Genesis of the 2014–2016 El Niño events

Tao Lian1, DaKe Chen1, YouMin Tang1,2
1State Key Lab of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China
2Environmental Science and Engineering, University of Northern British Columbia, Prince George, Canada

Tóm tắt

The 2015/2016 El Niño was one of the strongest El Niño events in history, and this strong event was preceded by a weak El Niño in 2014. This study systematically analyzed the dynamical processes responsible for the genesis of these events. It was found that the weak 2014 El Niño had two warming phases, the spring-summer warming was produced by zonal advection and downwelling Kelvin waves driven by westerly wind bursts (WWBs), and the autumn-winter warming was produced by meridional advection, surface heating as well as downwelling Kelvin waves. The 2015/2016 extreme El Niño, on the other hand, was primarily a result of sustained zonal advection and downwelling Kelvin waves driven by a series of WWBs, with enhancement from the Bjerknes positive feedback. The vast difference between these two El Niño events mainly came from the different amount of WWBs in 2014 and 2015. As compared to the 1982/1983 and 1997/1998 extreme El Niño events, the 2015/2016 El Niño exhibited some distinctive characteristics in its genesis and spatial pattern. We need to include the effects of WWBs to the theoretical framework of El Niño to explain these characteristics, and to improve our understanding and prediction of El Niño.

