Recharge Oscillator Mechanisms in Two Types of ENSO

Journal of Climate - Tập 26 Số 17 - Trang 6506-6523 - 2013
Hong‐Li Ren1, Fei‐Fei Jin2
1Department of Meteorology, School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, and Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China
2Department of Meteorology, School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Tóm tắt

Abstract The El Niño–Southern Oscillation (ENSO) tends to behave arguably as two different “types” or “flavors” in recent decades. One is the canonical cold-tongue-type ENSO with major sea surface temperature anomalies (SSTA) positioned over the eastern Pacific. The other is a warm-pool-type ENSO with SSTA centered in the central Pacific near the edge of the warm pool. In this study, the basic features and main feedback processes of these two types of ENSO are examined. It is shown that the interannual variability of upper-ocean heat content exhibits recharge–discharge processes throughout the life cycles of both the cold tongue (CT) and warm pool (WP) ENSO types. Through a heat budget analysis with focus on the interannual frequency band, the authors further demonstrate that the thermocline feedback plays a dominant role in contributing to the growth and phase transitions of both ENSO types, whereas the zonal advective feedback contributes mainly to their phase transitions. The westward shift of the SSTA center of the WP ENSO and the presence of significant surface easterly wind anomalies over the far eastern equatorial Pacific during its mature warm phase are the two main factors that lead to a reduced positive feedback for the eastern Pacific SSTA. Nevertheless, both the WP and CT ENSO can be understood to a large extent by the recharge oscillator mechanism.

Từ khóa


Tài liệu tham khảo

An, 2001, Collective role of thermocline and zonal advective feedbacks in the ENSO mode, J. Climate, 14, 3421, 10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2

An, 2004, Nonlinearity and asymmetry of ENSO, J. Climate, 17, 2399, 10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2

An, 1999, The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model, J. Meteor. Soc. Japan, 77, 1151, 10.2151/jmsj1965.77.6_1151

Ashok, 2009, Climate change: The El Niño with a difference, Nature, 461, 481, 10.1038/461481a

Ashok, 2007, El Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, 10.1029/2006JC003798

Battisti, 1989, Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity, J. Atmos. Sci., 46, 1687, 10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2

Behringer, 2004

Bejarano, 2008, Coexistence of equatorial coupled modes of ENSO, J. Climate, 21, 3051, 10.1175/2007JCLI1679.1

Cane, 1990, A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: Linear analysis, J. Atmos. Sci., 47, 1562, 10.1175/1520-0469(1990)047<1562:ASOSEO>2.0.CO;2

Compo, 2006, Feasibility of a 100-year reanalysis using only surface pressure data, Bull. Amer. Meteor. Soc., 87, 175, 10.1175/BAMS-87-2-175

Dewitte, 2012, Vertical structure variability and equatorial waves during central Pacific and eastern Pacific El Niños in a coupled general circulation model, Climate Dyn., 38, 2275, 10.1007/s00382-011-1215-x

Giese, 2011, El Niño variability in simple ocean data assimilation (SODA), 1871–2008, J. Geophys. Res., 116, C02024, 10.1029/2010JC006695

Ham, 2012, How well do current climate models simulate two types of El Niño?, Climate Dyn., 39, 383, 10.1007/s00382-011-1157-3

Jin, 1996, Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation, Science, 274, 76, 10.1126/science.274.5284.76

Jin, 1997, An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model, J. Atmos. Sci., 54, 811, 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2

Jin, 1997, An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model, J. Atmos. Sci., 54, 830, 10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2

Jin, 1993, Modes of interannual tropical ocean-atmosphere interaction—A unified view. Part I: Numerical results, J. Atmos. Sci., 50, 3477, 10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2

Jin, 1999, Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO, Geophys. Res. Lett., 26, 2989, 10.1029/1999GL002297

Jin, 2003, Strong El Niño events and nonlinear dynamical heating, Geophys. Res. Lett., 30, 1120, 10.1029/2002GL016356

Jin, 2006, A coupled-stability index for ENSO, Geophys. Res. Lett., 33, L23708, 10.1029/2006GL027221

Kang, 2001, The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model, J. Meteor. Soc. Japan, 79, 1, 10.2151/jmsj.79.1

