 10.1038/nchem.985 Morita, 2011, Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals, Nat. Mater., 10, 947, 10.1038/nmat3142 Nakano, 2005, Second hyperpolarizability (gamma) of singlet diradical system: dependence of gamma on the diradical character, J. Phys. Chem. A, 109, 885, 10.1021/jp046322x Nakano, 2007, Relationship between third-order nonlinear optical properties and magnetic interactions in open-shell systems: a new paradigm for nonlinear optics, Phys. Rev. Lett., 99, 033001, 10.1103/PhysRevLett.99.033001 Nakano, 2015, Theoretical design of open-shell singlet molecular systems for nonlinear optics, J. Phys. Chem. Lett., 6, 3236, 10.1021/acs.jpclett.5b00956 Hu, 2018, The electronic applications of stable diradicaloids: present and future, J. Mater. Chem. C, 6, 11232, 10.1039/C8TC04484H Minami, 2012, Diradical character view of singlet fission, J. Phys. Chem. Lett., 3, 145, 10.1021/jz2015346 Smith, 2013, Recent advances in singlet fission, Annu. Rev. Phys. Chem., 64, 361, 10.1146/annurev-physchem-040412-110130 Varnavski, 2015, High yield ultrafast intramolecular singlet exciton fission in a quinoidal bithiophene, J. Phys. Chem. Lett., 6, 1375, 10.1021/acs.jpclett.5b00198 Kioke, 2016, Stable delocalized singlet biradical hydrocarbon for organic field-effect transistors, Adv. Funct. Mater., 26, 277, 10.1002/adfm.201503650 Ni, 2016, A diradical approach towards BODIPY-based dyes with intense near-infrared absorption around λ = 1100 nm, Angew. Chem. Int. Ed. Engl., 55, 2815, 10.1002/anie.201511151 Thiele, 1904, Ueber einen chinoïden Kohlenwasserstoff, Ber. Dtsch. Chem. Ges., 37, 1463, 10.1002/cber.19040370245 Tschitschibabin, 1907, Über einige phenylierte derivate des p,p-ditolyls, Ber. Dtsch. Chem. Ges., 40, 1810, 10.1002/cber.19070400282 Abe, 2013, Diradicals, Chem. Rev., 113, 7011, 10.1021/cr400056a Kubo, 2005, Synthesis, intermolecular interaction, and semiconductive behavior of a delocalized singlet biradical hydrocarbon, Angew. Chem. Int. Ed. Engl., 44, 6564, 10.1002/anie.200502303 Shimizu, 2010, Alternating covalent bonding interactions in a one-dimensional chain of a phenalenyl-based singlet biradical molecule having Kekulé structures, J. Am. Chem. Soc., 132, 14421, 10.1021/ja1037287 Shimizu, 2012, Aromaticity and π-bond covalency: prominent intermolecular covalent bonding interaction of a Kekulé hydrocarbon with very significant singlet biradical character, Chem. Commun. (Camb.), 48, 5629, 10.1039/c2cc31955a Kubo, 2004, Four-stage amphoteric redox properties and biradicaloid character of tetra-tert-butyldicyclopenta[b;d]thieno[1,2,3-cd;5,6,7-c′d′]diphenalene, Angew. Chem. Int. Ed. Engl., 43, 6474, 10.1002/anie.200460565 Casado, 2017, Para-quinodimethanes: a unified review of the quinoidal-versus-aromatic competition and its implications, Top. Curr. Chem., 375, 73, 10.1007/s41061-017-0163-2 Zeng, 2015, Stable π-Extended p-quinodimethanes: synthesis and tunable ground states, Chem. Rec., 15, 322, 10.1002/tcr.201402075 Zeng, 2013, Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states, J. Am. Chem. Soc., 135, 6363, 10.1021/ja402467y Chase, 2012, 6,12-Diarylindeno[1,2-b]fluorenes: syntheses, photophysics, and ambipolar OFETs, J. Am. Chem. Soc., 134, 10349, 10.1021/ja303402p Shimizu, 2013, Indeno[2,1-b]fluorene: A 20-π-electron hydrocarbon with very low-energy light absorption, Angew. Chem. Int. Ed. Engl., 52, 6076, 10.1002/anie.201302091 Dressler, 2017, Synthesis of the unknown indeno[1,2-a]fluorene regioisomer: crystallographic characterization of its dianion, Angew. Chem. Int. Ed. Engl., 56, 15363, 10.1002/anie.201709282 Frederickson, 2017, Explorations of the Indenofluorenes and expanded quinoidal analogues, Acc. Chem. Res., 50, 977, 10.1021/acs.accounts.7b00004 Rudebusch, 2016, Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals, Nat. Chem., 8, 753, 10.1038/nchem.2518 Rudebusch, 2016, A biradical balancing act: redox amphoterism in a diindenoanthracene derivative results from quinoidal acceptor and aromatic donor motifs, J. Am. Chem. Soc., 138, 12648, 10.1021/jacs.6b07882 Marshall, 2016, Indacenodibenzothiophenes: synthesis, optoelectronic properties and materials applications of molecules with strong antiaromatic character, Chem. Sci., 7, 5547, 10.1039/C6SC00950F Miyoshi, 2017, Fluoreno[2,3-b]fluorene vs indeno[2,1-b]fluorene: unusual relationship between the number of π electrons and excitation energy in m-quinodimethane-type singlet diradicaloids, J. Org. Chem., 82, 1380, 10.1021/acs.joc.6b02500 Barker, 