On the Second-Year Warming in Late 2019 over the Tropical Pacific and Its Attribution to an Indian Ocean Dipole Event
Tóm tắt
Tài liệu tham khảo
Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302–319, https://doi.org/10.1175/JCLI-3268.1.
Behera, S. K. and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the southern oscillation. J. Meteor. Soc. Japan, 81, 169–177, https://doi.org/10.2151/jmsj.81.169.
Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. On Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 1–6.
Cai, W. J., A. Santoso, G. J. Wang, E. Weller, L. X. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254–258, https://doi.org/10.1038/nature13327.
Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). [Available online from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levelsmonthlymeans?tab=form.]
Du, Y., Y. H. Zhang, L.-Y. Zhang, T. Tozuka, B. Ng, and W. J. Cai, 2020: Thermocline warming induced extreme Indian Ocean dipole in 2019. Geophys. Res. Lett., 47, e2020GL090079, https://doi.org/10.1029/2020GL090079.
Feng, L. C., R.-H. Zhang, B. Yu, and X. Han, 2020: Roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Adv. Atmos. Sci., 37, 847–860, https://doi.org/10.1007/s00376-020-0028-4.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905.
Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112–116, https://doi.org/10.1038/ngeo1686.
Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic niño. Geophys. Res. Lett., 40, 4012–4017, https://doi.org/10.1002/grl.50729.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geoscience, 3, 168–172, https://doi.org/10.1038/ngeo760.
Jin, F.-F., S.-I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.
Kim, J.-W., and J.-Y. Yu, 2020: Understanding reintensified multiyear El Niño events. Geophys. Res. Lett., 47, e2020GL087644, https://doi.org/10.1029/2020GL087644.
Kug J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim, 22, 1499–515, https://doi.org/10.1175/2008JCLI2624.1.
Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Nino events. Adv. Atmos. Sci., 7, 36–46, https://doi.org/10.1007/BF02919166.
Li, T., Y. S. Zhang, E. Lu, and D. L. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 2110, https://doi.org/10.1029/2002GL015789.
Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteorological Monthly, 46, 1393–1404, https://doi.org/10.7519/j.issn.1000-0526.2020.11.001. (in Chinese with English abstract)
Rasmusson, E. M. and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.
Tian, F., R.-H. Zhang, and X. J. Wang, 2021: Indian Ocean warming as a potential trigger for super phytoplankton blooms in the eastern equatorial Pacific from El Niño to La Niña transitions. Environmental Research Letters, 16, 054040, https://doi.org/10.1088/1748-9326/abf76f.
Tokinaga, H., I. Richter, and Y. Kosaka, 2019: ENSO influence on the Atlantic niño, revisited: Multi-year versus single-year ENSO events. J. Climate, 32, 4585–4600, https://doi.org/10.1175/JCLI-D-18-0683.1.
Wang, B., R. G. Wu, and R. Lukas, 2000: Annual Adjustment of the Thermocline in the Tropical Pacific Ocean. J. Climate, 13, 596–616, https://doi.org/10.1175/1520-0442(2000)013<0596:AAOTTI>2.0.CO;2.
Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indowestern Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, https://doi.org/10.1175/2008JCLI2544.1.
Yang, X. K., and P. Huang, 2021: Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. The Innovation, 2, 100102, https://doi.org/10.1016/j.xinn.2021.100102.
Zhang, L., G. Wang, M. Newman, and W. Q. Han, 2021a: Interannual to decadal variability of tropical Indian Ocean Sea surface temperature: Pacific Influence versus local internal variability. J. Climate, 34, 2669–2684, https://doi.org/10.1175/JCLI-D-20-0807.1.
Zhang, L., W. Q. Han, and Z.-Z. Hu, 2021b: Interbasin and multiple-time-scale interactions in generating the 2019 extreme Indian Ocean dipole. J. Climate, 34, 4553–4566, https://doi.org/10.1175/JCLI-D-20-0760.1.
Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Nino simulation and prediction. Geophys. Res. Lett., 30, 2012, https://doi.org/10.1029/2003GL018010.
Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133, 2777–2802, https://doi.org/10.1175/MWR3000.1.