Kao, 2009, Contrasting eastern-Pacific and central-Pacific types of El Niño, J. Climate, 22, 615, 10.1175/2008JCLI2309.1

Kim, 2009, Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones, Science, 325, 77, 10.1126/science.1174062

Kug, 2003, Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO, J. Geophys. Res., 108, 3284, 10.1029/2002JC001671

Kug, 2009, Two types of El Niño events: Cold tongue El Niño and warm pool El Niño, J. Climate, 22, 1499, 10.1175/2008JCLI2624.1

Kug, 2010, Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM, J. Climate, 23, 1226, 10.1175/2009JCLI3293.1

Larkin, 2005, On the definition of El Niño and associated seasonal average U.S. weather anomalies, Geophys. Res. Lett., 32, L13705, 10.1029/2005GL022738

Larkin, 2005, Global seasonal temperature and precipitation anomalies during El Nino autumn and winter, Geophys. Res. Lett., 32, L16705, 10.1029/2005GL022860

Mason, 2001, Probabilistic precipitation anomalies associated with ENSO, Bull. Amer. Meteor. Soc., 82, 619, 10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2

McPhaden, 2012, A 21st century shift in the relationship between ENSO SST and warm water volume anomalies, Geophys. Res. Lett., 39, L09706, 10.1029/2012GL051826

Meinen, 2000, Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña, J. Climate, 13, 3551, 10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2

Picaut, 1997, An advective-reflective conceptual model for the oscillatory nature of ENSO, Science, 277, 663, 10.1126/science.277.5326.663

Rasmusson, 1982, Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño, Mon. Wea. Rev., 110, 354, 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2

Ren, 2011, Niño indices for two types of ENSO, Geophys. Res. Lett., 38, L04704, 10.1029/2010GL046031

Ropelewski, 1987, Global and regional scale precipitation associated with El Niño/Southern Oscillation, Mon. Wea. Rev., 115, 1606, 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

Smith, 1992, Parallel ocean general circulation modeling, Physica D, 60, 38, 10.1016/0167-2789(92)90225-C

Smith, 2008, Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006), J. Climate, 21, 2283, 10.1175/2007JCLI2100.1

Suarez, 1988, A delayed action oscillator for ENSO, J. Atmos. Sci., 45, 3283, 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2

Trenberth, 1997, The definition of El Niño, Bull. Amer. Meteor. Soc., 78, 2771, 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2

Trenberth, 2001, Indices of El Niño evolution, J. Climate, 14, 1697, 10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2

Wang, 2001, Surface layer temperature balance in the equatorial Pacific during the 1997–98 El Niño and 1998–99 La Niña, J. Climate, 14, 3393, 10.1175/1520-0442(2001)014<3393:SLTBIT>2.0.CO;2

Weisberg, 1997, A western Pacific oscillator paradigm for the El Niño-Southern Oscillation, Geophys. Res. Lett., 24, 779, 10.1029/97GL00689

Weng, 2007, Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer, Climate Dyn., 29, 113, 10.1007/s00382-007-0234-0

Weng, 2009, Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events, Climate Dyn., 32, 663, 10.1007/s00382-008-0394-6

Whitaker, 2004, Reanalysis without radiosondes using ensemble data assimilation, Mon. Wea. Rev., 132, 1190, 10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2

Yeh, 2009, El Niño in a changing climate, Nature, 461, 511, 10.1038/nature08316

Yu, 2010, Three evolution patterns of central-Pacific El Niño, Geophys. Res. Lett., 37, L08706, 10.1029/2010GL042810

Yu, 2010, Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models, Geophys. Res. Lett., 37, L15705, 10.1029/2010GL044082

Yu, 2009, Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3, J. Climate, 22, 1850, 10.1175/2008JCLI2706.1

Yu, 2010, Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific, J. Climate, 23, 2869, 10.1175/2010JCLI3171.1

Zhang, 2007, Analysis of the ENSO cycle in the NCEP coupled forecast model, J. Climate, 20, 1265, 10.1175/JCLI4062.1

Zhang, 2011, Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn, J. Meteor. Soc. Japan, 89, 563, 10.2151/jmsj.2011-510

Zhang, 2012, Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn, J. Meteor. Soc. Japan, 90, 535, 10.2151/jmsj.2012-407