2017, Synthesis and properties of quinoidal fluorenofluorenes, Org. Lett., 19, 5312, 10.1021/acs.orglett.7b02605 Frederickson, 2018, Synthesis and characterization of a fluorescent dianthraceno-indacene, Synlett, 29, 2562, 10.1055/s-0037-1610280 Dressler, 2018, Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets, Nat. Chem., 10, 1134, 10.1038/s41557-018-0133-5 Hu, 2017, Modern zethrene chemistry, Can. J. Chem., 95, 223, 10.1139/cjc-2016-0568 Zeng, 2016, Super-heptazethrene, Angew. Chem. Int. Ed. Engl., 55, 8615, 10.1002/anie.201602997 Sun, 2013, Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar’s aromatic sextet rule in singlet biradicaloids, J. Am. Chem. Soc., 135, 18229, 10.1021/ja410279j Li, 2012, Kinetically blocked stable heptazethrene and octazethrene: closed-shell or open-shell in the ground state?, J. Am. Chem. Soc., 134, 14913, 10.1021/ja304618v Konishi, 2014, Anthenes: model systems for understanding the edge state of graphene nanoribbons, Pure Appl. Chem., 86, 497, 10.1515/pac-2013-0811 Konishi, 2013, Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level, J. Am. Chem. Soc., 135, 1430, 10.1021/ja309599m Bendikov, 2004, Oligoacenes: theoretical prediction of open-shell singlet diradical ground states, J. Am. Chem. Soc., 126, 7416, 10.1021/ja048919w Purushothaman, 2011, Synthesis and structural characterization of crystalline nonacenes, Angew. Chem. Int. Ed. Engl., 50, 7013, 10.1002/anie.201102671 Dong, 2019, Extended bis(anthraoxa)quinodimethanes with nine and ten consecutively fused six-membered rings: neutral diradicaloids and charged diradical dianions/dications, J. Am. Chem. Soc., 141, 62, 10.1021/jacs.8b10279 Kubo, 2015, Recent progress in quinoidal singlet biradical molecules, Chem. Lett., 44, 111, 10.1246/cl.140997 Sun, 2014, Zethrenes, extended p-quinodimethanes, and periacenes with a singlet biradical ground state, Acc. Chem. Res., 47, 2582, 10.1021/ar5001692 Zeng, 2015, Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals, Chem. Soc. Rev., 44, 6578, 10.1039/C5CS00051C Ravat, 2016, Biradicaloid with a twist: lowering the singlet–triplet gap, Synlett, 27, 1613, 10.1055/s-0035-1561447 Di Motta, 2010, Biradicaloid and polyenic character of quinoidal oligothiophenes revealed by the presence of a low-lying double-exciton state, J. Phys. Chem. Lett., 1, 3334, 10.1021/jz101400d Sun, 2012, Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals, Chem. Soc. Rev., 41, 7857, 10.1039/c2cs35211g Lu, 2019, Stable Diindeno-fused corannulene regioisomers with open-shell singlet ground states and large diradical characters, Angew. Chem. Int. Ed. Engl., 58, 7600, 10.1002/anie.201902028 Zeng, 2017, Rylene ribbons with unusual diradical character, Chem, 2, 81, 10.1016/j.chempr.2016.12.001 Yamaguchi, 1975, The electronic structures of biradicals in the unrestricted Hartree-Fock approximation, Chem. Phys. Lett., 33, 330, 10.1016/0009-2614(75)80169-2 Frederickson, 2016, Modulating Paratropicity strength in Diareno-fused antiaromatics, J. Am. Chem. Soc., 138, 16827, 10.1021/jacs.6b11397 Motomura, 2011, Size dependences of the diradical character and the second hyperpolarizabilities in dicyclopenta-fused acenes: relationships with their aromaticity/antiaromaticity, Phys. Chem. Chem. Phys., 13, 20575, 10.1039/c1cp20773c Barker, 2020, Molecule isomerism modulates the diradical properties of stable singlet diradicaloids, J. Am. Chem. Soc., 142, 1548, 10.1021/jacs.9b11898 Shao, 2003, The spin–flip approach within time-dependent density functional theory: theory and applications to diradicals, J. Chem. Phys., 118, 4807, 10.1063/1.1545679 Wang, 2006, Use of noncollinear exchange-correlation potentials in multiplet resolutions by time-dependent density functional theory, Int. J. Quantum Chem., 106, 2545, 10.1002/qua.21050 Iikura, 2001, A long-range correction scheme for generalized-gradient-approximation exchange functionals, J. Chem. Phys., 115, 3540, 10.1063/1.1383587 Stein, 2010, Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method, Phys. Rev. Lett., 105, 266802, 10.1103/PhysRevLett.105.266802 Park, 2007, Soluble and easily crystallized anthracene derivatives: precursors of solution-processable semiconducting molecules, Org. Lett., 9, 2573, 10.1021/ol071135d Nakagawa, 2009, Synthesis and photochemical reactions of photochromic terarylene having a leaving methoxy group, Org. Lett., 11, 1475, 10.1021/ol802969b Bleaney, 1952, Anomalous paramagnetism of copper acetate, Proc. R. Soc. Lond. A, 214, 451, 10.1098/rspa.1952.0181