Từ khóa


Tài liệu tham khảo

An S I, Jin F F. 2001. Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim, 14: 3421–3432 Ashok K, Behera S K, Rao S A, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J Geophys Res, 112: C11007 Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev, 97: 163–172 Changnon S A. 2000. El Niño, 1997–1998: The Climate Event of the Century. New York: Oxford University Press. 232 Chen D, Cane M A. 2008. El Niño prediction and predictability. J Comp Phys, 227: 3625–3640 Chen D, Cane M A, Kaplan A, Zebiak S E, Huang D. 2004. Predictability of El Niño over the past 148 years. Nature, 428: 733–736 Chen D, Lian T, Fu C, Cane M A, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci, 8: 339–345 Chen D, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for EI Nino forecasting: Implications for predictability. Science, 269: 1699–1702 Chen S S, Houze R A, Mapes B E. 1996. Multiscale variability of deep convection in realation to large-scale circulation in TOGA COARE. J Atmos Sci, 53: 1380–1409 Fedorov A V, Hu S, Lengaigne M, Guilyardi E. 2015. The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn, 44: 1381–1401 Fu C, Diaz H F, Fletcher J O. 1986. Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the southern oscillation. Mon Weather Rev, 114: 1716–1739 Fu Y F, Huang R H. 1997. Impacts of westerly anomalies over East Asian on westerly burst over the western tropical and the occurrence of ENSO events (in Chinese). Sci Atmos Sin, 4: 485–492 Harrison D E, Vecchi G A. 1997. Westerly wind events in the tropical Pacific, 1986–95. J Clim, 10: 3131–3156 Hoerling M P, Kumar A, Zhong M. 1997. El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim, 10: 1769–1786 Hu S, Fedorov A V. 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA, 113: 2005–2010 Jin F F. 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual mdel. J Atmos Sci, 54: 811–829 Jin F F. 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J Atmos Sci, 54: 830–847 Jin F F, An S I, Timmermann A, Zhao J. 2003. Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett, 30: 1120 Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteorol Soc, 83: 1631–1643 Kang I S, Kug J S. 2002. El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J Geophys Res, 107: 4372–4381 Keen R A. 1982. The role of cross-equatorial tropical cyclone pirs in the southern oscillation. Mon Weather Rev, 110: 1405–1416 Kug J S, Jin F F, An S I. 2009. Two tpes of El Niño events: Cold tngue El Niño and warm pool El Niño. J Clim, 22: 1499–1515 Larkin N K, Harrison D E. 2005. On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett, 32: L13705 Li J, Liu B, Li J, Mao J. 2015. A comparative study on the dominant factors responsible for the weaker-than-expected El Niño event in 2014. Adv Atmos Sci, 32: 1381–1390 Lian T, Chen D. 2012. An evaluation of rotated EOF analysis and its application to tropical Pacific SST vriability. J Clim, 25: 5361–5373 Lian T, Chen D K, Tang Y M, Jin B G. 2014a. A theoretical investigation of the tropical Indo-Pacific tripole mode. Sci China Earth Sci, 57: 174–188 Lian T, Chen D, Tang Y, Wu Q. 2014b. Effects of westerly wind bursts on El Niño: A new perspective. Geophys Res Lett, 41: 3522–3527 Lian T, Tang Y M. 2017. Frequency-specified EOF analysis and its application to Pacific decadal oscillation. Sci China Earth Sci, 60: 341–347 Liu B Q, Li J Y, Mao J Y, Ren R C, Liu Q M. 2015. Possible mechanism for the development and suspending of El Niño event in 2014 (in Chinese). Chin Sci Bull, 60: 2133–2148 Lee T, McPhaden M J. 2010. Increasing intensity of El Niño in the centralequatorial Pacific. Geophys Res Lett, 37: L14603 Marzeion B, Timmermann A, Murtugudde R, Jin F F. 2005. Biophysical feedbacks in the tropical Pacific. J Clim, 18: 58–70 McPhaden M J. 1999. Genesis and Evolution of the 1997?98 El Nino. Science, 283: 950–954 McPhaden M J. 2004. Evolution of the 2002/03 El Niño. Bull Amer Meteorol Soc, 85: 677–695 McPhaden M J, Bahr F, Du Penhoat Y, Firing E, Hayes S P, Niiler P P, Richardson P L, Toole J M. 1992. The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J Geophys Res, 97: 14289 McPhaden M J, Freitag H P, Hayes S P, Taft B A, Chen Z, Wyrtki K. 1988. The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. J Geophys Res, 93: 10589 Meinen C S, McPhaden M J. 2000. Observations of Warm water volume changes in the euatorial Pacific and Their relationship to El Niño and La Niña. J Clim, 13: 3551–3559 Menkes C E, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G. 2014. About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett, 41: 6476–6483 Min Q, Su J, Zhang R, Rong X. 2015. What hindered the El Niño pattern in 2014? Geophys Res Lett, 42: 6762–6770 Mu M, Xu H, Duan W. 2007. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys Res Lett, 34: L03709 Neelin J D, Battisti D S, Hirst A C, Jin F F, Wakata Y, Yamagata T, Zebiak S E. 1998. ENSO theory. J Geophys Res, 103: 14261–14290 Oh J H, Jiang X, Waliser D E, Moncrieff M W, Johnson R H, Ciesielski P. 2015. A momentum budget analysis of westerly wind events associated with the Madden-Julian oscillation during DYNAMO. J Atmos Sci, 72: 3780–3799 Okumura Y M, Deser C. 2010. Asymmetry in the dration of El Niño and La Niña. J Clim, 23: 5826–5843 Pearcy W G, Schoener A. 1987. Changes in the marine biota coincident with the 1982–1983 El Niño in the northeastern Subarctic Pacific Ocean. J Geophys Res, 92: 14417–14428 Peng Y, Song J, Xiang J, Sun C. 2015. Impact of observational MJO forcing on ENSO predictability in the Zebiak-Cane model: Part I. Effect on the maximum prediction error. Acta Oceanol Sin, 34: 39–45 Philander S G H. 1990. El Niño, La Nina, and the Southern Oscillation. London: Academic Press. 293 Puy M, Vialard J, Lengaigne M, Guilyardi E. 2016. Modulation of equatorial Pacific westerly/easterly wind events by the Madden-Julian oscillation and convectively-coupled Rossby waves. Clim Dyn, 46: 2155–2178 Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/ El Niño. Mon Weather Rev, 110: 354–384 Rong X, Zhang R, Li T, Su J. 2011. Upscale feedback of high-frequency winds to ENSO. Q J R Meteorol Soc, 137: 894–907 Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool H M, Pan H L, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P. 2006. The NCEP climate forecast system. J Clim, 19: 3483–3517 Seiki A, Takayabu Y N. 2007. Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon Weather Rev, 135: 3325–3345 Song Z, Shu Q, Bao Y, Yin X, Qiao F. 2015. The prediction on the 2015/16 El Niño event from the perspective of FIO-ESM. Acta Oceanol Sin, 34: 67–71 Sun R, Ling Z, Chen C, Yan Y. 2015. Interannual variability of thermal front west of Luzon Island in boreal winter. Acta Oceanol Sin, 34: 102–108 Timmermann A, Jin F F. 2002. Phytoplankton influences on tropical climate. Geophys Res Lett, 29: 19-1–19-4 Vecchi G A, Harrison D E. 2000. Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim, 13: 1814–1830 Vialard J, Menkes C, Boulanger J P, Delecluse P, Guilyardi E, McPhaden M J, Madec G. 2001. A model study of oceanic mechanisms affecting equatorial Pacific Sea surface temperature during the 1997–98 El Niño. J Phys Oceanogr, 31: 1649–1675 Wang H, Liu K, Qi D, Gao Z, Fan W, Zhang Z, Wang G. 2016. Causes of seasonal sea level anomalies in the coastal region of the East China Sea. Acta Oceanol Sin, 35: 21–29 Yan B L, Zhang R H. 2002. The role of atmosphere climate basic state in the formation of westerly over the equatorial Pacific (in Chinese). Acta Oceanol Sin, 24: 39–50 Yu L, Rienecker M M. 1998. Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys Res Lett, 25: 3537–3540 Zhan R F, Ding Y H, Wu L G, Lei X T. 2016. Role of ENSO in the interannual relationship between Tibetan Plateau winter snow cover and Northwest Pacific tropical cyclone genesis frequency. Sci China Earth Sci, 59: 2009–2021 Zhang C, Li S L. 2015. Why is the El Niño event during the 2014 winter not a strong one? (in Chinese) Chin Sci Bull, 60: 1941–1951 Zhang X M, Chen C, Lian T, Chen D K. 2017. Spatiotemporal modes of global sea surface temperature variability. Sci China Earth Sci, 60: 508–516 Zheng F, Wang H, Wan L. 2015. Roles of initial ocean states on predicting the 2002/03 central Pacific El Niño. Acta Oceanol Sin, 34: 72–79